
Non-commutative resolutions of singularities using exact
substructures

1. Synopsis

We introduce (bounded) singularity categories for arbitrary exact categories. An exact category is
regular if its singularity category is zero. We recall the known Buchweitz theorem for a Gorenstein
exact categories with enough projectives. Then we explore a new concept of a noncommutative
resolution of singularities (NCR) of a given exact category as an exact substructure which is regular.
There exist various alternative versions of non-commutative resolutions in the literature. Our aims
here are:

(1) Partially unify and simplify the theory (singularity categories, non-commutative resolutions
of singularities and relative singularity categories) for module categories of rings and for
coherent sheaves on a quasi-projective variety.

(2) Characterize NCRs corresponding to cluster tilting subcategories (as a candidate for a
’minimal’ NCR).

What is new? The concept to see NCRs as exact substructures and the generality of our approach.

2. Definitions and notations

We recall some of the previous definitions. Let E be an exact category in the sense of Quillen. Recall,
for an object X in E , the projective dimension pdX is defined as the infimum of all n ∈ N0 such that
Ext>n

E (X,−) = 0. Dually idX is defined as the infimum of all n ∈ N0 such that Ext>n
E (−, X) = 0.

We consider
P≤n := {X ∈ E | pdE X ≤ n},
I≤n := {X ∈ E | idE X ≤ n},

and P<∞ =
⋃

n≥0 P≤n, I<∞ =
⋃

n≥0 I≤n. We also use the notation P<∞(E),P≤n(E) etc. for these
categories.
Using long exact sequences on the Ext-groups it is easy to see that all these full subcategories are
extension closed and that P≤n is deflation-closed and I≤n is inflation-closed, P<∞, I<∞ are thick
subcategories. Throughout: All underlying additive categories of exact categories are assumed to be
idempotent complete.
The suspension functor in Db(E) will be denoted by [1] from now on.

3. Singularity categories for exact categories

Summary: We will define singularity categories for exact categories in a naive manner which
leaves the question if it is a derived invariant. There are different ways to address this - one way is to
try to generalize Rickard’s results for rings, more precisely: Given a two derived equivalent exact
categories E and E ′. Is there a triangle equivalence Db(E) → Db(E ′) which restricts to
Thick∆(P∞(E)) → Thick∆(P<∞(E ′))? We follow an alternative idea of Orlov and define singularity
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category for triangulated categories. The question here is to characterize exact categories for which
these two coincide.

Definition 3.1. We say the E is regular if E = P<∞(E).
We say X is homologically finite if for every Y ∈ E there exists an n such that Ext>n

E (X,Y ) = 0.

We write Ehf for the full subcategory of homologically finite objects. We say that E is ∆-regular if
E = Ehf .

Observe that we always have thick subcategories P<∞(E) ⊆ Ehf ⊆ E (in the exact category sense,
i.e. they fulfill the 2 out of 3 property for short exact sequences and are closed under summands).

Definition 3.2. If T is a triangulated category and X ∈ T , we say that X is homological finite if
for every Y ∈ T there is a finite subset I ⊆ Z such that HomT (X,Y [i]) = 0 for all i /∈ I. We denote
by T hf the full subcategory of homological finite objects.
More generally, given a full additive category C of T we say that X ∈ C is C-homological finite if
for every Y ∈ C there is a finite subset I ⊆ Z such that HomT (X,Y [i]) = 0 for all i /∈ I. We denote
by Chf the full subcategory of homological finite objects.

Observe that T hf is thick in T (in the triangulated sense, i.e. it is a triangulated subcategory closed
under summands).

We make the following easy observation:

Lemma 3.3. Let T be a triangulated category and C be a full additive category whose
extension-closure is T . Then C = Chf if and only if T = T hf .

Proof. We assume C = Chf . Let X ∈ C. We show that X ∈ T hf : Let Y ∈ T . By assumption
there is a triangle Y1 → Y → Y2 → Y1[1] with Yi ∈ C. Then there exist finite subsets I1, I2 of Z with
Hom(X,Yi[k]) = 0 for k /∈ Ii, i ∈ {1, 2}. Then, just take I = I1 ∪ I2 and for k /∈ I we conclude that
Hom(X,Y [k]) = 0. Therefore X ∈ T hf . It follows that T = Thick∆(C) ⊆ T hf . The other
implication is trivially true. □

Corollary 3.4. Let E be an exact category. Then E = Ehf if and only if Db(E) = Db(E)hf .

Definition 3.5. Let E be an exact category. We define the singularity category as the Verdier
quotient

Dsg(E) = Db(E)/Thick∆(P<∞(E))
For a triangulated category T we define the ∆-singularity category as the Verdier quotient

Tsg = T /T hf

Then every triangle equivalence T → S between triangulated categories induces a triangle
equivalence Tsg → Ssg. Clearly, since for an exact category E we have

Thick∆(P<∞(E)) ⊆ Thick∆(Ehf ) ⊆ Db(E)hf (for the second inclusion see next lemma) we get an
induced Verdier quotient

Dsg(E) → (Db(E))sg

Definition 3.6. We say E has ∆-singularities if this map is an equivalence.

Open question 3.7. When are the two singularity categories locally small (i.e. have Hom-sets)? If
E is essentially small, then Db(E) is also essentially small and hence it holds. And more generally?
When are they idempotent complete?

