
Fragments of derived Morita theory for exact categories with
enough projectives

1. Synopsis

Given T a tilting subcategory E , then as T ⊥ is an exact category with enough projectives, one
always finds a bounded derived equivalence to E ′ = modS T where S are T ⊥-admissible morphisms.
This suggest that for a derived equivalence between two exact categories with enough projectives, we
need to find a selforthogonal subcategory T which is generating (Hom(T ,ΣnX) = 0 ∀n ∈ Z implies
X = 0) and a class of morphisms which we call ∆-suitable morphisms (cf. Def. 1.8). The definition
is still suboptimal as it is difficult to verify, but ∆-suitability is used to show that we can find
C = modS T ⊆ ∆ as h-admissible exact subcategory (i.e. admissible exact and
Extn(X,Y ) ∼= Hom∆(X,ΣnY ) for all X,Y in C, n > 1). Fully ∆-suitable means additionally
Thick∆(C) = ∆. In this case, if we assume ∆ algebraic, then the realization functor for C is a
triangle equivalence, cf. [2].
Using this, the following characterization of the triangulated categories triangle equivalent to
Db(modS T ) is then immediate.

Theorem 1.1. Let ∆ be an algebraic triangulated category and assume that there exists T ⊆ ∆
selforthogonal, generating and S ⊆ Mor− T fully ∆-suitable. For every other algebraic triangulated
category ∆′ the following are equivalent.

(a) ∆ and ∆′ are triangle equivalent.
(b) There exists T ′ ⊆ ∆′ selforthogonal, generating together with S′ ⊆ Mor− T ′ fully ∆-suitable

and an additive equivalence F : T → T ′ with F (S) = S′.

We also conclude that a triangulated category is triangle equivalent to a bounded derived category of
an exact category with enough projectives if and only if it contains a selforthogonal generating
subcategory which admits fully ∆-suitable morphisms.

1.1. Exact categories with enough projectives revisited. We recall the following notion
from chapter 4.

Definition 1.2. Let C be an idempotent complete additive category. We call a class of morphisms
S ⊆ Mor− C homotopy-closed if s ∈ S and cokerHomC(−, s) ∼= cokerHomC(−, t) in Mod C implies
t ∈ S.
We say that S is suitable if it is homotopy closed and modS C = {F : cokerHom(−, s) | s ∈ S} is a
resolving subcategory of mod∞ C.

Lemma 1.3. We fix an essentially small idempotent complete additive category P and look at the
following sets:

(1) Exact categories E with enough projectives P(E) = P.
(2) Suitable classes of morphisms S ⊆ Mor− P.

The assignements S(E) = {E − admissible morphisms in P} and M(S) := modS P are mutually
inverse bijections.
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Proof. For E with enough projectives P, the functor E → modS P, X 7→ Hom(−, X)|P with
S = Sadm the E-admissible morphisms in P is an equivalence of exact categories (cf. Chapter 4, Cor.
??). This and (b) in Chapter 4, Lemma ?? imply the bijection. □

Definition 1.4. We consider classes of morphisms in P with respect to inclusion, then for suitable
morphsims S, S′ we have

S′ ⊆ S ⇔ modS′ P ⊆ modS P.

We consider exact categories with enough projectives given by P with the partial order E ′ ≤ E if and
only if E ′ is equivalent to a fully exact subcategory of E . When we consider the sets in the previous
Lemma with these poset structures, it is straightforward to see that the bijection in the previous
lemma becomes an isomorphism of posets.

Remark 1.5. The (unique) maximal suitable morphisms are all morphisms S which admit weak
kernels because then modS P = mod∞ P.
The (unique) minimal suitable morphisms are the ones admissible in the split exact structure on P.
Then modS P = P ⊆ mod∞ P.

1.2. Selforthogonal subcategories in triangulated categories with suitable
morphisms. Let ∆ be an algebraic triangulated category. We look at the full subcategory of
non-negative objects in ∆

∆nn := {X ∈ ∆ | Hom∆(X,Σ<0X) = 0}.

This is closed under taking direct summands but not under direct sums (it can be just {0}). We
have the following easy observation: Subcategories of ∆nn which are closed under direct sums are
precisely the same as additive subcategories of ∆ which are non-negative. Recall from [2], a full
additive subcategory C of ∆ is admissible exact if it is non-negative (Hom(C,Σ<0C ′) = 0 for all
C,C ′ in C) and extension-closed.
If X is a non-negative subcategory of ∆, then its extension-closure is also non-negative and an
admissible exact subcategory. This follows from the easy observation: If X → Y → Z → ΣX is a
triangle in ∆ with X,Z,X ⊕ Z ∈ ∆nn then Y ∈ ∆nn.

Remark 1.6. If C is an extension-closed subcategory in ∆ and C ∩∆nn is additively closed, then it
is the unique largest admissible exact subcategory in C.
(By the previous discussion, we have that C ∩∆nn is extension-closed, the rest is obvious.)

