A ring is *regular* if every finitely generated module has finite projective dimension.

Examples

 $\triangleright k[x_1,\ldots,x_n]$ $ho k[\![x_1,\ldots,x_n]\!]$

A local ring R is a complete intersection if there exists a regular local ring Q and a regular sequence f = f_1, \ldots, f_c , such that the completion of R is

 $\widehat{R} = Q / oldsymbol{f}$.

A ring is a *locally complete intersection* if for every prime ideal \mathbf{p} the localization $R_{\mathfrak{p}}$ is a complete intersection.

Example

 $ightarrow k[x,y]/(x^2,y^2)$

The derived category D(R) has: \triangleright objects: $X = \cdots \to X_n \xrightarrow{\partial_n} X_{n-1} \to \cdots$ inverted. Some important properties: $\triangleright X \simeq 0 \iff \operatorname{H}(X) = 0$ \triangleright Suspension/Translation: "move X to the left": $\Sigma X \colon \cdots \to X_n \xrightarrow{-\partial_n} X_{n-1} \longrightarrow \cdots$ ▷ Mapping cone: $X \xrightarrow{f} Y$ a chain map ► Exact triangles: \diamond Prototype: $X \xrightarrow{f} Y \rightarrow \text{cone}(f) \rightarrow \Sigma X$ ♦ Every short exact sequence of complexes

induces an exact triangle

Generation \triangleright A full subcategory \mathcal{S} is *thick* if it is closed under: Examples \diamond direct summands, \diamond suspensions, $\triangleright G = R$ \diamond cones. \diamond thick $^1_R(R) \supseteq$ finitely generated projective modules \triangleright thick $_{\mathcal{T}}(G)$ = smallest thick subcategory of \mathcal{T} \diamond Given a complex $P = 0 \rightarrow P_b \rightarrow \cdots \rightarrow P_a \rightarrow 0$ of are finitely generated projective containing G. modules then: $-0 \rightarrow P_{a+1} \rightarrow P_a \rightarrow 0 = \operatorname{cone}(P_{a+1} \rightarrow P_a) \in \operatorname{thick}^2_R(R)$ ▷ If $X \in \operatorname{thick}_{\mathcal{T}}(G)$, then G generates X. $-P = 0 \rightarrow P_b \rightarrow \cdots \rightarrow P_a \rightarrow 0 \in \operatorname{thick}_R^{b-a+1}(R) \text{ and } \operatorname{level}_R^R(P) \leq b+a-1.$ Write $G \models X$. This is constructive: For a finitely generated R-module: $\operatorname{level}_{R}^{R}(M) = \operatorname{pd}_{R}(M) + 1$. finite direct sums $G \xrightarrow{\text{summands}}_{\text{suspensions}} X$. This does not hold for complexes: $R \oplus \Sigma^n R = 0 \to R \to 0 \to \dots \to 0 \to R \to 0 \in \text{thick}^1(R).$ cones \triangleright level^G_T(X) = minimal number of cones The ring R generates precisely the bounded complexes of finitely generated projective modules. Theorem (Letz) $\triangleright G = k$ over a local ring (R, \mathfrak{m}, k) Given $X \in D_f(R)$ with $\mathfrak{m}^n X \simeq 0$ then If $X, Y \in D_f(R)$ then the following are equivalent $0 \simeq \mathfrak{m}^n X \subseteq \mathfrak{m}^{n-1} X \subseteq \ldots \subseteq \mathfrak{m} X \subseteq X$ $(1) X \models Y,$ $\mathfrak{m}^{i+1}X \to \mathfrak{m}^{i}X \to \underbrace{\mathfrak{m}^{i}X/\mathfrak{m}^{i+1}X}_{\in \operatorname{thick}^{1}_{R}(k)} \to \Sigma\mathfrak{m}^{i+1}X$ (2) $X_{\mathfrak{p}} \models Y_{\mathfrak{p}}$ for all prime ideals \mathfrak{p} . Moreover, Now $\mathfrak{m}^n X \in \operatorname{thick}^0_B(k)$ and by induction: $X \in \operatorname{thick}^n_B(k)$. $\operatorname{level}_{R}^{G}(X) = \sup\{\operatorname{level}_{R_{\mathfrak{p}}}^{G_{\mathfrak{p}}}(X_{\mathfrak{p}}) | \mathfrak{p} \text{ prime ideal}\}.$

