The spectrum of a well-generated tensor triangulated category

Janina C. Letz

Bielefeld University, Germany

joint work with Henning Krause

FD Seminar February 24th, 2022

1 Motivation

- **2** Background: Frames and classifications of thick tensor ideals
- $\textbf{3} Radical \alpha -localizing tensor ideals}$
- **4** Filtration of $Spc(\mathcal{T})$

• • = • • = •

Motivation: Well-generated triangulated categories

Not the sum of fever than a cordinals, all swaller than a

Let \mathcal{T} be a triangulated category with arbitrary coproducts and α a regular cardinal.

 $X \in \mathcal{T}$ is $\underline{\alpha}$ -small if

 $X \xrightarrow{\forall} \\ \Im \xrightarrow{} \\ Y \xrightarrow$

 \mathcal{T}^{α} is the maximal α -perfect class of α -small objects of \mathcal{T} . An object $X \in \mathcal{T}^{\alpha}$ is called $\underline{\alpha}$ -compact. $\exists \mathsf{M}_{\alpha} = \mathsf{N}_{\alpha} : \mathsf{M}_{\alpha} : \mathsf$

 ${\cal T}$ is well-generated, if it is $\alpha\text{-compactly generated for some regular cardinal }\alpha.$

For
$$\beta > \alpha$$
: $\mathcal{T}^{\beta} = \log^{\beta}(\mathcal{T}^{*})$

$$\mathcal{T} = \bigcup_{\alpha} \mathcal{T}^{\alpha}$$
 filliation

• Every compactly generated category is well-generated.

eg: D(R), St.Mod(kG)

• Let \mathcal{T} be a well-generated triangulated category and $\mathcal{S} \subseteq \mathcal{T}$ a localizing subcategory generated by a set of objects. Then

If T is a compactly functed and S is guivaled by β -compact objects and $\beta \ge \alpha$, then S, T/S are β -compactly functed.

• When \mathcal{T} is α -compactly generated, then \mathcal{T}^{α} is essentially small.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation: Filtration of the spectrum

J = compactly junuated tensor trianyulated category radical thick sensor ideals Balue spectrue Examples $\mathsf{Rad}^{c}(\mathcal{T}^{c}) \xleftarrow{\mathsf{Spc}^{c}(\mathcal{T}^{c})} \mathsf{Spc}^{c}(\mathcal{T}^{c})$ J=D(R) J= 3t Mod (kG) J'= stwood (kG) J'= Poy(R) Spe^c(J^c) Jpc^(J^c) = Roj (H*(G,k)) = Spec(R) « Jocd (J *) Rad "(5") Zarishi spectrum $\mathsf{Rad}(\mathcal{T}) \xleftarrow{\mathsf{classification}} \mathsf{Spc}(\mathcal{T})$ $J_{pc}(\mathcal{J})$ Spc(J) = Proj (H*(G,W) = Spec(R) with discrete with discrete topology topolovy radical localinus topological tensor ideals mall

ヘロト ヘ戸ト ヘヨト ヘヨト

Background: Classification of $\operatorname{Rad}^{c}(\mathcal{T}^{c})$

eg K=J

Let $\ensuremath{\mathcal{K}}$ be an essentially small tensor triangulated category.

$$\begin{array}{c} \chi \in \mathcal{K} \mid \text{supp } X \leq V \end{array} \\ [X \in \mathcal{K} \mid \text{supp } X \leq V \end{array} \\ Rad^{c}(\mathcal{K}) = \left\{ \begin{array}{c} \text{radical thick tensor} \\ \text{ideals of } \mathcal{K} \end{array} \right\} \xrightarrow{[\text{Balmer}; 2005]} \left\{ \begin{array}{c} \text{Thomason subsets} \\ \text{of } Spc^{c}(\mathcal{K}) \end{array} \right\} \\ \\ \Rightarrow \text{ shucture}: \\ - \text{ inclusion } \text{ poset} \\ - \text{ inclusion } \text{ shullest radical} \\ \text{thick tensor ideal antoning the inclusion } \text{ frame} \end{array} \\ \end{array}$$

A poset (L, \leq) is a <u>lattice</u>, if the join and the meet of any non-empty finite set exists.

A lattice is <u>distributive</u>, if the greatest and least element exist, and

VA NA

$$a \wedge (b \lor c) = (a \wedge b) \lor (a \wedge c)$$
 for all $a, b, c \in L$.

