Joa Weber

Elementare Zahlentheorie

Übungsblatt 12

Abgabe: In den Übungsgruppen am 27.01. und 28.01.2011

Vermerken Sie bitte auf jeder Abgabe: Name, Matrikelnummer, Übungsgruppe Präsenzübungsblätter können zur Lösung verwendet werden

Aufgabe 1. a) Bestimmen Sie die inversen Elemente zu $\bar{3}$ und zu $\bar{5}$ im Körper \mathbb{Z}_{11} . Wie viele Elemente besitzt die prime Restklassengruppe \mathbb{Z}_{11}^* ? Wie viele Primitivwurzeln zu 11 gibt es?

- b) Bestimmen Sie die prime Restklassengruppe \mathbb{Z}_{10}^* . Wie viele erzeugende Elemente besitzt \mathbb{Z}_{10}^* ? Bestimmen Sie zu jedem Element von \mathbb{Z}_{10}^* die Ordnung und das inverse Element. Bestimmen Sie den Exponenten von \mathbb{Z}_{10}^* .
- c) Bestimmen Sie den Exponenten von \mathbb{Z}_8^* .

Aufgabe 2. Für zwei Gruppen G und H erhält man eine Gruppenstruktur auf dem kartesischen Produkt $G \times H := \{(g,h) \mid g \in G, h \in H\}$ durch die Vorschrift $(g,h) \cdot (g',h') := (gg',hh')$ für $g,g' \in G$ und $h,h' \in H$. Zeigen Sie: Sind G und H zyklische Gruppen der Ordnung m bzw. n, so ist die Gruppe $G \times H$ genau dann zyklisch, wenn m und n teilerfremd sind.

Aufgabe 3. Eine Abbildung $\Psi:G\to G'$ zwischen zwei Gruppen G,G' heißt **Gruppenhomomorphismus**, falls gilt

$$\Psi(ab) = \Psi(a)\Psi(b), \quad \forall a, b \in G.$$

Für $m \in \mathbb{N}$ und $a \in \mathbb{Z}$ bezeichne \overline{a} die Restklasse von a in \mathbb{Z}_m . Seien nun m, n teilerfremd. Beweisen Sie, daß durch

$$\Psi({}^{mn}\overline{a}) := ({}^{m}\overline{a}, {}^{n}\overline{a}), \quad \forall a \in \mathbb{Z} \text{ teilerfremd zu } m \text{ und zu } n,$$

ein **bijektiver** (d.h. ein injektiver und surjektiver) Gruppenhomomorphismus von \mathbb{Z}_{mn}^* nach $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$ definiert wird.

Aufgabe 4. Sei $p \in \mathbb{P}$ mit $p \equiv 1(4)$ und sei w eine Primitivwurzel zu p. Zeigen Sie, daß dann auch p - w eine Primitivwurzel zu p ist.