SMALLNESS PROPERTIES AND LOCALLY COMPLETE INTERSECTIONS

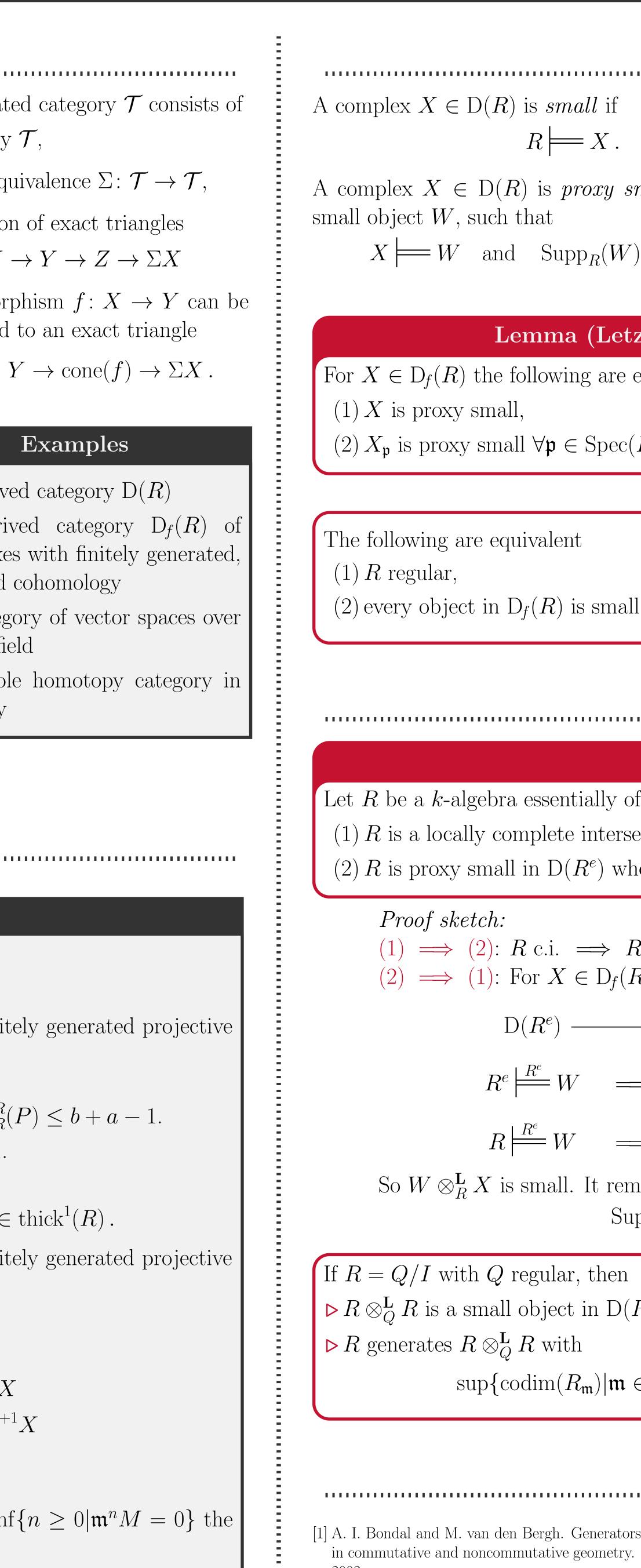
Based on: Local to global principles for generation time over Noether algebras, arXiv:1906.06104

Janina C. Letz

Background A triangulated category \mathcal{T} consists of \triangleright a category \mathcal{T} , \triangleright an autoequivalence $\Sigma \colon \mathcal{T} \to \mathcal{T}$, ▶ morphisms: chain maps with quasi-isomorphisms formally \triangleright a collection of exact triangles $X \to Y \to Z \to \Sigma X$ ▷ every morphism $f: X \to Y$ can be completed to an exact triangle $X \xrightarrow{f} Y \to \operatorname{cone}(f) \to \Sigma X$. $X : \cdots \longrightarrow X_n \xrightarrow{\partial_n} X_{n-1} \longrightarrow \cdots$ Examples ▷ the derived category D(R) $\begin{pmatrix} -\partial^X & 0 \end{pmatrix}$ $\operatorname{cone}(f):\cdots \to X_n \oplus Y_{n+1} \xrightarrow{\begin{pmatrix} -\delta & 0\\ f & \partial^Y \end{pmatrix}} X_{n-1} \oplus Y_n \to \cdots$ \triangleright the derived category $D_f(R)$ of complexes with finitely generated, bounded cohomology \triangleright the category of vector spaces over a fixed field $0 \to X \to Y \to Z \to 0$ \triangleright the stable homotopy category in topology $X \to Y \to Z \to \Sigma X$.