Now, we assume that T ⊆ ∆ is an essentially small full additively closed subcategory which is
selforthogonal (i.e Hom∆(T,Σ

nT ′) = 0 for all n ̸= 0, T, T ′ in T ) and generating (this means:
Hom∆(T,Σ

nX) = 0 for all n ∈ Z, T in T implies X = 0 in ∆).

Remark 1.7. There are many conditions called generating in a triangulated category, our definition
is from [1, Def. 5.2.1], in the stacks project this is called weakly generates. The main example for us
is the following: If ∆ = Db(E) is the the bounded derived category of an exact category with enough
projectives P, then P generates ∆. It will be a necessary condition for us to assume on T .

Thirdly, we take a class of suitable morphisms S ⊆ MorT . We start with

T ⊥ := {X ∈ ∆ | Hom∆(T,Σ
nX) = 0 for all n ̸= 0, T ∈ T }

This is an extension-closed subcategory of ∆ so we can see this as an extriangulated category. We
consider the functor

Φ: T ⊥ → Mod T , X 7→ Hom∆(−, X)|T =: (−, X)|T

The functor Φ maps triangles to short exact sequences by definition of T ⊥.

Definition 1.8. Given a suitable class of morphisms S on an additive subcategory T in a
triangulated category ∆. We call S ∆-suitable if for every sequence (sn)n∈N in S with sn+1 is a
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weak kernel of sn for every n there exists triangles

X4 X2 X0

· · · T3 T2 T1 T0

X3 X1

+1 +1

s3 s2 s1

+1 +1

with Xn ∈ ∆nn ∩ T ⊥ for all n ∈ N and sn factors over Xn for all n ∈ N.

Given a suitable class of morphisms S ⊆ Mor− T . Can we extend T ⊆ ∆ to an admissible exact
category modS T ⊆ ∆?
In general not. It follows easily from the definition:

Lemma 1.9. Let T be selforthogonal in a triangulated category ∆ and S ⊆ Mor− T a suitable class
of morphisms. If C := modS T is an admissible exact subcategory of ∆ extending the inclusion
T ⊆ ∆, then

(1) S is ∆-suitable.
(2) modS T is h-admissible exact (i.e. ExtnC(X,Y ) → Hom∆(X,ΣnY ) are isomorphism for all

X,Y in C).

Proof. (1) As C is a resolving category, every X has a projective resolution. Split it into
short exact sequences, call the syzygies Xn, n ∈ N. As C is admissible exact, these short
exact sequence are part of distinguished triangles and all Xn ∈ C are non-negative. Now,
every consecutive weak kernel sequence arises in this way, so S is ∆-suitable.

(2) As C is admissible exact, we have an isomorphism Ext1C(X,Y ) → Hom∆(X,ΣY ) for all X,Y
in C. Now, choose a projective resolution of X, call the syzygies Xn, n ∈ N. Now, we can
use dimension shift twice, once to see Extn+1

C (X,Y ) ∼= Ext1C(Xn, Y ) ∼= Hom∆(Xn,ΣY ) and a

second time apply Hom(−,ΣY ) to the triangles Xn → Tn−1 → Xn−1
+1−−→ to conclude

Hom(Xn,ΣY ) ∼= Hom(Σ−nX,ΣY ) ∼= Hom(X,Σn+1Y ).

□

Now, this is the main thing to prove:

Lemma 1.10. (Extension-Lemma) If S is a ∆-suitable class of morphisms in a selforthogonal
subcategory T which generates a triangulated category ∆.
We look at the subcategory C := {X ∈ ∆ | ∃(sn)n, Xn as above such that X = X0}. Then we claim:
C is an admissible exact subcategory equivalent to modS T and C ⊆ ∆ extends T ⊆ ∆.

Before we give the proof in the next section, let us state the consequence.

Definition 1.11. If (T , S) with T selforthogonal in ∆ and S ∆-suitable. Then we say that S is
fully ∆-suitable if Thick∆(modS T ) = ∆.

Clearly triangle equivalences map fully ∆-suitable morphisms to fully ∆-suitable morphisms, so
Theorem 1.1 follows trivially.
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Example 1.12. Let E be an exact category with enough projectives P - we see P as stalk
complexes in ∆ = Db(E), then this is a selforthogonal subcategory. We take S to be the E-admissible
morphisms (they are suitable) in P and also ∆-suitable.

Example 1.13. If E is an exact category and T ⊆ E is a tilting subcategory of E (cf. [3]), this means

T ⊥E := T ⊥ ∩ E = {X ∈ E | Ext>0
E (T,X) = 0 ∀T ∈ T }

has enough projective given by T and every object in E has a finite coresolution by objects in T ⊥E .
Let S be the class of T ⊥E -admissible morphisms then S is fully ∆-suitable in T ⊆ Db(E) and
T ⊥E = modS T

Example 1.14. Let T be an additive category. We consider it as self-orthogonal subcategory inside
Kb(T ). Then, all ∆-suitable morphisms in T are fully ∆-suitable and they are precisely the suitable
morphisms S such that modS T = P<∞(modS T ). There is a maximal ∆-suitable class of morphisms
given by mod ST = P<∞(mod∞ T ) = Res(T ) ⊆ mod∞ T .
More generally, if ∆ is triangulated, T ⊆ ∆ self-orthogonal and Thick∆(T ) = ∆ (i.e. T a tilting
subcategory in a triangulated category in the sense of Keller), the same statement holds true.