So if E and E ′ have ∆-singularities and are derived equivalent, then their singularity categories are
equivalent.
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Example 3.8. ([40, Example 3.3]) This is an example of two derived equivalent exact categories
one is regular and the other one not. Furthermore, one has ∆-singularities and the other one not.
Let R = k[x0, . . . , xn]/⟨x2i , xixj + xjxi⟩ be the exterior algebra and S = k[x0, . . . , xn] a polynomial
ring for k a field, both are graded algebras with degxi = 1, 0 ≤ i ≤ n.
We consider the categories of graded modules E = grR and E ′ = grS with finite-dimensional graded
parts. Then BGG-correspondence provides a triangle equivalence Db(E) → Db(E ′).
But gldim E ′ < ∞ and gldim E = ∞ as R is self-injective. This implies that Dsg(E ′) = 0 = (Db(E ′))sg
but Dsg(E) ̸= 0 = (Db(E))sg.

Observe that E has ∆-singularities if and only if P<∞(E) = Ehf and Thick∆(Ehf ) = Db(E)hf . We
ask if the last equality is always true?
Here is the answer in a special case:

Lemma 3.9. Let E be an exact category. Then we have:

(a) Ehf = Db(E)hf ∩ E where we consider E ⊂ Db(E) as stalk complexes in degree zero.
(b) If E is an exact category with enough projectives then Thick∆(Ehf ) = Db(E)hf .

Proof. (a) It is enough to show: Ehf ⊆ Db(E)hf . Let X ∈ Ehf and Y ∈ Db(E). Assume there
exists an infinite set I ⊆ Z such that Hom(X,Y [i]) ̸= 0 for i ∈ I. Since Thick∆(E) = Db(E) we may
assume Y ∈ Thickn∆(

∨
m E [m]) and that there exists Yn−1, Y

′
n−1 ∈ Thickn−1

∆ (
∨

m E [m]) and a triangle

Yn−1 → Y → Y ′
n−1

+1−−→. Since Hom(X,−) is a cohomological functor, either for Yn−1 or for Y ′
n−1

there exists an infinite subset of In−1 ⊆ Z with Hom(X, ..[i]) ̸= 0 for all i ∈ In−1. Then inductively,
we can produce a Y0 ∈ E such that there exists an infinite set I0 ⊆ Z with Hom(X,Y0[i]) ̸= 0 for all
i ∈ I0. Since Hom(X,Y [< 0]) = 0 it follows that I0 ⊆ N and therefore a contradiction to X ∈ Ehf .
(b) We need to see Db(E)hf ⊆ Thick∆(Ehf ). We identify Db(E) with Kb,−(P) where P are the
projectives in E . Take n ∈ Z, then one shows that X ∈ Kb,−(P)hf is equivalent to σ≤nX and σ>nX
are homologically finite. Furthermore, we observe X ∈ Thick∆(σ≤nX,σ>nX). Since for |n| >> 0 we
have that σ≤nX is quasi-isomorphic to a shifted stalk complex - this has to lie in Thick∆(Ehf ). By
definition σ>nX ∈ Kb(P) ⊆ Thick∆(Ehf ) and therefore X ∈ Thick∆(Ehf ). □

Then let us state the obvious:

Lemma 3.10. The following are equivalent:

(1) E is regular.
(2) Dsg(E) = 0.

Furthermore, the following are equivalent:

(a) E is ∆-regular.
(b) (Db(E))sg = 0.

Proof. The implication ’(1) implies (2)’ is obvious since Thick∆(E) = Db(E).
Assume (2), i.e. we assume E ⊆ Thick∆(P<∞(E)). We look at

D<∞,E(E) := {X ∈ Db(E) | ∃m ∈ Z such that Hom(X, E [n]) = 0 ∀n ≥ m}

this is a thick subcategory of Db(E). It contains P<∞ and so by assumption we have
E ⊆ Thick(P<∞(E)) ⊆ D<∞,E(E). This implies E ⊆ P<∞.
The implication ’(a) implies (b)’ is obvious as in the previous proof. Now assume that (b), i.e.
(Db(E))hf = Db(E). We intersect with the stalks to get E = Db(E)hf ∩ E ⊆ Ehf . □

Corollary 3.11. Let f : E → A be an exact functor between exact categories. If the derived functor
Db(E) → Db(A) is a triangle equivalence, then: E regular if and only if A is regular.
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Proof. Assume E is regular. f : Db(E) → Db(A) is a triangle equivalence which restricts to
E → A on stalk complexes. Therefore (using the definition of the previous proof) it restricts to a
triangle functor D<∞,E → D<∞,A. Since E is regular, it follows as in the previous proof that
Db(E) = D<∞,E . This implies that the essential image Db(A) = f(Db(E)) ⊆ D<∞,A. In particular, it
follows A ⊆ D<∞,A and this imples A = P<∞(A).
If A is regular, then since f is homologically exact (cf. Chapter 1), it follows that E is also
regular. □

Remark 3.12. If E is an exact category with enough projectives P then we have

Dsg(E) = Db(E)/Kb(P)

Lemma 3.13. If E = Filt(M1, . . . ,Mn) then pdX = max(mi | 1 ≤ i ≤ n) with
mi := inf{m ∈ N≥0 | Ext>m(X,Mi) = 0} ∈ N≥0 ∪ {∞}.
This implies P<∞(E) = Ehf . If E has enough projectives then we get that E has ∆-singularities.

Lemma 3.14. Let E be an exact category with infinite coproducts. Then P<∞(E) = Ehf . So if E has
also enough projectives then it has ∆-singularities.

