Fragments of derived Morita theory for exact categories with enough projectives

1. Synopsis

Given \mathcal{T} a tilting subcategory \mathcal{E} , then as \mathcal{T}^{\perp} is an exact category with enough projectives, one always finds a bounded derived equivalence to $\mathcal{E}' = \operatorname{mod}_S \mathcal{T}$ where S are \mathcal{T}^{\perp} -admissible morphisms. This suggest that for a derived equivalence between two exact categories with enough projectives, we need to find a selforthogonal subcategory \mathcal{T} which is generating $(\operatorname{Hom}(\mathcal{T}, \Sigma^n X) = 0 \ \forall n \in \mathbb{Z}$ implies X = 0) and a class of morphisms which we call Δ -suitable morphisms (cf. Def. 1.8). The definition is still suboptimal as it is difficult to verify, but Δ -suitability is used to show that we can find $\mathcal{C} = \operatorname{mod}_S \mathcal{T} \subseteq \Delta$ as h-admissible exact subcategory (i.e. admissible exact and $\operatorname{Ext}^n(X,Y) \cong \operatorname{Hom}_{\Delta}(X,\Sigma^n Y)$ for all X, Y in $\mathcal{C}, n > 1$). Fully Δ -suitable means additionally Thick_ $\Delta(\mathcal{C}) = \Delta$. In this case, if we assume Δ algebraic, then the realization functor for \mathcal{C} is a triangle equivalence, cf. [2].

Using this, the following characterization of the triangulated categories triangle equivalent to $D^b(\text{mod}_S \mathcal{T})$ is then immediate.

THEOREM 1.1. Let Δ be an algebraic triangulated category and assume that there exists $\mathcal{T} \subseteq \Delta$ selforthogonal, generating and $S \subseteq \text{Mor} - \mathcal{T}$ fully Δ -suitable. For every other algebraic triangulated category Δ' the following are equivalent.

- (a) Δ and Δ' are triangle equivalent.
- (b) There exists $\mathcal{T}' \subseteq \Delta'$ selforthogonal, generating together with $S' \subseteq \operatorname{Mor} \mathcal{T}'$ fully Δ -suitable and an additive equivalence $F \colon \mathcal{T} \to \mathcal{T}'$ with F(S) = S'.

We also conclude that a triangulated category is triangle equivalent to a bounded derived category of an exact category with enough projectives if and only if it contains a selforthogonal generating subcategory which admits fully Δ -suitable morphisms.

1.1. Exact categories with enough projectives revisited. We recall the following notion from chapter 4.

Definition 1.2. Let C be an idempotent complete additive category. We call a class of morphisms $S \subseteq Mor - C$ homotopy-closed if $s \in S$ and coker $Hom_{\mathcal{C}}(-, s) \cong coker Hom_{\mathcal{C}}(-, t)$ in $Mod \mathcal{C}$ implies $t \in S$.

We say that S is **suitable** if it is homotopy closed and $\operatorname{mod}_{S} \mathcal{C} = \{F : \operatorname{coker} \operatorname{Hom}(-, s) \mid s \in S\}$ is a resolving subcategory of $\operatorname{mod}_{\infty} \mathcal{C}$.

Lemma 1.3. We fix an essentially small idempotent complete additive category \mathcal{P} and look at the following sets:

- (1) Exact categories \mathcal{E} with enough projectives $\mathcal{P}(\mathcal{E}) = \mathcal{P}$.
- (2) Suitable classes of morphisms $S \subseteq Mor \mathcal{P}$.

The assignments $\mathbb{S}(\mathcal{E}) = \{\mathcal{E} - admissible \text{ morphisms in } \mathcal{P}\}$ and $\mathbb{M}(S) := \operatorname{mod}_S \mathcal{P}$ are mutually inverse bijections.

PROOF. For \mathcal{E} with enough projectives \mathcal{P} , the functor $\mathcal{E} \to \text{mod}_S \mathcal{P}$, $X \mapsto \text{Hom}(-, X)|_{\mathcal{P}}$ with $S = S_{adm}$ the \mathcal{E} -admissible morphisms in \mathcal{P} is an equivalence of exact categories (cf. Chapter 4, Cor. ??). This and (b) in Chapter 4, Lemma ?? imply the bijection.