Example 1.15. Let T be an additive category. We consider it as self-orthogonal subcategory inside
K+(T ). Then all suitable morphisms in T are ∆-suitable but none are fully ∆-suitable:
Given fully ∆-admissible morphisms S in T ⊆ ∆, since ∆ ∼= Db(modS T ) ∼= K+,b(T ) ⊆ K+(T ), we
necessarily have a full triangulated subcategory of K+(T ) with K+,b(T ) ̸= K+(T ).

1.3. Proof of the Extension-Lemma. Recall, T selforthogonal and generating in ∆,
S ⊆ MorT is ∆-suitable and C := {X ∈ ∆ | ∃(sn)n, Xn as above such that X = X0}.
Claim: C is an admissible exact subcategory and with the admissible exact structure equivalent as
exact category to modS T .
So, divide and conquer, we show one property after the other, in this order

(i) C is closed under direct sums
(ii) C is non-negative
(iii) additive equivalence to modS T
(iv) C is extension-closed (and so admissible exact in ∆)
(v) exact equivalence to modS T

We look at the composition φ : C ⊆ T ⊥ Φ−→ Mod T defined by X 7→ Hom∆(−, X)|T . As T is
generating, the functor φ reflects isomorphism, this can be used to see that

(i) C is closed under direct sums:
Assume X,Y in C, pick the first morphisms sX , sY ∈ S in the definition of C. As

modS T is resolving and S homotopy closed, we have that s := sX ⊕ sY ∈ S. We extend s
to a sequence of consecutive weak kernels in S and as S is ∆-suitable, we can factor s as

T1 → Z1 → T0 such that we have a distinguished triangle Let Z1 → T0 → Z
+1−−→ with Z ∈ C.

Now, by definition Hom∆(−, Z)|T ∼= cokerHomT (−, s) ∼= Hom∆(−, X ⊕ Y )|T and as φ
reflects isomorphism we conclude X ⊕ Y ∼= Z is non-negative.

(ii) Also, it implies that C is a non-negative subcategory (as C ⊕ C ′ non-negative implies
Hom(C,Σ<0C ′) = 0).

(iii) Now as C is a non-negative subcategory we can easily deduce that φ is a fully faithful
functor: For X,Y in C we choose again sX : TX

1 → TX
0 and sY : T Y

1 → T Y
0 from the

definition of C.
First observe that φ gives an isomorphism whenever both objects are in T (by Yoneda)

and also if the first object is in T , because Hom∆(T, Y ) = (cokerHom(−, sY ))(T ) =
HomMod T (φ(T ), cokerHom(−, sY )) = Hom(φ(T ),Φ(Y )) for every T ∈ T . Now apply
Hom∆(−, Y ) to the triangles for X, we find a left exact sequence (as C is non-neg.)

0 → Hom∆(X,Y ) → Hom∆(T
X
0 , Y ) → Hom(TX

1 , Y )
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Now, to see that φ induces an isomorphism on Hom(X,Y ) it suffices to see that

0 → Hom∆(φ(X), φ(Y )) → Hom∆(φ(T
X
0 ), φ(Y )) → Hom(φ(TX

1 ), φ(Y ))

is also exact, but φ maps triangles to exact sequences, so this claim follows.
We observe that for X ∈ C (defined by (sn) in S)

φ(X) = Hom∆(−, X)|T ∼= cokerHomT (−, s1)

so, φ induces an equivalence of additive categories φ : C → modS T which maps triangles to
exact sequences.

(iv) Next, we claim C is extension-closed: For this we first observe that for every short exact
sequence σ : φ(X) ↣ φ(Y ) ↠ φ(Z), X,Y, Z in C in modS T there exists a triangle

δ : X → Y → Z
+1−−→ with φ(δ) ∼= σ. Just take C := cone(X → Y ) and look at the standard

triangle X → Y → C
+1−−→ applying Hom(T,−) with T ∈ T implies that

Hom∆(−, C)|T ∼= Hom∆(−, Z)|T but as T is generating this implies C ∼= Z.

Now, this easily implies C is extension-closed, take a triangle X → Y → Z
+1−−→ with X,Z

in C. As X,Z,X ⊕ Z are non-negative, this implies Y is non-negative. We apply Φ implies
that Φ(Y ) = φ(Y ) ∈ modS T . Now, we take the short exact sequences from a projective
resolution of φ(Y ), by the first consideration there exist the triangles as required for Y ∈ C.

(v) To the that φ is an equivalence of exact categories, it is enough to show that it induces a
surjection on Ext1’s. But that had just been discussed in (iv).
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