Proof. Let pdX = ∞. There exists an infinite subset I ⊂ N and objects Yn, n ∈ I such that
ExtnE(X,Yn) ̸= 0. So let Y =

⊕
n∈I Yn ∈ E . Then for every n ∈ I we have

ExtnE(X,Y ) = ExtnE(X,Yn)⊕ ExtnE(X,
⊕

m∈I,m ̸=n Ym) ̸= 0. Therefore X is not homological finite. □

Remark 3.15. Here is an example which is ∆-regular but not regular: Let E be the abelian
category of all representations (over some field) of the following infinite quiver with relations that
any two consecutive arrows are zero

1
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Indecomposables are either projectives or simples, all simples have infinite projective dimension.
Nevertheless all indecomposables are homologically finite in E .

Example 3.16. ([8, Theorem 4.4.1]) If R is any left and right noetherian ring, then Buchweitz
introduced the singularity category for E = RMod and showed the theorem for Rmod (f.g.
R-modules).
Of course this can be defined for every ring. If R is left coherent and semiperfect, then Rmod has
∆-singularities, cf. [31, Prop. 9.2.14].
If R is any ring then RMod has ∆-singularities by loc. cit. Lemma 9.2.3.

Example 3.17. (Orlov, 2004 in [36]) Now we consider the following geometric situation: Let X be
a scheme over a field K which is separated, noetherian, of finite Krull dimension and coh(X) has
enough locally frees - following Orlov [36] we will call these properties (ELF). (The last assumption
is also called the resolution property cf. [39, Tag 0F85]) Orlov introduced in [36] the singularity
category of X as the Verdier quotient

Dsg(coh(X)) = Db(coh(X))/Dperf(X)

If X is ELF, then coh(X) has ∆-singularities (Orlov [37], Prop.1.11).

Here are some of my open questions to this subsection:

(3.1) If E is an exact category, is P<∞(E) always regular (as fully exact category of E)? Or
stronger: Is P<∞(E) ⊆ E always homologically exact?

(3.2) If we consider Ehf as homologically finite objects in E . Are all objects in Ehf homologically
finite in Ehf? Or stronger: Is Ehf ⊆ E homologically exact?

(3.3) Is Thick∆(Ehf ) = Db(E)hf? This would imply: P<∞ = Ehf is equivalent to
Thick∆(P<∞) = Db(E)hf?

(3.5) For which exact categories E do we have Thick∆(P<∞) = Db(E)hf?
4
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4. Descriptions as stable categories - Buchweitz theorem

We start with the following definition:

Definition 4.1. Let n ≥ 0. An exact category E is called Gorenstein if I<∞ = P<∞. We say it is
n-Gorenstein if we have I≤n = I<∞ = P<∞ = P≤n.

This is by definition a symmetric condition (it holds for E if and only if it holds for Eop).

Remark 4.2. Of course, one can define dually, the injective singularity category

Dsg−inj(E) = Db(E)/Thick∆(I<∞)

Then E is Gorenstein if and only if we have Db
sg(E) = Db

sg−inj(E) (= here means they are Verdier

quotients of Db(E) with the same kernels). In general, we do not know when these two singularity
categories are triangle equivalent.

Remark 4.3. One could define Gorenstein for triangulated categories as T hf = T chf (where
cohomologically finite elements are defined dually to homologically finite), so imposing the symmetry
condition of the previous remark for Orlov’s singularity categories.

We recall from [38] the following definition: A full subcategory P ⊆ E is called cotilting (resp.
n-cotilting) if and only if the following hold

(C1) ⊥P has enough injectives given by P itself and
(C2) Res(⊥P) = E .

(resp. (C1) and (C2)n Resn(
⊥P) = E).

Lemma 4.4. Let E be an exact category with enough projectives P. If P is cotilting then ⊥P is
Frobenius exact with enough injectives given by P and we have P<∞ ∩ ⊥P = P.

Proof. By definition this category has enough injectives given by P, an easy check shows that
⊥P is resolving in E , so it also has enough projectives given by P.
If X ∈ P<∞ ∩ ⊥P then there exists an n ∈ N such that Ext>n

E (X,−) = 0. This implies, as ⊥P is

homologically exact in E , that Ext>n
⊥P(X,−) = 0. This implies that Ext1⊥P(X,Ω−nY ) = 0 for all

Y ∈ ⊥P. But every object in ⊥P is an n-th cosyzygy, so X in P(⊥P) = P. □

Proposition 4.5. Let E be an exact category with enough projectives P. Then we have

(1) If P is n-cotilting then E is n-Gorenstein
(2) If E is n-Gorenstein and ⊥P ⊆ cogenE(P) then P is n-cotilting

It would be much nicer if we had an equivalence in (1) but we could not see how to prove that
n-Gorenstein implies ⊥P ⊆ cogen(P). But in special situations this is fulfilled.

Proof. (1) If P is n-cotilting then Thick(P) = I<∞ follows from [38, Lem. 5.8]. But
Thick(P) = P<∞ then implies that E is Gorenstein. Now, we show P<∞ ⊆ P≤n. Take X ∈ P∞ a
projective resolution

ΩnX ↣ Pn−1 → · · · → P0 ↠ X

Then by dimension shift Ext>0
E (ΩnX,P ) = Ext>n(X,P ) = 0 for all P ∈ P, therefore ΩnX ∈ ⊥P and

so ΩnX ∈ P<∞ ∩ ⊥P = P by Lemma 4.4.
Now, we want to see that I∞ ⊆ I≤n: We have I<∞ = P≤n. Assume Y ∈ ⊥P, then we easily verify
Ext>n

E (Y,X) = 0 (using the projective resolution of X). If we look at an arbitrary Y in E , then
clearly Ext>2n

