
The Yoneda category and effaceable functors

1. Synopsis

For an exact category we introduce its Yoneda category and the category of Yoneda effaceables. The
category of Yoneda effaceables is a Frobenius category. We show that there is a triangle equivalence
between the bounded derived category of the effaceable functors and the stable Yoneda effaceables.
As an application, we show that the 2-functor assigning to an exact category its effaceable functors
is preserving homological exactness.
What is new? The main result is new in this generality but known for finite-dimensional modules
over finite-dimensional algebras.

2. Introduction

The category of effaceable functors is an abelian category which we can assign to every exact
category. It is always an extension-closed subcategory in the category of all additive functors on E .
Similar to Auslander’s correspondence for exact categories, cf. [14], the exact structure of E
corresponds (by taking effaceable functors eff(E)) to certain Serre subcategories in P2(E), cf. [10]
and Chapter 2. But unlike Auslander correspondence, many (non-equivalent) exact categories can
have equivalent effaceable functor categories. In this case we say they are stable equivalence to
each other.

Opposite to the Auslander categories effaceable functors still contain some residue of homological
properties of an exact category. This was presumably also a motivation for Auslander and Reiten’s
series of papers [1], [2], [3],[4],[5] on stable equivalence of dualizing R-varieties (the category of
finitely presented functors on the stable module category is the category of effaceable functors).

We show as a corollary of the second theorem:

Theorem 2.1. (cf. Theorem 8.2) If E → F is a homologically exact functor between exact
categories, then eff(E) → eff(F) is also homologically exact.

Furthermore, we proved the following: If an exact category E has enough projectives (resp. enough
injectives) then so has eff(E). If E has enough injectives then gldim eff(E) ≤ 3 gldim E − 1, cf. Cor.
4.10. If E is a Frobenius category then so is eff(E).

Theorem 2.2. (cf. Theorem 8.1) Let E be a weakly idempotent complete exact category. Then there
is a triangle equivalence

Db(eff(E)) → Yeff(E).

This result has been proven in [16] for E = kQmod with Q Dynkin quiver and k a field, for an
arbitrary finite acyclic quiver Q in [18] and for E = Λmod with Λ a finite-dimensional algebra in
[12].

What about the hereditary case? Using Neeman’s result we would have a Verdier localization
sequence

Db(eff(E)) → Kb(E) → Db(E)
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Given two hereditary exact categories, when are they derived equivalent? In this case
Yeff = mod1D

b(E) and derived equivalence implies derived stable equivalence.

3. The Yoneda category

Definition 3.1. Let E be the full subcategory of Db(E) given by the essential image of stalk
complexes in degree 0. We define the following full subcategory of Db(E)

Y(E) := add{E[n] | n ∈ Z, E ∈ E}
as the Yoneda category of E . More generally, for every admissible exact subcategory C in a
triangulated category T , we define YT (C) = add{C[n] | n ∈ Z, C ∈ C} as the Yoneda category of C in
T .

The Yoneda category is an additive category (with an autoequivalence). The extension-closure of
Y(E) in Db(E) is Db(E).

Lemma 3.2. Assume that T is triangulated category and that n ≥ 1. For an admissible exact
category C of a triangulated category T we consider:

(1) Hom(C, C[> n]) = 0,
(2) C[n] ∗ C = C[n]⊕ C,
(3) C[n] ∗ C ⊆ YT (C).

Then we have (1) ⇔ (2) ⇒ (3), and if T is also Krull-Schmidt then we also have (3) ⇒ (2).

Proof. The equivalence of (1) and (2) is trivially true and also the implication from (2) to (3).
We just show that (3) implies (2). As T is Krull-Schmidt and Hom(C[n], C) = 0, it follows by [17],
Prop.2.1 (1) that C[n] ∗ C is closed under summands. Assume (3), let C[a] ∈ C[n] ∗ C for some a ∈ Z
and C ∈ C. To show (2), we need to conclude that a ∈ {n, 0}. There exists a triangle
C1[n] → C[a] → C2 → C1[n+ 1] with C1, C2 ∈ C. For a > 0 we have Hom(C[a], C2) = 0 and then
a = n or C = 0. If a < n then Hom(C1[n], C[a]) = 0 and therefore a = 0 or C = 0.

□

We may also recall here the following result:

Theorem 3.3. ([15], Cor.1.2) Let C be an admissible exact subcategory in a triangulated category.
The following are equivalent

(1) C is h-admissible hereditary abelian
(2) C[1] ∗ C = C[1]⊕ C = C ∗ C[1]
(3) YT (C) = T .

Remark 3.4. In the situation of the corollary, in loc. cit. a realization functor is constructed
without the assumption that T is algebraic.

We can look at Y the category of Yoneda categories (of small exact categories), where morphisms
are given by additive functors which preserve degree i-objects (i ∈ Z) and commute with the shift
functor.
Let Ex be the category of small exact categories with morphisms given by exact functors. We leave
it to the reader to formulate this for 2-categories.