Definition 1.4. We consider classes of morphisms in \mathcal{P} with respect to inclusion, then for suitable morphisms S, S' we have

$$S' \subseteq S \Leftrightarrow \operatorname{mod}_{S'} \mathcal{P} \subseteq \operatorname{mod}_S \mathcal{P}.$$

We consider exact categories with enough projectives given by \mathcal{P} with the partial order $\mathcal{E}' \leq \mathcal{E}$ if and only if \mathcal{E}' is equivalent to a fully exact subcategory of \mathcal{E} . When we consider the sets in the previous Lemma with these poset structures, it is straightforward to see that the bijection in the previous lemma becomes an isomorphism of posets.

Remark 1.5. The (unique) maximal suitable morphisms are all morphisms S which admit weak kernels because then $\operatorname{mod}_{S} \mathcal{P} = \operatorname{mod}_{\infty} \mathcal{P}$.

The (unique) minimal suitable morphisms are the ones admissible in the split exact structure on \mathcal{P} . Then $\operatorname{mod}_{S} \mathcal{P} = \mathcal{P} \subseteq \operatorname{mod}_{\infty} \mathcal{P}$.

1.2. Selforthogonal subcategories in triangulated categories with suitable morphisms. Let Δ be an algebraic triangulated category. We look at the full subcategory of *non-negative* objects in Δ

$$\Delta^{nn} := \{ X \in \Delta \mid \operatorname{Hom}_{\Delta}(X, \Sigma^{<0}X) = 0 \}.$$

This is closed under taking direct summands but not under direct sums (it can be just $\{0\}$). We have the following easy observation: Subcategories of Δ^{nn} which are closed under direct sums are precisely the same as additive subcategories of Δ which are non-negative. Recall from [2], a full additive subcategory \mathcal{C} of Δ is **admissible exact** if it is non-negative (Hom $(C, \Sigma^{<0}C') = 0$ for all C, C' in \mathcal{C}) and extension-closed.

If \mathcal{X} is a non-negative subcategory of Δ , then its extension-closure is also non-negative and an admissible exact subcategory. This follows from the easy observation: If $X \to Y \to Z \to \Sigma X$ is a triangle in Δ with $X, Z, X \oplus Z \in \Delta^{nn}$ then $Y \in \Delta^{nn}$.

Remark 1.6. If C is an extension-closed subcategory in Δ and $C \cap \Delta^{nn}$ is additively closed, then it is the unique largest admissible exact subcategory in C.

(By the previous discussion, we have that $\mathcal{C} \cap \Delta^{nn}$ is extension-closed, the rest is obvious.)

Now, we assume that $\mathcal{T} \subseteq \Delta$ is an essentially small full additively closed subcategory which is **selforthogonal** (i.e Hom_{Δ}($T, \Sigma^n T'$) = 0 for all $n \neq 0, T, T'$ in \mathcal{T}) and **generating** (this means: Hom_{Δ}($T, \Sigma^n X$) = 0 for all $n \in \mathbb{Z}, T$ in \mathcal{T} implies X = 0 in Δ).

Remark 1.7. There are many conditions called *generating* in a triangulated category, our definition is from [1, Def. 5.2.1], in the stacks project this is called *weakly generates*. The main example for us is the following: If $\Delta = D^b(\mathcal{E})$ is the the bounded derived category of an exact category with enough projectives \mathcal{P} , then \mathcal{P} generates Δ . It will be a necessary condition for us to assume on \mathcal{T} .

Thirdly, we take a class of suitable morphisms $S \subseteq Mor \mathcal{T}$. We start with

 $\mathcal{T}^{\perp} := \{ X \in \Delta \mid \operatorname{Hom}_{\Delta}(T, \Sigma^{n} X) = 0 \text{ for all } n \neq 0, T \in \mathcal{T} \}$

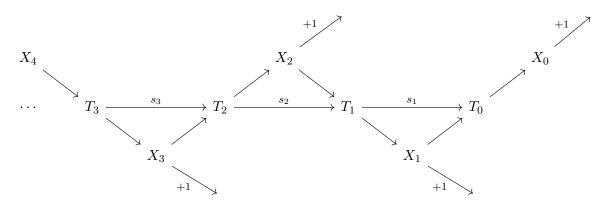
This is an extension-closed subcategory of Δ so we can see this as an extriangulated category. We consider the functor

 $\Phi \colon \mathcal{T}^{\perp} \to \operatorname{Mod} \mathcal{T}, \quad X \mapsto \operatorname{Hom}_{\Delta}(-, X)|_{\mathcal{T}} =: (-, X)|_{\mathcal{T}}$

The functor Φ maps triangles to short exact sequences by definition of \mathcal{T}^{\perp} .