E (Y,X) = 0 (using pdE X ≤ n, idE P ≤ n). Assume Extm+n
E (Y,X) ̸= 0 for some
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m ∈ {1, . . . n}. Then ΩnY ∈ ⊥P and there exists an Y ′ ∈ ⊥P such that Ωn
EY = Ωn

EY
′ (use the first

bit of the injective coresolution of ΩnY to find Y ′); an easy dimension shift shows

Extm+n
E (Y,X) ∼= ExtmE (Ωn

EY,X) ∼= Extm+n
E (Y ′, X) ̸= 0

This contradicts our previous observation.
(2) assume idE P ≤ n, take X in E arbitrary and look at the beginning of a projective resolution of
X:

ΩnX ↣ Pn−1 → · · · → P0 ↠ X

then ΩnX ∈ ⊥P and X ∈ Resn(
⊥P), so (C2) holds. Condition (C1) is implied by P⊥ ⊆ cogenE P:

Clearly P are injective objects in ⊥P (as ⊥P is a resolving subcategory, it is homologically finite).
For X ∈ ⊥P there is an E-short exact sequence X ↣ P ↠ Y such that Hom(−, P ′) is exact on it for
all P ′ ∈ P (this follows by the definition of cogen(P)). But then it follows Y ∈ ⊥P and this shows
that we have enough injectives given by P, so (C1) follows. □

This is the classical result for rings.

Example 4.6. Let R be a left and right noetherian ring and Rmod (resp. modR) the category of
finetely generated left (resp. right) R-module. In this case, we say R is n-Iwanaga-Gorenstein if
idRR ≤ n and idRR ≤ n. Then the following are equivalent:

(1) R is n-Iwanaga-Gorenstein
(2) RMod and ModR are n-Gorenstein
(3) Rmod and modR are n-Gorenstein

The implication (1) implies (2) and (1) implies (3) are a famous result of Iwanaga [19, Theorem 2].
The implication (2) implies (1) is trivial, and (3) implies (1) follows from idRmodR = idR R and
idmodR R = idRR.
Observe that Rmod and modR are abelian categories with enough projectives but in general not
with enough injectives.

Lemma 4.7. Let E be a weakly idempotent complete exact category with enough projectives and
enough injectives. If E is n-Gorenstein and P is covariantly finite in ⊥P, then P is n-cotilting.

Proof. By Prop. 4.5, (2), it is enough to show ⊥P ⊆ cogenE(P). As P is assumed covariantly
finite in ⊥P, it is enough to show that ⊥P ⊆ copresE(P). For X ∈ ⊥P take an E-inflation i : X ↣ I
with I in I(E). Then take a deflation p : P ↠ I with P ∈ P(E). As E is n-Gorenstein, and
I, P ∈ P<∞, it follows that L := ker p ∈ P<∞. Using a finite projective resolution of L, one sees
Ext1E(X,L) = 0. This implies that i factors as i = pf . By the obscure axiom ([9, Prop. 7.6]), we
conclude that f : X ↣ P is an inflation. □

Open question 4.8. Let E be a weakly idempotent complete exact category with enough
projectives P and enough injectives I. We also assume that P ⊆ ⊥P is covariantly finite and I
contravariantly finite in I⊥. Then the following are equivalent:

(i) E is n-Gorenstein
(ii) idE P ≤ n and pdE I ≤ n.
(iii) Eop is n-Gorenstein.
(iv) There exists a subcategory which is s-tilting and t-cotilting for some s, t ≥ 0.
(v) A subcategory is s-cotilting for some s if and only if it is t-cotilting for some t.

Observe that we have already seen that (i),(ii),(iii) are equivalent, and (i) implies (iv). In (ii), do we
also have pdE I = idE P?

Definition 4.9. Given an exact category E and we define P = P(E) be its projectives. The category
of Gorenstein projectives (denoted by Gp(E)) are the full subcategory of objects X such that
there exists an exact complex of projectives

· · · → P−1 → P0 → P1 → · · ·
6



such that

(1) · · · → Hom(Pn, P ) → Hom(Pn−1, P ) → · · · is exact for all P in P
(2) Im(P−1 → P0) = X

Proposition 4.10. Let E be an exact category and P := P(E).

(1) Then Gp(E) is extension-closed, closed under taking summands and deflation-closed (i.e.
closed under taking kernels of deflations) and we have Gp(E) ⊆ ⊥P. With this exact
structure it is a Frobenius exact category with projectives P.

(2) Gp(E) is resolving if and only if E has enough projectives.
(3) Gp(E) is finitely resolving (resp. n-resolving) if and only if E has enough projectives and P

is cotilting (resp. n-cotilting). In these cases we have Gp(E) = ⊥P.

Proof. (1) The proof from [12, Prop. 2.1.7 (1),(2),(3)] can also be used to prove
extension-closedness, summand-closedness and deflation-closedness. By definition,
X ∈ Gp(E) implies all Xn = Im(Pn−1 → Pn) ∈ Gp(E) and all short exact sequence
Xn ↣ Pn ↠ Xn+1 are short exact in Gp(E), apply Hom(−, P ) with P ∈ P to these short
exact sequences to conclude Ext>0(X,P ) = 0, so P ⊆ I(Gp(E)). Then just use the defining
exact sequence in P to conclude that Gp(E) is Frobenius.

(2) If E has enough projectives then these have to be in Gp(E) and by (1) it is resolving. If
Gp(E) is resolving, we also know it has enough projectives P = P(Gp(E)) (by (1)).