Remark 3.5. We consider the assignment E 7→ Y(E) and an exact functor f is mapped to the
induced functor Y(f) on Yoneda categories. This defines a functor

Y : Ex → Y
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Furthermore:
An exact functor f is homologically exact if and only if Y(f) is fully faithful. An exact functor f is
an exact equivalence if and only if Y(f) is an equivalence (If Y(f) is an equivalence f is
homologically exact and an equivalence as we get an induced equivalence on degree 0 elements).

4. Effaceable functors

Effaceable functors (also called category of defects) appeared prominently in several places in the
literature. We collect here where it appears, examples and properties of these categories. Let us
start with the definition.

Definition 4.1. Let E be an exact category, we define eff(E) to be the full subcategory of mod1 E
given by functors F : Eop → (Ab) such that there exists an exact sequence X → Y → Z in E such that

HomE(−, Y ) → HomE(−, Z) → F → 0

is exact.
Dually, we define E − eff ⊆ E Mod(= Mod Eop) as the full subcategory of functors F : E → (Ab) such
that there exists an exact sequence X → Y → Z in E such that

HomE(Y,−) → HomE(X,−) → F → 0

Observe that by definition E − eff = eff(Eop) as we would expect.

Let us denote by i : E → E ic, X 7→ (X, 1) the idempotent completion of an exact category described
in [8] - the functor i is fully faithful, exact and reflects exactness cf. loc. cit. The essential image of i
is extension-closed, generating and cogenerating, so the induced derived functor Db(E) → Db(E ic) is
fully faithful (cp. [6, Cor 2.12]).
Furthermore, one can show using [7, Lemma 21] that E is weakly idempotent complete if and only if
the essential image of i is deflation-closed if and only if it is inflation-closed.

Lemma 4.2. Let E be an exact category.

(i) eff(E) is extension-closed in mod1 E.
(ii) If E is idempotent complete then eff(E) is idempotent complete.
(iii) We have eff(E) = eff(E ic) is idempotent complete.

Proof. (i) The category eff(E) is extension-closed in the so called category of admissible
presentable functors by [14, Proposition 3.6], and the latter is extension-closed subcategory
of Mod(E) by [14, Proposition 3.5].

(ii) Assume E is idempotent complete. By [14, Corollary 3.18] eff(E) is an additively closed
subcategory (e.g. it is part of a torsion pair) of an idempotent complete additive category,
so it is idempotent complete itself.

(iii) We see eff(E) as a full subcategory of eff(E ic) (using the universal property of the
idempotent completion of an additive category).

Given a functor F ∈ eff(E ic) we can choose an E ic-exact sequence

(Z, 1) → (X, p)
d−→ (Y, 1) such F = cokerHom(−, d) (because given a short exact sequence

(A, a) → (B, b)
φ−→ (C, c) with (C, c)⊕ (C, 1− c) = (C, 1), (A, a)⊕ (A, 1− a) = (A, 1) we can

just add the following sequences 0 → (C, 1− c)
id−→ (C, 1− c) and

(A, 1− a)
id−→ (A, 1− a) → 0, this does not change the cokernel of Hom(−, φ)). As E is

extension-closed in E ic it follows that F ∈ eff(E). Then by (ii) it follows that eff(E) is
idempotent complete.

□

Theorem 4.3. ([20], Lemma 9 ) Let E be an exact category. Then eff(E) as fully exact subcategory
of Mod E, is abelian.
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Remark 4.4. The previous result is proven only for idempotent complete exact categories but by
Lemma 4.2, this implies it is true for all exact categories.

Lemma 4.5. If ϕ : E → F is an exact functor, there exists a well-defined exact functor

ϕ : eff(E) → eff(F)

defined on objects via ϕ(cokerHomE(−, d)) := cokerHomF (−, ϕ(d)) for E-deflations d.

Proof. By [14], Thm 3.9 (2), there exists such an exact functor on the Auslander exact
categories. As it restricts to the functor ϕ : eff(E) → eff(F), it is automatically well-defined and
exact. □

Definition 4.6. Let E be an exact category with enough projectives P. Then the stable category
denoted by E is defined as the ideal quotient category. For every two objects X,Y ∈ E let
P(X,Y ) ⊆ HomE(X,Y ) to be the subgroup of all morphisms factoring through a projective object.
This defines an ideal in the category E . Then E has the same objects as E but morphisms are defined
as

HomE(X,Y ) := HomE(X,Y ) = HomE(X,Y )/P(X,Y )

This defines an additive category. Dually if E has enough injectives then we define E = (Eop)op.

Observe that the stable category of E is an additive category with an endofunctor, given by taking
syzygies Ω. If in addition E is a Frobenius category then its stable category has the structure of a
triangulated category with Ω−1 being the suspension functor and the distinguished triangles induced
by short exact sequences (cp. [13]).
In general, one can either study this as a pretriangulated category or use the Heller stabilization to
obtain a triangulated category from the stable category.

Let us observe the following easy

Lemma 4.7. Let E be an exact category.

(1) If E has enough projectives then for every morphism g in the category E there exists an
E-deflation d with d = g.