Definition 1.8. Given a suitable class of morphisms S on an additive subcategory \mathcal{T} in a triangulated category Δ . We call S Δ -suitable if for every sequence $(s_n)_{n \in \mathbb{N}}$ in S with s_{n+1} is a

weak kernel of s_n for every *n* there exists triangles



with $X_n \in \Delta^{nn} \cap \mathcal{T}^{\perp}$ for all $n \in \mathbb{N}$ and s_n factors over X_n for all $n \in \mathbb{N}$.

Given a suitable class of morphisms $S \subseteq Mor - \mathcal{T}$. Can we extend $\mathcal{T} \subseteq \Delta$ to an admissible exact category $mod_S \mathcal{T} \subseteq \Delta$?

In general not. It follows easily from the definition:

Lemma 1.9. Let \mathcal{T} be selforthogonal in a triangulated category Δ and $S \subseteq \text{Mor} - \mathcal{T}$ a suitable class of morphisms. If $\mathcal{C} := \text{mod}_S \mathcal{T}$ is an admissible exact subcategory of Δ extending the inclusion $\mathcal{T} \subseteq \Delta$, then

- (1) S is Δ -suitable.
- (2) $\operatorname{mod}_S \mathcal{T}$ is h-admissible exact (i.e. $\operatorname{Ext}^n_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\Delta}(X,\Sigma^n Y)$ are isomorphism for all X, Y in \mathcal{C}).
- PROOF. (1) As C is a resolving category, every X has a projective resolution. Split it into short exact sequences, call the syzygies X_n , $n \in \mathbb{N}$. As C is admissible exact, these short exact sequence are part of distinguished triangles and all $X_n \in C$ are non-negative. Now, every consecutive weak kernel sequence arises in this way, so S is Δ -suitable.
- (2) As \mathcal{C} is admissible exact, we have an isomorphism $\operatorname{Ext}^{1}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\Delta}(X, \Sigma Y)$ for all X, Yin \mathcal{C} . Now, choose a projective resolution of X, call the syzygies $X_{n}, n \in \mathbb{N}$. Now, we can use dimension shift twice, once to see $\operatorname{Ext}^{n+1}_{\mathcal{C}}(X,Y) \cong \operatorname{Ext}^{1}_{\mathcal{C}}(X_{n},Y) \cong \operatorname{Hom}_{\Delta}(X_{n},\Sigma Y)$ and a second time apply $\operatorname{Hom}(-,\Sigma Y)$ to the triangles $X_{n} \to T_{n-1} \to X_{n-1} \xrightarrow{+1}$ to conclude $\operatorname{Hom}(X_{n},\Sigma Y) \cong \operatorname{Hom}(\Sigma^{-n}X,\Sigma Y) \cong \operatorname{Hom}(X,\Sigma^{n+1}Y).$

Now, this is the main thing to prove:

Lemma 1.10. (Extension-Lemma) If S is a Δ -suitable class of morphisms in a selforthogonal subcategory \mathcal{T} which generates a triangulated category Δ . We look at the subcategory $\mathcal{C} := \{X \in \Delta \mid \exists (s_n)_n, X_n \text{ as above such that } X = X_0\}$. Then we claim: \mathcal{C} is an admissible exact subcategory equivalent to $\operatorname{mod}_S \mathcal{T}$ and $\mathcal{C} \subseteq \Delta$ extends $\mathcal{T} \subseteq \Delta$.

Before we give the proof in the next section, let us state the consequence.

Definition 1.11. If (\mathcal{T}, S) with \mathcal{T} selforthogonal in Δ and S Δ -suitable. Then we say that S is fully Δ -suitable if $\operatorname{Thick}_{\Delta}(\operatorname{mod}_{S} \mathcal{T}) = \Delta$.

Clearly triangle equivalences map fully Δ -suitable morphisms to fully Δ -suitable morphisms, so Theorem 1.1 follows trivially.

Example 1.12. Let \mathcal{E} be an exact category with enough projectives \mathcal{P} - we see \mathcal{P} as stalk complexes in $\Delta = D^b(\mathcal{E})$, then this is a selforthogonal subcategory. We take S to be the \mathcal{E} -admissible morphisms (they are suitable) in \mathcal{P} and also Δ -suitable.