(3) If P is cotilting then (C1) implies ⊥P ⊆ cogen∞(P) and the other inclusion follows from the
definition of cogen∞(P). Then for X ∈ ⊥P = cogen∞(P) splice together the projective
resolution in E with the injective coresolution, this shows X ∈ Gp(E). By definition
Gp(E) ⊆ cogen∞(P), so we conclude in this case Gp(E) = ⊥P is finitely resolving
(n-resolving if P was n-cotilting).

Conversely, if Gp(E) is finitely (resp. n-)resolving, we already know from (1) that
Gp(E) ⊆ P⊥. We need to see the other inclusion, this follows immediately from the Lemma
4.11. But then all properties for P being (resp. n-)cotilting are fulfilled.

□

Lemma 4.11. Let E be an exact category with enough projectives P. Given an exact sequence
E1 ↣ E0 ↠ X with X ∈ ⊥P, E0, E1 ∈ Gp(E). Then X ∈ Gp(E).

Proof. This can be shown with the same argument as [12, Prop. 2.1.7 (4)]. □

in exact categories wep. P:

n-Gorenstein
⊥P = Gp(E)

P n-cotilting
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Lemma 4.12. Assume that E is a weakly idempotent complete exact category with enough
projectives P and assume E ⊆ cogenE(I<∞). If E is n-Gorenstein, then P is n-cotilting.

The proof is very similar to Lemma 4.7.

Proof. We show that ⊥P ⊆ cogenE(P) (the rest follows from Prop. 4.5, (2)).

We assume E ⊆ cogenE(I<∞): So, for X ∈ ⊥P, we take a short exact sequence X
i
↣ J ↠ Q with

J ∈ I<∞. We choose a short exact sequence J1 ↣ P
p
↠ J with P ∈ P. As I<∞ = P<∞ is

deflation-closed, we find that J1 ∈ P<∞ and one easily checks Ext>0(X, J1) = 0 for all X ∈ ⊥P
(using the finite projective resolution of J1). This implies Hom(X,P ) → Hom(X, J) is surjective,
pick a morphism f : X → P that maps to i, say fp = i . By the obscure axiom f is an E-inflation.
Now, we need to see that Hom(f, P ) is surjective for every P ∈ P. But since
Hom(i, P ) = Hom(f, P ) ◦Hom(p, P ), this follows. Then we see ⊥P ⊆ cogenE(P). □

Example 4.13. From [14]: If R is an n-Iwanaga-Gorenstein ring and F = R−Mod, then
F ⊆ cogenF (I<∞) and this implies Gp(RMod) = ⊥(Proj(R)).
This implies for E = Rmod, i.e. the category of finitely generated left R-modules, that
Gp(E) = ⊥ER =: ⊥R, to see this, recall that we only needed to see ⊥R ⊆ cogenE(R). But by the
previous result we have ⊥R ⊆ cogenRMod(ADD(R)) and observe that every finitely generated
submodule of a free R-module is contained in a finitely generated free summand, this implies the
claim.

Here we have the following result

Theorem 4.14. ([26, Cor 2.2], [30, Ex. 2.3]) Let E be a weakly idempotent complete Frobenius exact
category and let P = P(E) be the projectives in E. Then the functor E → Db(E) → Dsg(E) induces a
triangle equivalence

E → Dsg(E)

As a corollary, follows the following result of Kvamme (in the special case of weakly idempotent
complete exact categories). Just take Gp(E) as Frobenius exact category and use Prop. 4.10
(observe this implies: if E has enough projectives, then Db(Gp(E)) → Db(E) is fully faithful. If
Gp(E) is finitely resolving, it is a triangle equivalence, cf. [16]).

Theorem 4.15. ([32] ) Let E be an exact category with enough projectives. Then
Gp(E) → Db(E) → Db

sg(E) induces a fully faithful triangulated functor

Gp(E) → Dsg(E).
This is an equivalence if Gp(E) is finitely resolving in E.

We prefer to reformulate this last statement to:

Theorem 4.16. (Buchweitz Theorem)
Let E be an exact category with enough projectives P and assume that P is n-cotilting. Then, the
functor Gp(E) → Db

sg(E) induces a triangle equivalence

Gp(E) → Dsg(E)

Now, if E is an exact category with enough projectives, Dsg(E) can be realized as the Heller
stabilisation ZE of the stable category of E seen as a left triangulated category [32, Thm 3.4]. Since
the stabilization is functorial, an equivalence of left triangulated stable category E ∼= E ′ implies E
and E ′ are singular equivalent (cf. [32]), but it also implies that E and E ′ are stable equivalent
(investigated in the next chapter). That is the only connection between singular and stable
equivalence that we know of.

Here is the my main open questions in this subsection
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(4.1) Can we find singular invariants? Can we find classes of singular equivalent exact categories
which are not derived equivalent (inspired by Knörrer periodicity)?

5. Non-commutative resolutions from exact substructures

Let A be an exact category. We fix an exact substructure E of A. We observe that this gives a
Verdier localization sequence

Ac(A)/Ac(E) → Db(E) → Db(A)

If E is regular then we want to interpret Db(E) → Db(A) as a categorical desingularization (following
Orlov’s definition - only that Orlov required that E is also abelian).

Definition 5.1. We fix an exact category A and an exact substructure E . Let d ≥ 0 be an integer.
We will write NCR as a shorthand for non-commutative resolution throughout the rest of the
chapter.

(*) We call E a weak (d-)NCR if E is regular (resp. gldim E ≤ d).
(*) We call E a (d-)NCR if E is regular (resp. gldim E ≤ d) and has enough projectives.
(*) We call E a strong (d-)NCR if E and has enough projectives Q and Q has pseudo-kernels

and mod∞Q is regular (resp. gldim(mod∞Q) ≤ d).