(2) If E has enough injectives then for every morphism g in the category E there exists an
inflation i such that i = g

Proof. If g : X → Y and (1) if E has enough projectives, take a deflation p : P → Y with P
projective and then using the pullback of p along g we have an induced deflation
d = [g, p] : X ⊕ P → Y with d = g. (2) If E has enough injectives, take an inflation j : X → I with I
injective and form the pushout to obtain an inflation i =

(
g
j

)
: X → Y ⊕ I with i = g. □

For an additive category P we call mod∞ P to be the full subcategory of ModP of all additive
functors F : Pop → (Ab) such that there exists an exact sequence in

Hom(−, Pn) → · · · → Hom(−, P0) → F → 0

with Pi ∈ P. This is a fully exact subcategory of ModP which has enough projectives and the
Yoneda embedding P ic → P(mod∞ P) induces an equivalence of additive categories.
Whenever we have an exact category F with enough projectives P, then we have a functor

P : F → mod∞ P, X 7→ Hom(−, X)|Pop

which is homologically exact and induces an equivalence of F ic to a resolving subcategory of
mod∞ P but usually this is not essentially surjective.
Dually given an additive category I we define the category Imod∞ := (mod∞ Iop)op, this is an
exact category with enough injectives and the Yoneda embedding
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I → (mod∞ Iop)op, I 7→ HomI(I,−) induces an equivalence Iic → I((mod∞ Iop)op). Whenever an
exact category F has enough injectives I then we consider

I : F → (mod∞ Iop)op, X 7→ Hom(X,−)|I
this is homologically exact and induces an equivalence of F ic to a coresolving subcategory of
(mod∞ Iop)op.

The following first part is [10], Lemma 2.13 (in the idempotent complete case)

Proposition 4.8. Let E be an exact category.

(1) If E is an exact category with enough projectives, then eff(E) has enough projectives. The
Yoneda functor E → mod1 E , X 7→ HomE(−, X) induces an equivalence of additive categories

(E)ic → P(eff(E)). Furthermore, in this case, the functor P induces an equivalence

P : eff(E) → mod∞ E
(2) If E is an exact category with enough injectives, then eff(E) also has enough injectives.

Furthermore, the functor X 7→ Ext1Eic(−, X) gives an equivalence of additive categories

(E)ic → I(eff(E)). Furthermore, we have an exact equivalence

I : eff(E) → (mod∞(E)op)op

Proof. (1) The proof in [10, Lemma 2.13] works also if E is not idempotent complete. For P
essentially surjective, the main argument is just Lemma 4.7,(1).
(2) Again the essentially surjectivity of I follows from Lemma 4.7, (2). □

Remark 4.9. In the light of the previous Proposition, it is sensible for arbitrary exact categories to
define two exact categories as stably equivalent if there exists an equivalence ϕ between their
effaceable functor categories (observe that additive equivalences between abelian categories are
exact). In this case we would call ϕ the stable equivalence. It can be that a stable equivalence is
induced by an exact functor as in Lemma 4.5 or it can also not be induced by a functor between the
exact categories.
So continuing Auslander-Reiten’s quest would mean: Try to classify/understand exact categories up
to stable equivalence.

Corollary 4.10. If E is an exact category with enough injectives and assume that gldim E ≤ n, then
we have

gldim eff(E) ≤ 3n− 1

This is an obvious generalization of [1, Prop. 10.2].

Proof. Let F ∈ eff(E), then there exists an exact sequence A → B
g−→ C such that

F = cokerHomE(−, g). So by definition, the long exact sequence when applying a functor
Hom(X,−) induces an exact sequence of functors on E

0 → F → Ext1E(−, A) → Ext1E(−, B) → Ext1E(−, C)

→ Ext2E(−, A) → · · · → ExtnE(−, C) → 0

as ExtiE(−, X) ∼= Ext1E(−,Ω−(i−1)X) ∈ I(eff(E)) by Prop. 4.8,(2), the claim follows. □

Remark 4.11. If E is an exact category with enough projectives, the category of effaceables are just
the category mod∞ E , so its global dimension can be determined by higher weak kernels in the
additive category E (in the sense of Enomoto).
In particular, if E has enough projectives the following are equivalent

(1) gldim eff(E) = 0
(2) E is abelian semi-simple
(3) Every non-isomorphism in E factors through a projective
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In particular, we can find examples of exact categories of all global dimension (including ∞) such
that the category of effaceable functors is semi-simple abelian. Take E an abelian Krull-Schmidt
category such that every indecomposable is either projective or simple and all simples
Hom-orthogonal (e.g. take a finite dimension Nakayama algebra Λ and pass to the quotient Λ/ rad2).
We look at Λn = k(1 → 2 → · · · → n)/ rad2 (of global dimension n) and Λ∞ = k[X]/(X2) (of infinite
global dimension), then En = Λnmod has semi-simple effaceable functors for all n ≤ ∞.