Example 1.13. If \mathcal{E} is an exact category and $\mathcal{T} \subseteq \mathcal{E}$ is a tilting subcategory of \mathcal{E} (cf. [3]), this means

$$\mathcal{T}^{\perp_{\mathcal{E}}} := \mathcal{T}^{\perp} \cap \mathcal{E} = \{ X \in \mathcal{E} \mid \operatorname{Ext}_{\mathcal{E}}^{>0}(T, X) = 0 \quad \forall T \in \mathcal{T} \}$$

has enough projective given by \mathcal{T} and every object in \mathcal{E} has a finite coresolution by objects in $\mathcal{T}^{\perp_{\mathcal{E}}}$. Let S be the class of $\mathcal{T}^{\perp_{\mathcal{E}}}$ -admissible morphisms then S is fully Δ -suitable in $\mathcal{T} \subseteq D^b(\mathcal{E})$ and $\mathcal{T}^{\perp_{\mathcal{E}}} = \operatorname{mod}_S \mathcal{T}$

Example 1.14. Let \mathcal{T} be an additive category. We consider it as self-orthogonal subcategory inside $K^b(\mathcal{T})$. Then, all Δ -suitable morphisms in \mathcal{T} are fully Δ -suitable and they are precisely the suitable morphisms S such that $\operatorname{mod}_S \mathcal{T} = \mathcal{P}^{<\infty}(\operatorname{mod}_S \mathcal{T})$. There is a maximal Δ -suitable class of morphisms given by $\operatorname{mod}_S \mathcal{T} = \mathcal{P}^{<\infty}(\operatorname{mod}_\infty \mathcal{T}) = \operatorname{Res}(\mathcal{T}) \subseteq \operatorname{mod}_\infty \mathcal{T}$.

More generally, if Δ is triangulated, $\mathcal{T} \subseteq \Delta$ self-orthogonal and $\text{Thick}_{\Delta}(\mathcal{T}) = \Delta$ (i.e. \mathcal{T} a tilting subcategory in a triangulated category in the sense of Keller), the same statement holds true.

Example 1.15. Let \mathcal{T} be an additive category. We consider it as self-orthogonal subcategory inside $K^+(\mathcal{T})$. Then all suitable morphisms in \mathcal{T} are Δ -suitable but none are fully Δ -suitable: Given fully Δ -admissible morphisms S in $\mathcal{T} \subseteq \Delta$, since $\Delta \cong D^b(\text{mod}_S \mathcal{T}) \cong K^{+,b}(\mathcal{T}) \subseteq K^+(\mathcal{T})$, we necessarily have a full triangulated subcategory of $K^+(\mathcal{T})$ with $K^{+,b}(\mathcal{T}) \neq K^+(\mathcal{T})$.

1.3. Proof of the Extension-Lemma. Recall, \mathcal{T} selforthogonal and generating in Δ , $S \subseteq \operatorname{Mor}\mathcal{T}$ is Δ -suitable and $\mathcal{C} := \{X \in \Delta \mid \exists (s_n)_n, X_n \text{ as above such that } X = X_0\}$. Claim: \mathcal{C} is an admissible exact subcategory and with the admissible exact structure equivalent as exact category to $\operatorname{mod}_S \mathcal{T}$.

So, divide and conquer, we show one property after the other, in this order

- (i) C is closed under direct sums
- (ii) \mathcal{C} is non-negative
- (iii) additive equivalence to $\operatorname{mod}_S \mathcal{T}$
- (iv) C is extension-closed (and so admissible exact in Δ)
- (v) exact equivalence to $\operatorname{mod}_S \mathcal{T}$

We look at the composition $\varphi \colon \mathcal{C} \subseteq \mathcal{T}^{\perp} \xrightarrow{\Phi} \operatorname{Mod} \mathcal{T}$ defined by $X \mapsto \operatorname{Hom}_{\Delta}(-, X)|_{\mathcal{T}}$. As \mathcal{T} is generating, the functor φ reflects isomorphism, this can be used to see that

(i) C is closed under direct sums:

Assume X, Y in \mathcal{C} , pick the first morphisms $s^X, s^Y \in S$ in the definition of \mathcal{C} . As mod_S \mathcal{T} is resolving and S homotopy closed, we have that $s := s_X \oplus s_Y \in S$. We extend s to a sequence of consecutive weak kernels in S and as S is Δ -suitable, we can factor s as $T_1 \to Z_1 \to T_0$ such that we have a distinguished triangle Let $Z_1 \to T_0 \to Z \xrightarrow{+1}$ with $Z \in \mathcal{C}$. Now, by definition $\operatorname{Hom}_{\Delta}(-,Z)|_{\mathcal{T}} \cong \operatorname{coker} \operatorname{Hom}_{\mathcal{T}}(-,s) \cong \operatorname{Hom}_{\Delta}(-,X \oplus Y)|_{\mathcal{T}}$ and as φ reflects isomorphism we conclude $X \oplus Y \cong Z$ is non-negative.