Naively, we expect to find weak NCRs in algebraic geometric situations and NCRs when studying
certain module or functor categories. For A Frobenius exact category, what we call a strong d−NCR
is defined in [28] just as an NCR.
The existence of a strong d-NCR for a Frobenius category has the consequence that it is equivalent
to the Gorenstein-projectives in mod∞ P.

Theorem 5.2. Let A be an idempotent complete exact category with enough projectives P and
assume it has a strong d-NCR, then

P : A → mod∞ P, X 7→ Hom(−, X)|P
has a finitely resolving image.
Furthermore, if P is n-cotilting in A, then P is also (n+ d)-cotilting in mod∞ P and P restricts to
an equivalence of exact categories

GP : Gp(A) → Gp(mod∞ P).

Before we give the proof, let us remark the following corollary which shows that for some exact
categories a strong d-NCR can not exist (because their bounded derived category does not have a
t-structure).

Corollary 5.3. If A is an idempotent complete exact category with enough projectives and A admits
a strong d-NCR, then A is derived equivalent to an abelian category with enough projectives.

Since the inclusion of a finitely resolving subcategory induces a triangle equivalence on bounded
derived categories, the corollary follows.

Proof. Let E be a strong d-NCR and Q = P(E). We have that the restriction functor

f = (−)|P : mod∞Q → mod∞ P
is exact and essentially surjective because P ⊆ Q is a full subcategory. Now, we look at the
commutative diagram

A PA //

id
��

mod∞ P

E PE // mod∞Q

f

OO
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Since gldim(mod∞Q) ≤ d, we have ImPE is d-resolving. Since PA = f ◦ PE and f is exact and
essentially surjective, it follows that ImPA is also d-resolving.
Now assume additionally that P is n-cotilting, clearly the functor PA maps complete resolution by
projectives into complete resolutions by projectives, therefore it restricts to a functor on Gorenstein
projectives (call this GP). Since Gp(A) is n-resolving in A ∼= ImP which is d-resolving in mod∞ P,
we conclude ImGP is finitely resolving in mod∞ P. This implies Gp(mod∞ P) is finitely resolving in
mod∞ P and therefore mod∞ P is P cotilting in mod∞ P by Prop. 4.10. As A = ImP is d-resolving
in mod∞ P and idA P ≤ n, it follows easily by dimension shift that idmod∞ P P ≤ n+ d and therefore
P is (n+ d)-cotilting.
We still need to see that GP is essentially surjective. But GP induces an triangle equivalence (since
the image is finitely resolving) which induces a triangle equivalence on the singularity categories.
But since these are the stable categories we conclude that GP is essentially surjective. □

Corollary 5.4. ([28] and an old result by Auslander) If A is Frobenius exact and has a strong
d-NCR, then the functor P induces an equivalence of exact categories A → Gp(mod∞ P)

Example 5.5. Let A be a left noetherian ring and A = A−mod the category of finitely generated
left A-modules. Take a generator E = M ⊕A ∈ A and assume that add(E) is contravariantly finite in
A and that Γ = EndA(E)op is again left noetherian of finite global dimension. Take the idempotent
e ∈ Γ corresponding to the summand A in E and the exact functor e : Γ−mod → A, e(X) := eX.
It has a fully faithful left adjoint and a fully faithful left adjoint ℓ and a fully faithful right adjoint
r = HomA(E,−) (the right adjoint is well-defined since add(E) is contravariantly finite). So by
Chapter 1, we get three exact substructures Sℓ,Sr,Sc where c = Im(ℓ → r) is the intermediate
extension functor.
Now we look at E = (A−mod,Sr), as an exact category this is equivalent to Im r (seen as
extension-closed subcategory of Γ−mod. It is deflation-closed and contains Γ = r(E). Therefore it
is a resolving subcategory. Since we assume gldimΓ < ∞ it is finitely resolving and we get that the
composition is a traingle equivalence Db(E) → Db(Im r) → Db(Γ−mod) such that the composition

Db(E) → Db(Γ−mod)
e−→ Db(A) equals the natural map Db(E) → Db(A) induced by the identity on

A−mod.

Example 5.6. Every exact category has a unique 0-NCR given by the split exact structure.
Therefore, we usually look for d-NCRs with d ≥ 1.

If E is an NCR for A with enough projectives P(E) =: P, then the previous Verdier localization
sequence is triangle equivalent to the Verdier localization sequence

Kac(P) → Kb(P) → Kb(P)/Kac(P).

where Kac(P) is the thick subcategory given by complexes which are A-acyclic.

Example 5.7. Let G be a finite group and k a field of characteristic p dividing the order of the
group. Let E :=

⊕
H⊂G k(G/H) and P = add(E) ⊂ mod kG. Let A = mod kG and E the exact

substructure with P(E) = P. This is an NCR of A. This way (up to idempotent completion) the
triangle equivalence between Db(A) and Kb(P)/Kb

ac(P) from a previous remark is the main result in
[5].