Lemma 4.12. If E is a Frobenius category then eff(E) is also a Frobenius category and
HomE(−,Ω−X) ∼= Ext1E(−, X) for all X ∈ E.

Proof. By Happel [13], E is triangulated, then there is a general result that mod∞ E is a
Frobenius category by a Theorem of Freyd (cf. [11], Thm 1.7). The last statement is more generally
proven in Lemma 6.1. □

5. Yoneda-effaceable functors

Definition 5.1. We define the category of Yoneda-effaceables Yeff(E) to be the full subcategory
of mod∞ Y(E) given by functors X such that there exists a triangle in Db(E)

A → B
f−→ C → A[1]

with A,B,C ∈ Y(E) such that X ∼= CokerHomY(E)(−, f), that is, X admits a presentation as

HomY(E)(−, B)
Hom(−,f)−−−−−−→ HomY(E)(−, C) → X → 0

and we say that X is presented by f . In practice, we say that a Yoneda effaceable functor is
presented by a map f and we implicitly assume that the domain, codomain and cone (in Db(E)) of f
are in Y(E). In particular, any functor in Yeff(E) is finitely presented (a.k.a. coherent).

We also have the following harmless looking result - which has a lengthy proof which is only
completed in Lemma 5.13.

Proposition 5.2. Let f : X → Y a morphism in Y(E) and F = cokerHomDb(E)(−, f). Then:

F |Y(E) ∈ Yeff(E) if and only if cone(f) ∈ Y(E).

Example 5.3. If E is hereditary abelian, we know by Thm 3.3 that Y(E) = Db(E), in particular for
every morphism f : X → Y in Y(E) we have cone(f) ∈ Y(E).
Therefore the category of Yoneda-effaceables Yeff(E) coincides with the (Frobenius exact) category
mod1D

b(E) (of finitely presented functors Db(E)op → (Ab)).

Definition 5.4. Let E be an exact category and M a full subcategory. We say M is generating if
for every E ∈ E there exists a deflation d : M → E with M ∈ M. It is called deflation-closed if for
every short exact sequence X → Y → Z with Y, Z ∈ M also X ∈ M holds.
A resolving subcategory in an exact category is fully exact subcategory which is deflation-closed
and generating. It is a coresolving subcategory if it is resolving in the opposite category. A
biresolving subcategory in an exact category is a fully exact subcategory which is resolving and
coresolving.

We often use the following:

Remark 5.5. (cf. [9, 2.6]) If E is an exact category and F is a fully exact subcategory closed under
direct summands.
If E has enough projectives P, P ⊆ F and F closed under syzygies then F is resolving.
If E has enough projectives P and enough injectives I both contained in F and F is closed under
syzygies and under cosyzygies, then F is biresolving.

Observe that biresolving subcategories in a Frobenius category are always again Frobenius categories
(with the same projective-injectives).
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Definition 5.6. Given an exact category F we denote by P(F) the full subcategory of projectives
in F . Let C be a fully exact subcategory. We call C partially resolving if C is deflation-closed,
summand-closed and for every C ∈ C there exists an F-deflation d : P → C with P ∈ P(F). Dually
we define partially coresolving if Cop is partially resolving in Fop.
We call C partially biresolving if it is partially resolving and partially coresolving.

Remark 5.7. We have the following (cf. Chapter 1)

(1) Let C be fully exact in an exact category F and closed under taking summands in F . Then
C is partially resolving if and only if for every C ∈ C there exists an F-exact sequence
C ′ ↣ P ↠ C with P ∈ P(F), C ′ ∈ C.

(2) If C is partially resolving then C has enough projectives with P(C) ⊆ P(F). If C is partially
biresolving then it has enough projectives and enough injectives - therefore it is a Frobenius
category if and only if P(C) = I(C) holds.

(3) If C is partially resolving in F then it is homologically exact in F .

Lemma 5.8. Let f : E → E ′ be an exact functor which is homologically exact. Then we have a fully
faithful embedding Y(E) ⊆ Y(E ′). The full subcategory
C = {F ∈ Yeff(E ′) | ∃f : X → Y in Y(E), cone(f) ∈ Y(E)} is partially resolving in Yeff(E ′) and the
restriction functor C → Yeff(E), F 7→ F |Y(E) is an exact equivalence.
In particular, the induced triangle functor

Yeff(E) → Yeff(E ′)

is fully faithful

Proof. By the usual horseshoe argument C is extension-closed. By definition it has enough
projectives and enough injectives equivalent to Y(E), therefore it partially biresolving. It is
straight-forward to see that the restriction C → Yeff(E), F 7→ F |Y(E) is an exact equivalence. As C is
homologically exact in Yeff(E ′), we have induced isomorphisms on Ext-groups and by Lemma 6.1
these calculate the homomorphisms in the stable category, i.e. we have for all X,Y in C and n ≥ 1

HomC(X,Ω−nY ) ∼= ExtnC(X,Y ) = ExtnYeff(E ′)(X,Y ) ∼= HomYeff(E ′)(X,Ω−nY )

as every object in C is a cosyzygy for some n ≥ 1, the claim follows. □

Lemma 5.9. We have Yeff(E) ⊆ Gp(mod∞ Y(E)) is extension-closed. Furthermore, as fully exact
category, Yeff(E) is biresolving and therefore as a fully exact subcategory, it is a Frobenius exact
category.