For a finitely generated R-module: $\operatorname{level}_{R}^{k}(M) = \operatorname{ll}_{R}(M) = \inf\{n \geq 0 | \mathfrak{m}^{n}M = 0\}$ the Loewy length.

The residue field generates precisely the complexes with finite length homology.



Proxy small objects	
f	
•	
<i>small</i> if there exists a	$\triangleright \operatorname{small} \Longrightarrow \operatorname{pr} \\ \triangleright R = k[x, y]/(x)$
$W) = \operatorname{Supp}_R(X).$	$K^R = 0 \to R$
	This complex
etz)	$\mathrm{H}_0(K^R) =$
• 1	and so $k \models = 1$

	an
equivalent	an $\triangleright(E)$
(R).	\diamond

The foll
(1) R a
(2) even

Main Theorem

Theorem (Letz)

Let R be a k-algebra essentially of finite type over k. Then the following are equivalent (1) R is a locally complete intersection,

(2) R is proxy small in $D(R^e)$ where $R^e = R \otimes_k R$.

(1) \implies (2): R c.i. \implies R^e c.i. \implies R is proxy small in $D(R^e)$. (2) \implies (1): For $X \in D_f(R)$ one has $D(R^e) \xrightarrow{-\otimes_R^L X} D(R)$

$$R^{e} \models W \implies R^{e} \otimes_{R}^{\mathbf{L}} X = R \otimes_{k} X \models W$$

 $R \models W \implies R \otimes_R^{\mathbf{L}} X = X \models W \otimes_R^{\mathbf{L}} X \qquad \in \mathcal{D}_f(R) \,.$ So $W \otimes_B^{\mathbf{L}} X$ is small. It remains to show $\operatorname{Supp}_B(X) = \operatorname{Supp}_B(W \otimes_B^{\mathbf{L}} X)$. Idea:

Support $\leftarrow \rightarrow$ Localizing subcategory.

If R = Q/I with Q regular, then $\triangleright R \otimes_{O}^{\mathbf{L}} R$ is a small object in $D(R^e)$, $\triangleright R$ generates $R \otimes_{O}^{\mathbf{L}} R$ with $\sup\{\operatorname{codim}(R_{\mathfrak{m}})|\mathfrak{m}\in\operatorname{Max}(R)\}+1\leq\operatorname{level}_{R^{e}}^{R}(R\otimes_{Q}^{\mathbf{L}}R)\leq\sup\{\operatorname{ht}(I_{\mathfrak{m}})|\mathfrak{m}\in\operatorname{Max}(R)\}+1.$

References

2008.

] A. I. Bondal and M. van den Bergh. Generators and representability of functors [3] J. Pollitz. The derived category of a locally complete intersection ring. Adv. in commutative and noncommutative geometry. Mosc. Math. J., 3(1):1–36, 258, 2003

Examples

 \implies proxy small. $[x, y]/(x^2, y^2)$, then $= 0 \to R \xrightarrow{\begin{pmatrix} -y \\ x \end{pmatrix}} R^2 \xrightarrow{(x \ y)} R \to 0 \in \operatorname{thick}_R(R)$ omplex has finite length homology: $(K^R) = k$, $H_1(K^R) = k$, $H_2(K_R) = 0$ nd so $k \models K^R$. R, \mathfrak{m}, k) local, and $K^R = \text{Koszul complex}$. Then $k \models K^R,$ $\operatorname{Supp}_R(K^R) = {\mathfrak{m}} = \operatorname{Supp}_R(k).$

llowing are equivalent

a locally complete intersection,

ery object in $D_f(R)$ is proxy small.

 $W \otimes_{R}^{\mathbf{L}} X \in \operatorname{thick}_{R}(\operatorname{Add}(R))$

Math., 354:106752, 2019.

W. G. Dwyer, J. P. C. Greenlees, and S. B. Iyengar. Finiteness in derived cate- [4] R. Rouquier. Dimensions of triangulated categories. J. K-Theory, 1(2):193–256, gories of local rings. Comment. Math. Helv., 81(2):383-432, 2006.