A lattice (F, \leq) is a <u>frame</u>, if joins and finite meets exist, and = 20,1 exist $a \land \bigvee B = \bigvee_{b \in B} (a \land b)$ for all $a \in F$ and $B \subseteq F$.

Frm = category of frames

morphisms: maps that preserve order, joins, finite meets, greatest and least element

Background: Spatial frames

U(

A <u>point</u> of *F* is a frame morphism $x: F \to \{0, 1\}$. $p_{x} = V \times^{-1}(O)$ $p_{x} = V \times^{-1}(O)$ $p_{x} = V \times^{-1}(O)$ sets

A frame F is <u>spatial</u>, if for all $a, b \in F$ satisfying $a \not\leq b$ there is a point x such that x(a) = 1 and x(b) = 0. "F has everythe points"

SpFrm = category of spatial frames morphisms: morphisms of frames $a \in F$ is compact, if $a \leq VA => a \leq VA'$ for $A' \leq A$ with $|A'| \leq \infty$

Background: Classification of $\operatorname{Rad}^{c}(\mathcal{T}^{c})$, reinterpreted

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Rad^{α}(\mathcal{K}): Definition

No loc.

ihidi

Let \mathcal{K} be an essentially small tensor triangulated category with α -coproducts and α a regular cardinal.

A full subcategory $\mathcal{I}\subseteq \mathcal{K}$ is

- a tensor ideal if for $X \in \mathcal{I}$ and $Y \in \mathcal{K}$ also $X \otimes Y \in \mathcal{I}$,
- α -localizing if \mathcal{I} is triangulated, closed under α -coproducts and closed under direct summands, and
- <u>radical</u> if whenever $X^{\otimes n} \in \mathcal{I}$ for some $n \ge 1$ also $X \in \mathcal{I}$.

 $\operatorname{rad}^{lpha}(\mathcal{X}) = \operatorname{swallest}$ radical a-localizing sursor ideal containing \mathcal{X}

 $\operatorname{Rad}^{lpha}(\mathcal{K})=$ set of all radical lpha localizing suppor ideals of $\mathcal K$

$\mathsf{Rad}^{\alpha}(\mathcal{K})$: Properties

$\operatorname{Rad}^{\alpha}(\mathcal{K})$: Infinite-join-distributive law

Lemma

 $\mathsf{Rad}^{\alpha}(\mathcal{K})$ is a frame.

Proof.

Need to show:

$$\mathcal{I} \wedge \bigvee A = \bigvee_{\mathcal{J} \in A} (\mathcal{I} \wedge \mathcal{J}) \text{ for any } \mathcal{I} \in \operatorname{Rad}^{\alpha}(\mathcal{K}) \text{ and } A \subseteq \operatorname{Rad}^{\alpha}(\mathcal{K}).$$
(>) always
(=) $X \in \mathcal{I} \wedge VA$

$$\mathcal{L}_{x} := \{Y \in VA \mid X \otimes Y \in \bigcup_{J \in A} (\mathcal{I} \wedge \mathcal{J})\} \text{ radial } \alpha \text{-localizing twoor total}$$

$$\mathcal{J} \in \mathcal{L}_{x} \quad \forall \mathcal{J} \in A = \mathcal{I} \quad \forall \mathcal{A} \in \mathcal{L}_{x} = \mathcal{I} \times \otimes \mathcal{I} \in \mathcal{L}_{x}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

æ

 $a \in F$ is <u>compact</u>, if for every set $A \subseteq F$ with $a \leq \bigvee A$ there exists $B \subseteq \overline{A}$ with

$$a \leq \bigvee B$$
 and $|B| < \infty$.

 F^c is the set of compact elements of F.

A frame F is coherent, if

1 every element is the join of compact elements,

2 the greatest element 1 is compact, and

3 the compact elements are closed under finite meets.

 $\begin{array}{rcl} \mathsf{Fact} \\ \textit{coherent} \implies \textit{spatial} \end{array}$

 $a \in F$ is <u> α -compact</u>, if for every set $A \subseteq F$ with $a \leq \bigvee A$ there exists $B \subseteq A$ with

$$a \leq \bigvee B$$
 and $|B| < \alpha$.

 F^{α} is the set of α -compact elements of F.