Proof. Let Y denote Y(E). Let X be a Yoneda-effaceable functor presented by the presented by

the map f fitting in the triangle A −→ B
f−→ C −→ A[1] in Db(E) with A,B and C in Y. Then the

complex of finitely generated projective Y–modules

. . . → Y(−, A) → Y(−, B) → Y(−, C)
d0−→ Y(−, A[−1]) → . . .

is totally acyclic and X is the image of d0. Therefore X is in GP(mod∞(Y)). Note that Yeff(E) is
extension closed. Indeed, consider and short exact sequence 0 → X → Y → Z → 0 in
Gp(mod∞ Y(E)) with X and Z in Yeff(E) and chose a presenting maps f : B → C and f ′ : B′ → C ′

of X and Z, respectively. Use the horseshoe lemma in ModY(E) to produce a complex of the form

. . . → (−,A′′) → (−, B ⊕B′)
(f ′′)∗−−−→ (−, C ⊕ C ′) → Y → 0

where f ′′ is the matrix

(
f 0
g f ′

)
for some g : B → C ′. We claim that f ′′ is a presenting map for Y .

Let D denote the cocone of f ′′ in Db(E). Then comparing the long exact sequence obtained from the
triangle induced by f ′′ and the previous complex obtained from the horseshoe lemma, we obtain that
(−, A′′) ∼= (−, D) as functors from Y(E) to (Ab). Then Lemma 5.10 will give us that A′′ ∼= D in
Db(E). But A′′ is in Y(E). This completes the claim.
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It remains to show that Yeff(E) is Frobenius exact as fully exact subcategory. In fact we need to see
that it contains the projective-injectives and is closed under syzygies and cosyzygies but all three
claims are clear when looking at the long exact sequence above. □

Lemma 5.10. Let L,M ∈ Db(E) and M ∈ Y(E).
If HomDb(E)(−, L)|Y(E) ∼= HomDb(E)(−,M)|Y(E) then L ∼= M as objects in Db(E).

Proof. As M ∈ Y(E), there exists a morphism f : M → L (in Y(E)) which corresponds to
idM : M → M under the assumed natural isomorphism of functors. This induces a natural
transformation f∗ : HomDb(E)(−,M) → HomDb(E)(−, L) which is an equivalence when restricted to

Y(E). The extension-closure of Y(E) in Db(E) is Db(E) and using the long exact sequences obtained
when applying Hom(−,M) and Hom(−, L) we conclude that f∗ is an isomorphism of functors. Then
by the Yoneda-embedding, a quasi-inverse functor is given by an inverse morphism for f and f has
to be an isomorphism in Db(E). □

The shift functor [1] in D := Db(E) induces by precomposition an autoequivalence on Yeff(E) which
maps representable (i.e. projectives) to projectives, therefore we have induced quasi-inverse
autoequivalences

[1]D : Yeff(E) ↔ Yeff(E) : [−1]D.

As Yeff(E) is a Frobenius exact category we also have the quasi-inverse equivalences

Σ := Ω− : Yeff(E) ↔ Yeff(E) : Ω =: Σ−

given by taking cosyzygies and syzygies (they are the suspension and cosuspension of the
triangulated structure discussed before, therefore we will rename them as Σ±).

Then the following corrollary is immediate from the previous lemma.

Corollary 5.11. We have a natural isomorphism of functors Ω3 = [1]D on Yeff(E). Furthermore,

we have for all F,G ∈ Yeff(E) there exists an n = nF,G << 0 such that

HomYeff(E)(F,Σ
<nG) = HomYeff(E)(Σ

>(−n)F,G) = 0

Proof. The statement is obvious. □

We make the following auxilliary definition.

Observe that F = mod1D
b(E) = mod∞Db(E) = Gp(mod∞Db(E) as every projective presentation of

a functor can be extended to a complete projective resolution by taking the associated completion of
a morphism to a distinguished triangle. This is a Frobenius category.

Definition 5.12. We define Ỹeff to be the full subcategory of mod1D
b(E) given by all F such that

there exists an f : X → Y in Y(E) with cone(f) ∈ Y(E) such that F = cokerHom(−, f).

By the horseshoe lemma it is obvious that Ỹeff is extension-closed in F .

Lemma 5.13. Let E be idempotent complete.

(1) Then Ỹeff is partially biresolving in F = mod1D
b(E). Furthermore, it is a Frobenius

category.
(2) A morphism f ∈ X → Y in Y(E) the following are equivalent:

(a) coneDb(E)(f) ∈ Y(E)
(b) HomDb(E)(−, f) is Ỹeff-admissible

(c) cokerHomDb(E)(−, f) ∈ Ỹeff

(3) The restriction functor Ỹeff → Yeff(E), F 7→ F |Y(E) is an exact equivalence.
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We just state (2) in the previous Lemma, to combine it with the equivalence in (3) - then it implies
Prop. 5.2.