We also want to keep track on how A-self-orthogonal the projectives P(E) are, so we define (inspired
by the works of [11])

Definition 5.8. Let n ∈ N>0. Given a full subcategory M of A, we say that M is n-rigid if
Ext1∼n

A (M,M) = 0 (this is a shorthand notation for ExtiA(M,M ′) = 0 for all M,M ′ ∈ M,
i ∈ {1, . . . , n}). We say it is nZ-rigid if ExtiA(M,M ′) = 0 for all M,M ′ ∈ M, i ∈ N>0 \ nN
Let E be an exact substructure of A. We define the A-rigidity of E (or more accurately of P(E)) to
be

rigA(E) = sup({m ∈ N>0 | P(E) is m-rigid} ∪ {0}) ∈ N≥0 ∪ {∞}
If gldimA < ∞ we have rigA(E) ∈ {0, 1, . . . , gldimA− 1} ∪ {∞}.
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We define the (projective) rigidity dimension of A to be

rdim(A) = sup{rigA(E) | E NCR }
If A is regular with enough projectives, it follows rdimA = ∞ since we may take E = A.

We have the following (version of the Auslander-Reiten formulation of the Nakayama conjecture)

Proposition 5.9. (Nakayama Conjecture for NCRs) If A is exact category and E is an NCR with
rigA(E) = ∞ then A = E (in particular A is also regular with enough projectives).

Proof. We have P := P(E) is homologically exact in A since it is self-orthogonal. This implies
that Db(E) ∼= Kb(P) → Db(A) is fully faithful. Therefore, the inclusion of the exact substructure
E → A is homologically exact implying it is the identity, cf. Chapter 1. □

Corollary 5.10. If A is not regular and E NCR, then rigA(E) < ∞.

Corollary 5.11. If A is hereditary and Krull Schmidt and E an NCR which is not equal to A then
rigA(E) = 0 (i.e. Ext1A(P(E),P(E)) ̸= 0)

Remark 5.12. For modules over rings: Via generator correspondence and Müller correspondence
this is very much related to the so-called dominant dimension, cf. correspondences explained in [35].
We added the adjective projective since the rigidity dimension of a finite-dimensional algebra is
defined using generator-cogenerators and not just generators.

The main reason to introduce A-rigidity for E is the following easy observation:

Lemma 5.13. Let A be an exact category. If E is an exact substructure with enough projectives
P(E). If we have rigA(E) ≥ n, then we have ResEn(P(E)) = ResAn (P(E)).

Proof. Let P := P(E) be n-rigid (in A). The inclusion ResEn(P) ⊆ ResAn (P) is trivial. Let
X ∈ ResAn (P). By definition we have an A-exact sequence

0 → Pn → Pn−1 → · · · → P1 → P0 → X → 0

with Pi ∈ P. To see that it is exact in E , we split it in short exact sequences and show that
Hom(P,−) is exact on it: Set X = P−1, let Qi = ker(Pi → Pi−1), i = 0, . . . , n− 1, observe
Pn = Qn−1. By dimension shift we have Ext1A(P,Qi) ∼= Ext2A(P,Qi+1) ∼= · · · ∼= Extn−i

A (P, Pn) = 0 for
all P ∈ P, i ∈ {0, . . . , n− 1}. □

Theorem 5.14. Let A be an exact category. The assignment E 7→ P(E) gives a bijection between:

(1) d-NCRs E with rigA(E) ≥ d.
(2) d-rigid subcategories P of A with ResAd (P) = A.

Remark 5.15. Let P be a subcategory as in (2).

(1) If P is also (d+ 1)-rigid, then P is deflation closed and a d-resolving subcategory of A, this
implies Kb(P) = Db(P) → Db(A) is a triangle equivalence. If E is the d-NCR with
P(E) = P, then Prop.5.9 implies E = A. In particular, P = P(A) is then even
self-orthogonal in A.

(2) If P is not (d+ 1)-rigid, then it can not be deflation-closed (because else, we can apply the
same argument as in (1) to deduce that P has to be even selforthogonal).

Proof. The assignment E 7→ P(E) is one to one between exact substructures with enough
projectives and admissibly contravariantly finite subcategories. If we now additionally assume
d-NCR with rigA(E) ≥ d then we clearly get a subcategory as in (2). For the converse we just use
the previous lemma to see that the exact structure has gldim ≤ d. □

Definition 5.16. ([33, Def. 3.1]) A d-rigid subcategory P in an exact category A is called

11



(1) left maximal d-rigid if ResAd (P) = A and

(2) right maximal d-rigid if CoresAd (P) = A

Observe, given an exact category A with enough projectives P = P(A), then P is left maximal
d-rigid iff gldimA ≤ d. But P is right maximal rigid implies P = CoresAd (P) = A because P is
projective.

Proposition 5.17. If A has enough projectives P and let A′ = Gp(A). Then, restricting exact
substructures from A to A′ gives an injective map from (a) to (b) where

(a) d-NCRs E with rigA(E) ≥ d and P(E) ⊆ A′

(b) d-NCRs E ′ with rigA′(E ′) ≥ d

If additionally P is n-cotilting with d ≥ n, then the inclusion P(E) ⊆ A′ in (a) is always true.

Proof. The first part is more generally true: Let A be an exact category with enough
projectives. Let A′ ⊆ A be a resolving subcategory. Let E be as in (a). The homologically exactness

implies that P(E) ⊆ A′ is d-rigid and since A′ is deflation-closed we have ResA
′

d (P(E)) = A′. Clearly
the map is injective since an exact substructure with enough projectives is determined by its
category of projectives.
Now assume also that idA P ≤ n and Gp(A) = ⊥P. If d ≥ n and P(E) is d-rigid, we have that
P ⊆ P(E), so Ext1∼d

A (P(E),P) = 0. Since idA P ≤ n, it follows that P(E) ⊆ ⊥P = Gp(A). □

Here are my open questions in this section:

(5.1) Given an exact category, does there always exist a non-trivial weak NCR?
(5.2) Exact substructures of an exact category form a complete lattice - do maximal elements

exist in the subposet of regular exact substructures (maybe plus some rigidity...)?
(5.3) If A is an exact category with enough projectives. Is A regular if and only if rdim(A) = ∞?

