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Outline

1 Definitions: What do we want to compute?

2 Strategies: How can those be computed?

3 Implementation: What does the package compute?
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Setting

• R = commutative ring
• D(R) = derived category of R-modules

• objects: complexes of R-modules
• morphisms: chain complexes with quasi-isomorphisms inverted

• e.g. X ∼= 0 in D(R) ⇐⇒ X is acyclic

• Structure as a triangulated category:

Suspension

Σ: D(R)→ D(R) given by

X : Xn Xn−1

ΣX : Xn Xn−1

∂ ∂

−∂ −∂

Exact triangles

Replacement for SESs:
X → Y → Z → ΣX

satisfying some axioms.

Mapping cone

For X
f−→ Y there is an object Cone(f ) :→ Xn ⊕ Yn+1

(
−∂X 0
f ∂Y

)
−−−−−−−−→

degree n︷ ︸︸ ︷
Xn−1 ⊕ Yn →

and an exact triangle X Y Cone(f ) ΣX ΣYf Σf
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Thick subcategories

A full subcategory T of D(R) is thick if it is closed under:

• retracts, • suspensions, • cones.

thick(G ) := smallest thick subcategory containing G .

Example

thick(R) = {complexes quasi-isomorphic to bounded complexes of
f.g. projective R-modules}

Example

thick(k) = {complexes with finite length homology}
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Building and level

A filtration

{0} ⊆ thick1(G ) ⊆ thick2(G ) ⊆ · · · ⊆
⋃
n≥0

thickn(G ) = thick(G )

is given by:

• thick0(G ) := {0}
• thick1(G ) := smallest subcategory containing G , closed under finite

direct sums, suspensions and retracts.

• thickn(G ) := smallest subcategory containing all X such that there
exists an exact triangle

Y → X ⊕ X ′ → Z → ΣY

with Y ∈ thickn−1(G ) and Z ∈ thick1(G ) .

levelG (X ) := inf{n ≥ 0|X ∈ thickn(G )}
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Building and level

Example

• P a f.g. projective R-modules: levelR(ΣnP) = 1

• X = 0→ P
f−→ Q → 0 = Cone(P

f−→ Q) with P,Q f.g.
projective R-modules: levelR(X ) ≤ 2

• X a bounded complex of f.g. projective R-modules:
levelR(X ) ≤ max(X )−min(X ) + 1

• M a f.g. R-module: levelR(M) = proj dimR(M) + 1

Example

(R,m, k) a local ring.

• X a complex with f.g. bounded homology and mnX ' 0:
levelk(X ) ≤ n

• M a f.g. R-module:
levelk(M) = inf {n ≥ 0 |mnM = 0} = Loewy length
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Goal

1 Check X ∈ thick(G ).

Idea

X ∈ thick(G ) implies containment of supports for different notions
of support.

2 Compute levelG (X ).

Idea

levelG (X ) = inf

{
n ≥ 0

∣∣∣∣∣X = X0
f (X0)−−−→ X1

f (X1)−−−→ X2 → . . .→ Xn

is zero in D(R)

}

with f (Xi ) : Xi → Xi+1 constructed from a right G -approximation
of Xi .
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Support

1 supp(X ) = {p ∈ Spec(R) |Xp 6' 0}
For an exact triangle X → Y → Z → ΣX :

supp(Y ) ⊆ supp(X ) ∪ supp(Z ) .

Thus X ∈ thick(G ) =⇒ supp(X ) ⊆ supp(G )

X ,G∈Perf(R)

k=k⇐=⇒
√

ann(H(X )) ⊇ ann(H(G ))

2 R = Q/(f ) with f = f1, . . . , fc .

E = KosQ(f ) , S = Q[χ1, . . . , χc ]

VE (X ,Y ) = supp+
S (ExtE (X ,Y ))

Then X ∈ thickR(G ) ⇐=
=⇒ X ∈ thickE (G )

R ci

⇐⇒ VE (X ,X ) ⊆ VE (G ,G )
⇐=
=⇒ VE (X , k) ⊆ VE (G , k) length H(X )<∞
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Right approximations

A right G -approximation of X is a map G ′ → X with

G ′ =
⊕

ΣnGdn and
ΣdG X .

G ′

∃

Completing this to an exact triangle

G ′ → X
f (X )−−−→ Y → ΣG ′

yields

levelG (X ) = inf

{
n ≥ 0

∣∣∣∣∣X = X0
f (X0)−−−→ X1

f (X1)−−−→ X2 → . . .→ Xn

is zero in D(R)

}
.
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Package

1 isBuilt(X,G) checks if X ∈ thick(G )

2 level(G,X) returns levelG (X )
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