Proof. To see (1) use the same argument as before, (2) follows by definition. The equivalence
in (3) has been considered in bigger generality in Chapter 3. □

Definition 5.14. Now we define ẽff ⊆ Yeff(E) to be the full subcategory given by functors X such

that there exists a triangle A → B
g−→ C → A[1] in Db(E) with A,B,C in E such that

X ∼= cokerHomY(E)(−, g).

The category ẽff is extension-closed in Yeff(E) (using the same horseshoe argument as in the Lemma

above). But ẽff does not contain any projectives.

Lemma 5.15. The restriction functor ẽff → eff(E), F 7→ F |Eop is an exact equivalence.

Proof. As restriction functors on functor categories are exact, also their restriction to fully
exact subcategories are exact functors.
By definition is this functor is essentially surjective and using the definition it is also
straight-forward to see that for an additive functor G : Y(E)op → (Ab), and for X such that there

exists an exact sequence A → B
g−→ C in E such that X = cokerHomY(E)(−, g) we have isomorphisms

Hom(X,G) = ker(Ab)(G(C)
G(g)−−−→ G(B)) = Hom(X|Eop , G|Eop)

therefore the functor is an equivalence of categories. As every fully faithful exact functor it induces a
monomorphism on Ext1-groups. We need to see it is surjective.

Let 0 → G → H → F → 0 be a complex in ẽff such that when evaluated at objects of E(⊆ Y(E)) this
yields an exact sequence of abelian groups. We need to see that 0 → G → H → F → 0 evaluated at
E[i] with E ∈ E , i ∈ Z, i ̸= 0 still gives an exact sequence of abelian groups. But this follows from the
next Lemma 5.16. □

Lemma 5.16. Given a two composable morphisms of distinuished triangles X∗
f∗−→ Y∗

g∗−→ Z∗ which
is degree-wise split exact in a triangulated category T with suspension [1], i.e. we have commuting
diagrams

X1
a1 //

f1
��

X2
a2 //

f2
��

X3
a3 //

f3
��

X1[1]

f1[1]

��
Y1

b1 //

g1

��

Y2
b2 //

g2

��

Y3
b3 //

g3

��

X1[1]

g1[1]

��
Z1

c1 // Z2
c2 // Z3

c3 // X1[1]

with (fi, gi) is a split exact sequence for all i ∈ {1, 2, 3}. Let A be an object in T and apply
(A,−) := HomT (A,−) to obtain two morphisms of long exact sequences. Assume that
0 → coker(A, a2) → coker(A, b2) → coker(A, c2) → 0 is an exact sequence of abelian groups, then we
have that also 0 → coker(A, ai) → coker(A, bi) → coker(A[i], ci) → 0 is an exact sequence of abelian
groups for i ∈ {1, 2, 3}. In particular, also 0 → coker(A[i], a2) → coker(A[i], b2) → coker(A[i], c2) → 0
is an exact sequence of abelian groups for every i ∈ Z.

Proof. Apply the snake lemma in the category of abelian groups. □

Definition 5.17. Let T be a triangulated category (we will usually denote the suspension by [1])
and C ⊆ T be a full additively closed subcategory. Then we say C is admissible exact in T if it is
extension-closed and non-negative (i.e. HomT (C,C

′[−n]) = 0 for all n > 0, C,C ′ ∈ C).
9



Lemma 5.18. The composition eff(E) ∼= ẽff → Yeff(E) → Yeff(E) is fully faithful, furthermore its
essential image is an admissible exact category.

Proof. First we proof that ẽff → Yeff(E) is fully faithful: Given a morphism ϕ : X → Y in ẽff

which factors in Yeff(E) as a composition X
a−→ HomY(E)(−, E[t])

b−→ Y with E ∈ E , t ∈ Z. We claim

that ϕ = 0 holds in ẽff. Using the definition of objects in ẽff, it is easy to see that Hom(X,E[t]) = 0
for t < 0 and Hom(E[t], Y ) = 0 for t > 0. For t = 0, we show that

HomYeff(E)(ẽff,HomY(E)(−, E)) = 0 for all E ∈ E , so take a projective resolution

HomY(−, X) → HomY(−, Y ) → HomY(−, Z) → F → 0

with σ : X → Y → Z a short exact sequence in E . When we apply HomY(−, E) with E ∈ E , then the
conclude that HomY(F,HomY(−, E)) = 0 as it has to be the zero to start the long exact sequence
associated to HomE(σ,E).
Next, we are going to see that the essential image of this functor is non-negative, i.e. we will show