6. NCRs from cluster tilting subcategories

Definition 6.1. Given two exact substructures E and F (with the same underlying additive
category), we say that F is the translate of E (or (E ,F) a translated pair) if E has enough
projectives, F has enough injectives and P(E) = I(F).

Cf. Chapter 2, assume that the underlying additive category is weakly idempotent complete, then
translated pairs are (via (E ,F) 7→ P(E)) in bijection to functorially finite generator-cogenerators.

Example 6.2. We have that an exact substructure E is a Frobenius exact structure if and only if
(E , E) is a translated pair.

The following example is the reason for the naming (translated stands for Auslander-Reiten
translated).

Example 6.3. Let A be the category of finite-dimensional modules over a finite-dimensional algebra
Λ. Let G = Λ⊕X. We consider E = (Λ−mod, FG) the exact substructure with enough projectives
given by add(G). By [3] we have that E = (Λ−mod, FH) is equal to the exact substructure with
enough injectives given by add(H) with H = τ−X ⊕DΛ. So, with short-hand notation (Fτ−G, FG)
is a translated pair iff add(τ−G⊕ Λ) = add(τ−G⊕DΛ) (i.e. Λ has to be self-injective or Λ of finite
global dimension and G the Auslander generator)

Let us recall the following definition from e.g. [32]
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Definition 6.4. Let A be an exact category. Let M be a full additively closed subcategory and
d ≥ 0 an integer. We M is (d+ 1)-cluster tilting if it is a functorially finite generator-cogenerator
with

M = {X ∈ E | Ext1∼d(X,M) = 0 ∀M ∈ M}

= {X ∈ E | Ext1∼d(M,X) = 0 ∀M ∈ M}

Lemma 6.5. [13, Prop. 2.9] Let A be an exact category and M a d-rigid, generating-cogenerating
covariantly functorially finite subcategory. The following are equivalent

(1) M is (d+ 1) cluster tilting
(2) ResAd (M) = A

This has the the following corollary.

Corollary 6.6. Let A be an exact category and M a full additively closed subcategory and d ≥ 0 an
integer. The following are equivalent

(1) M is (d+ 1)-cluster tilting in A
(2) M is d-rigid and ResAd (M) = A = CoresAd (M)

From this, we directly get:

Proposition 6.7. Let d ≥ 1 and A an exact category. The assignment (E ,F) 7→ P(E) gives a
bijection between

(1) translated pairs (E ,F) with gldim E ≤ d, gldimF ≤ d and rigA(E) ≥ d
(2) (d+ 1)-cluster tilting subcategories in A.

In other words (d+ 1)-cluster tilting subcategories in A are the projectives in a d-NCR of A with
A-rigidity ≥ d and in a d-NCR of Aop with Aop-rigidity ≥ d .

Example 6.8. For d = 0, the split exact substructure A0 is the unique 0-NCR and it is a Frobenius
exact category, so (A0,A0) is a translated pair. It corresponds to the unique 1-cluster tilting
subcategory in A given by A itself.

Then there are geometrically inspired examples.

Example 6.9. The first instances of noncommutative resolutions where found as algebraic
analogues of algebraic geometric resolutions of very easy types of singularities (this is the reason for
calling this concept ’noncommutative resolution’).
The connection between cluster tilting and noncommutative resolutions of singularities is apparent
in the following:

(1) For simple singularities: algebraic McKay correspondence (using an Auslander generator of
an exact category of finite type, i.e. a 1-cluster tilting subcategory. This exact category is
the Cohen-Macaulay modules of the local ring) [4], [34]

(2) For some non-isolated singularities in [25]

Furthermore, there are many more cluster tilting subcategories in Cohen-Macaulay modules over
commutative noetherian local rings which are isolated singularities (i.e. geometrical examples) and
more generally over (non-commutative) orders over isolated singularities found: [20],[27], [21], [10],
[15], [2] (here: use [32] to pass from cluster tilting in the stable category to cluster tilting in the
Frobenius exact category), also in graded Cohen-Macaulay module categories [23].

Corollary 6.10. (also of [13, Prop. 2.9]) For A a Frobenius exact category, the projectives of a
d-NCR with rig ≥ d of A are already (d+ 1)-cluster tilting subcategory if and only if they are
covariantly finite cogenerator (in A).

13



Using Prop. 5.17, the previous corollary amounts to: if A has enough projectives P and P is
n-cotilting, then we have a bijection between

(1) d-NCRs E with rig ≥ d and the category P(E) is a covariantly finite cogenerator in ⊥P
(2) (d+ 1)-cluster tilting subcategories in Gp(A)

We conclude with: Let d ≥ 0, by now, there is a remarkable list of examples of d-cluster tilting
subcategories in exact categories already found, apart from geometrically inspired examples Ex. 6.9
we also have:

(1) Higher Auslander-Reiten theory is developed in cluster tilting subcategories (with many
examples for artin algebras) [24], [18], [17],

(2) most instances of cluster categories are algebraic - this means their cluster tilting
subcategories lift to cluster tilting subcategories in a Frobenius exact enhancement [7], [6],
[1], [29], [22],...

We also have the following structural result of S. Kvamme.

Theorem 6.11. ([33, Theorem A]) Every weakly idempotent complete d-exact category is equivalent
(as d-exact category) to a d-cluster tilting subcategory in a weakly idempotent complete exact
category. Furthermore, the ambient exact category is unique up to exact equivalence.
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