- (ii) Also, it implies that C is a non-negative subcategory (as $C \oplus C'$ non-negative implies $\operatorname{Hom}(C, \Sigma^{<0}C') = 0$).
- (iii) Now as \mathcal{C} is a non-negative subcategory we can easily deduce that φ is a fully faithful functor: For X, Y in \mathcal{C} we choose again $s^X \colon T_1^X \to T_0^X$ and $s^Y \colon T_1^Y \to T_0^Y$ from the definition of \mathcal{C} .

First observe that φ gives an isomorphism whenever both objects are in \mathcal{T} (by Yoneda) and also if the first object is in \mathcal{T} , because $\operatorname{Hom}_{\Delta}(T, Y) = (\operatorname{coker} \operatorname{Hom}(-, s^Y))(T) =$ $\operatorname{Hom}_{\operatorname{Mod}}_{\mathcal{T}}(\varphi(T), \operatorname{coker} \operatorname{Hom}(-, s^Y)) = \operatorname{Hom}(\varphi(T), \Phi(Y))$ for every $T \in \mathcal{T}$. Now apply $\operatorname{Hom}_{\Delta}(-, Y)$ to the triangles for X, we find a left exact sequence (as \mathcal{C} is non-neg.)

$$0 \to \operatorname{Hom}_{\Delta}(X, Y) \to \operatorname{Hom}_{\Delta}(T_0^X, Y) \to \operatorname{Hom}(T_1^X, Y)$$

Now, to see that φ induces an isomorphism on $\operatorname{Hom}(X, Y)$ it suffices to see that

 $0 \to \operatorname{Hom}_{\Delta}(\varphi(X), \varphi(Y)) \to \operatorname{Hom}_{\Delta}(\varphi(T_0^X), \varphi(Y)) \to \operatorname{Hom}(\varphi(T_1^X), \varphi(Y))$

is also exact, but φ maps triangles to exact sequences, so this claim follows.

We observe that for $X \in \mathcal{C}$ (defined by (s_n) in S)

 $\varphi(X) = \operatorname{Hom}_{\Delta}(-, X)|_{\mathcal{T}} \cong \operatorname{coker} \operatorname{Hom}_{\mathcal{T}}(-, s_1)$

so, φ induces an equivalence of additive categories $\varphi \colon \mathcal{C} \to \operatorname{mod}_S \mathcal{T}$ which maps triangles to exact sequences.

(iv) Next, we claim \mathcal{C} is extension-closed: For this we first observe that for every short exact sequence $\sigma: \varphi(X) \rightarrow \varphi(Y) \rightarrow \varphi(Z)$, X, Y, Z in \mathcal{C} in $\operatorname{mod}_S \mathcal{T}$ there exists a triangle $\delta: X \rightarrow Y \rightarrow Z \xrightarrow{+1}$ with $\varphi(\delta) \cong \sigma$. Just take $C := \operatorname{cone}(X \rightarrow Y)$ and look at the standard triangle $X \rightarrow Y \rightarrow C \xrightarrow{+1}$ applying $\operatorname{Hom}(T, -)$ with $T \in \mathcal{T}$ implies that $\operatorname{Hom}_{\Delta}(-, C)|_{\mathcal{T}} \cong \operatorname{Hom}_{\Delta}(-, Z)|_{\mathcal{T}}$ but as \mathcal{T} is generating this implies $C \cong Z$.

Now, this easily implies \mathcal{C} is extension-closed, take a triangle $X \to Y \to Z \xrightarrow{+1}$ with X, Z in \mathcal{C} . As $X, Z, X \oplus Z$ are non-negative, this implies Y is non-negative. We apply Φ implies that $\Phi(Y) = \varphi(Y) \in \operatorname{mod}_S \mathcal{T}$. Now, we take the short exact sequences from a projective resolution of $\varphi(Y)$, by the first consideration there exist the triangles as required for $Y \in \mathcal{C}$.

(v) To the that φ is an equivalence of exact categories, it is enough to show that it induces a surjection on Ext¹'s. But that had just been discussed in (iv).

Bibliography

- [1] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR2182076
- [2] J. C. Letz and J. Sauter, Realization functors in algebraic triangulated categories, 2024.
 [3] J. Sauter, Tilting theory in exact categories, 2022.