HomYeff(E)(F1,Σ
<0F2) = 0

for all F1, F2 ∈ ẽff. By definition of the ideal quotient (Hom-sets) it is enough to show that
HomYeff(E)(F1,Ω

tF2) = 0 for all t ≥ 1. For t ≥ 3 this follows directly from lifting a morphism to

projective resolutions and using that HomY(E)(E,E′[< 0]) = 0. For t = 1, 2, let Xi
ai−→ Yi

bi−→ Zi be
the short exact sequences in E such that Fi = cokerHomY(E)(−, bi). For t ∈ {1, 2}: By definition, we

have a monomorphism ΩtF2 → HomY(E)(−, A) where A = Z2 for t = 2 and A = Y2 for t = 2, now by
the previous discussion, we have that Hom(F1,HomY(−, A)) = 0. This implies also
Hom(F1,Ω

tF2) = 0 for t = 1, 2.
Lastly, we still have to see that the essential image is extension closed. But this follows from the

next Lemma (as ẽff is extension-closed in the Frobenius exact category Yeff(E)).
□

Lemma 5.19. Let F be a Frobenius exact category and let q : F → F be the ideal quotient functor to
its stable category. If C an extension closed full subcategory in F , then the essential image of C is
extension closed in F .

Proof. Given a standard triangle X → Y → Z → X[1] in F with X,Z ∈ q(C). We may assume
that there exist injective-projective objects P and Q in F such that X = C ⊕ P,Z = C ′ ⊕Q with
C,C ′ ∈ C. By the construction of the triangulated structure on F , we have that Y → Z is the
pushout of an inflation X → I into a projective-injective object in F along the morphism X → Y .
By [8, Proposition 3.1], this implies that there is a short exact sequence C ⊕ P → Y ⊕ I → C ′ ⊕Q.
By [8, Proposition 2.12], the short exact sequence splits into a direct sum of of short exact sequences

P → P → 0, 0 → Q → Q and C → Ỹ → C ′. Since C is extensions closed, it follows that q(Y ) ∼= q(Ỹ )
lies in the essential image of C. □

Remark 5.20. Every extension-closed subcategory C in a triangulated category T can be equipped
with the structure of an extriangulated structure by restricting the triangles to this category.
This extriangulated structure is an exact structure if and only if HomT (C,C

′[−1]) = 0 for all C,C ′

in C. In particular, every admissible exact subcategory has an exact structure given by all triangles
A → B → C → A[1] in T such that A,B,C in C. We will always equip an admissible exact
subcategory with this exact structure.

We recall the following result:

Theorem 5.21. ([19] or Chapter 9) For every admissible exact subcategory C in an algebraic
triangulated category T there exists a triangle functor

Db(C) → T
which extends the inclusion C ⊆ T . It is called a realization functor of C.

10



We will call a subcategory in a triangulated category admissible abelian if it is admissible exact
and the induced exact structure from the triangles is abelian.

6. Fully faithfulness of the realization functor

We now want to see that eff(E) is h-admissible exact in Yeff(E). This means we need to see

Extt
ẽff
(F,G) → HomYeff(E)(F,Ω

−t
Yeff(E)G) ∀t ≥ 1

is an isomorphism for all F,G ∈ ẽff.

Lemma 6.1. Let F be a Frobenius category and X,Y ∈ F , then we have natural isomorphisms

ExtnF (X,Y ) → Hom(X,Ω−nY ) ∀n ≥ 1

where Hom := HomF

Proof. We look at short exact sequences Ω−nY → In → Ω−(n+1)Y , n ≥ 0 with In

projective-injective and apply HomF (X,−). We have induced an exact sequence of abelian groups

Hom(X, In) → Hom(X,Ω−nY ) → Hom(X,Ω−(n+1)Y ). Comparism with the long exact sequence

gives an induced isomorphism Ext1F (X,Ω−nY ) → Hom(X,Ω−(n+1)Y ). Now, the usual dimension
shift argument using cosyzygies gives Extn+1

F (X,Y ) ∼= Ext1F (X,Ω−nY ). □

So, we are actually asking when ẽff is an homologically exact subcategory of Yeff(E).

Proposition 6.2. ẽff is an homologically exact subcategory of Yeff(E) (or equivalently: ẽff is
h-admissible exact in Yeff(E)).

Proof. We proceed by first making two general remarks in (1) and (2) before we proceed
inductively in (3).
(1) We first remark that for every morphism g : X[m] → Y [m+ 1] in Y(E) with X,Y ∈ E , m ∈ Z the

following holds ImHomY(E)(−g) ∈ Ω3m
Yeff(E)ẽff.

(2) We secondly remark that in Y(E) every morphism f : X → Y [n] with X,Y ∈ E , n ≥ 1 can be

written as a composition X = X0
f1−→ X1[1]

f2−→ X2[2]
f3−→ · · · fn−→ Xn[n] = Y[n] with Xi ∈ E ,

0 ≤ i ≤ n. (3) Now, we claim the following: For every morphism h : F → Ω−tG in Yeff(E) with
F,G ∈ ẽff, t ≥ 2 there exists an s ∈ N, hs : ΩsF → Ωs−tG with Ω−shs = h in Yeff(E) such that hs is
a composition ΩsF = ΩsF0 → Ωs−1F1 → Ωs−2F2 → · · · → Ωs−tFt = Ωs−tG.