- A frame F is α -coherent, if
 - **1** every element is the join of α -compact elements,
 - **2** the greatest element 1 is α -compact, and
 - **3** the α -compact elements are closed under finite meets.

Fact

Lemma

The α -compact elements of the frame $\operatorname{Rad}^{\alpha}(\mathcal{K})$ are precisely those of the form $\operatorname{rad}^{\alpha}(X)$ for some $X \in \mathcal{K}$.

Proof.

Let
$$\mathcal{I} \in \operatorname{Rad}^{\alpha}(\mathcal{K})$$
 be an α -compact element.
 $\mathcal{I} = \bigvee_{x \in \mathcal{I}} \operatorname{rad}^{\alpha}(\mathcal{K}) = \bigvee_{x \in \mathcal{X}} \operatorname{rad}^{\alpha}(\mathcal{K}) = \operatorname{rad}^{\alpha}(\underset{x \in \mathcal{K}}{\amalg})$
for $\mathcal{X} \subseteq \mathcal{I}$ with $|\mathcal{X}| < \alpha$ is also diver interpredictors
Let $\mathcal{I} = \operatorname{rad}^{\alpha}(\mathcal{X})$ with
 $\operatorname{rad}^{\alpha}(\mathcal{X}) \stackrel{\ell}{=} \bigvee_{x \in \mathcal{X}} \operatorname{rad}^{\alpha}(\mathcal{X})$ for some $\mathcal{X} \subseteq \mathcal{I}$.
 $= \operatorname{rad}^{\alpha}(\mathcal{J}) = \bigcup_{\substack{\mathcal{X}' \subseteq \mathcal{X} \\ |\mathcal{X}'| \leq \omega}} \operatorname{rad}^{\alpha}(\mathcal{X}') = \operatorname{rad}^{\alpha}(\mathcal{X}')^{2\alpha}$

伺 ト イヨ ト イヨト

Generalizes [Kock, Pitsch; 2017]

Theorem (Krause, L)

Let \mathcal{K} be an essentially small tensor triangulated category with α -coproducts and α a regular cardinal. Suppose that

$$\operatorname{rad}^{\alpha}(X\otimes Y) = \operatorname{rad}^{\alpha}(X) \wedge \operatorname{rad}^{\alpha}(Y) \sim$$

for any $X, Y \in \mathcal{K}$. Then $\operatorname{Rad}^{\alpha}(\mathcal{K})$ is α -coherent and the map $\operatorname{Coherent}_{\alpha} \operatorname{Sch}^{\alpha}(\mathcal{K})$, $X \mapsto \operatorname{rad}^{\alpha}(X)$

is an α -support and it is initial among all α -supports on \mathcal{K} .

$\mathsf{Spc}(\mathcal{T})$: Direct system of $\mathsf{Rad}^{lpha}(\mathcal{T}^{lpha})$

Let α be a regular cardinal and ${\cal T}$ an $\alpha\text{-compactly generated}$ tensor triangulated category.

$$\mathcal{T} = \bigcup_{\alpha} \mathcal{T}^{\alpha} \qquad \qquad \mathcal{T}^{\beta} = loc^{\beta}(\mathcal{T}^{\alpha})$$

For a regular cardinal $\beta \geq \alpha$ there is a pair of maps

Lemma

Let $\alpha \leq \beta$ be regular cardinals and \mathcal{T} α -compactly generated. Suppose that

$$\mathsf{rad}^{\beta}(X\otimes Y) = \mathsf{rad}^{\beta}(X) \wedge \mathsf{rad}^{\beta}(Y)$$

for any $X, Y \in \mathcal{T}^{\alpha}$. Then

- 1 \mathcal{T}^{α} satisfies the α -radical tensor property,
- **2** the extension map $(-)\!\!\upharpoonright_{\!\!\alpha}^{\!\!\beta}$ is a morphism of frames, and
- ${f 3}$ if $\operatorname{Rad}^{\beta}(\mathcal{T}^{\beta})$ is spatial, then $\operatorname{Rad}^{\alpha}(\mathcal{T}^{\alpha})$ is spatial.

伺下 イヨト イヨト

$Spc(\mathcal{T})$: Inverse System of spaces

Suppose that ${\mathcal T}$ is $\alpha\text{-compactly generated, }\mathsf{Rad}({\mathcal T})$ is spatial and

$$\mathsf{rad}(X\otimes Y)=\mathsf{rad}(X)\wedge\mathsf{rad}(Y)$$

• (1) • (

Definition

Let ${\mathcal T}$ be tensor triangulated category, and assume the localizing tensor ideals that are generated by sets of objects form a set. We call ${\mathcal T}$ $\alpha\text{-compactly stratified}$ if

- ${\rm 0}$ the triangulated category ${\cal T}$ is $\alpha \mbox{-compactly generated},$
- 2 the frame $\operatorname{Rad}(\mathcal{T})$ is spatial, ~ describe to $\operatorname{Rad}^{d}(\mathcal{T}^{*})$
- ${f S}$ for any $X, Y \in {\cal T}$

$$rad(X \otimes Y) = rad(X) \wedge rad(Y), , for a worknow of frames$$

(4) the induced map $pt(Rad(\mathcal{T})) \rightarrow pt(Rad^{\alpha}(\mathcal{T}^{\alpha}))$ is a bijection, and

severy point of $\operatorname{Rad}^{\alpha}(\mathcal{T}^{\alpha})$ is locally closed

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Krause, L)

Let \mathcal{T} be a tensor triangulated category and $\alpha < \beta$ regular cardinals. If \mathcal{T} is α -compactly stratified, then \mathcal{T} is β -compactly stratified.

a . . .

$$\operatorname{Rad}^{\mathfrak{a}}(\mathcal{I}^{\mathfrak{a}}) \longrightarrow \operatorname{Racl}^{\mathfrak{b}}(\mathcal{I}^{\mathfrak{b}}) \longrightarrow \operatorname{Racl}(\mathcal{I})$$

$$\operatorname{pt}(\operatorname{Racl}^{\mathfrak{a}}(\mathcal{I}^{\mathfrak{a}})) \xleftarrow{} \operatorname{pt}(\operatorname{Racl}^{\mathfrak{b}}(\mathcal{I}^{\mathfrak{b}})) \xleftarrow{} \operatorname{pt}(\operatorname{Racl}(\mathcal{I}))$$

$$\underbrace{\operatorname{accompactly strahijid}: \operatorname{hijiction} of sets}$$

=> get a fillration of pt (Rad (5)) where the underlying sol is the same and the topology is refined

イロト イボト イヨト イヨト

3

Theorem (Krause, L)

Let \mathcal{T} be a tensor triangulated category and $\alpha \leq \beta$ regular cardinals. If \mathcal{T} is α -compactly stratified, then \mathcal{T} is β -compactly stratified.

Lemma

Suppose

$$F \xrightarrow{\varphi} G \xrightarrow{\psi} H$$

are injective maps of spatial frames and every point of F is locally closed. Then

 $pt(\varphi)$ and $pt(\psi)$ bijective $\iff pt(\psi \circ \varphi)$ bijective.

Corollary

Let \mathcal{T} be a tensor triangulated category. Suppose that \mathcal{T} is α -compactly stratified and $S \subseteq \mathcal{T}$ a radical localizing tensor ideal generated by β -compact objects. Then the quotient \mathcal{T}/S is β -compactly stratified.

/⊒ ▶ ∢ ⊒ ▶ ∢

We have a fillration:

$$pt(Rad^{lpha}(\mathcal{T}^{lpha})) \longleftarrow pt(Rad^{eta}(\mathcal{T}^{eta})) \longleftarrow \dots \longleftarrow pt(Rad(\mathcal{T}))$$

Q: What is the topology on pt(Rad ~ (5"))?

 $\begin{aligned} & (R: In D(R): \kappa(p) = R_{\phi}/_{p} R_{p} \quad \text{voldus field at prime ideal } p \\ & I_{D} \quad \text{the point } p \quad \text{down in } pt \left(Rad^{*}(D(R)^{*}) \right) \\ & \text{if and only if } \kappa(p) \in D(R)^{*} \stackrel{?}{.} \end{aligned}$

イロト (母) (ヨ) (ヨ) (ヨ) ののの

- Paul Balmer, <u>The spectrum of prime ideals in tensor</u> <u>triangulated categories</u>, J. Reine Angew. Math. **588** (2005), 149–168.
- Joachim Kock and Wolfgang Pitsch, <u>Hochster duality in</u> <u>derived categories and point-free reconstruction of schemes</u>, Trans. Amer. Math. Soc. **369** (2017), no. 1, 223–261.
- Amnon Neeman, <u>Triangulated categories</u>, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001.