We fix short exact sequences X ′′ i−→ X
p−→ X ′ and Y ′′ j−→ Y

q−→ Y ′ with F = cokerHom(−, p),
G = cokerHom(−, q). The morphism h : F → Ω−tG induces morphisms between the long exact
sequences of representable functors which induces morphisms hs : Ω

sF → Ωs−tG for all s ∈ Z. Now
we study the morphisms of long exact sequences to find the factorization, to shorten notation, we use
(−, ?) := HomY(E)(−, ?).
If t = 2, we look at the commutative diagram

(−, X ′′)

(−,a′′)
��

(−,i) // (−, X)
(−,p) //

(−,a)

��

(−X ′) //

(−,a′)
��

F

h
��

(−, Y ′) σ
// (−, Y ′′[1])

(−,j[1])
// (−, Y [1]) // Ω−2G

Then set F1 = Im(−, j[1]) ◦ (−, a) ∈ ẽff (by (1)) and using the exactness of the rows we conclude that
h1 factors as ΩF → F1 → Ω−1G.

11



If t = 3, we look at the commutative diagram

(−, X ′′)

(−,a′′)
��

(−,i) // (−, X)
(−,p) //

(−,a)

��

(−X ′) //

(−,a′)
��

F

h
��

(−, Y ′′[1])
(−,j[1])

// (−, Y [1])
(−,q[1])

// (−, Y ′[1]) // Ω−3G

then with F1 = Im(−, q[1]) ◦ (−, a) we get a factorization of h1 as ΩF → F1 → Ω−2.
For t ≥ 4 we proceed inductively and find a factorization of the form ΩF → F1 → Ω−t+1G with

F1 ∈ ẽff as follows; Consider the commutative diagram

(−, X ′′)

(−,a′′)
��

(−,i) // (−, X)
(−,p) //

(−,a)

��

(−X ′) //

(−,a′)
��

F

h
��

(−, Y1[n1])
(−,ℓ)

// (−, Y2[n2])
(−,m)

// (−, Y3[n3]) // Ω−tG

with the second row is induced by the suitably-number rotated triangle, we have
{Y1, Y2, Y3} = {Y ′′, Y, Y ′} and certain ni ∈ N≥1, n3 ≥ 2. By (2), the morphism (−, a′) factors as

(−, X ′)
f ′
1−→ (−, X1[1]) → (−, Y3[n3]). We precompose with (−, p) to obtain a factorization of

(−,m) ◦ (−, a) : (−, X) → (−, Y3[n3]) as (−, X)
f1−→ (−, X1[1]) → (−, Y3[n3]). We define

F1 := Im f1 ∈ ẽff. As the second row is exact, we find an induced morphism F1 → Ω−t+1. By
definition, we have f1 ◦ (−, i) = 0, this induces a morphism ΩF → F1, this gives the factorization of
h1. The previous claim (3) implies that the maps Extt

ẽff
(F,G) → HomYeff(E)(F,Ω

−t
Yeff(E)G) are

surjective for all t ≥ 1 (as they are isomorphisms for t = 1). Then it is a standard argument that this
implies that they are isomorphisms for all t ≥ 2. □

7. The realization functor is essentially surjective

Is the inclusion Thick∆(ẽff) ⊆ Yeff(E) an equality? We start with the following duality:

7.1. The Auslander-Bridger transpose.

Tr: (mod1Y(E))op → mod1Y(Eop)

maps cokerHomY(E)(−, f) to cokerHomY(E)(f,−), compare [14, section 5.2]. It restricts to a duality,
i.e. a functor

Tr: Yeff(E)op → Yeff(Eop)

the quasi-inverse is given by the same transpose defined for Eop and by definition Tr(ΩF ) ∼= Ω−TrF .

It restricts to a duality Ω− ◦ Tr: ẽff(E) → ẽff(Eop).

Definition 7.1. Let F : Y(E) → (Ab) be a covariant additive functor, we define the graded support
of F as

supp(F ) := {i ∈ Z | ∃E ∈ E | F (E[i]) ̸= 0} ⊆ Z
If F is contravariant, we take the same definition but we write suppop instead of supp.
Let X ∈ Db(E) we have a covariant functor FX = HomDb(E)(X,−)|Y(E) and a contravariant functor

FX = HomDb(E)(−, X)|Y(E). We call supp(FX) resp. suppop(FX) the covariant resp. contravariant
graded support of X.
We define the two Yoneda degrees of X via

(*) Ydeg(X) = n if n ∈ supp(FX) ⊆ [n,∞).
(*) Ydegop(X) = n if n ∈ suppop(FX) ⊆ (−∞, n].
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Remark 7.2. For X ∈ Db(E).
If Ydeg(X) = n ∈ Z then Ydeg(X[−n]) = 0.
If Ydegop(X) = m then YdegopX[−m] = 0.
Given X = Ai ⊕Ai+1 ⊕ · · · ⊕Aj , i ≤ j with At ∈ E [t] for all t and Ai ̸= 0, Aj ̸= 0, then we have
Ydeg(X) = i, Ydegop(X) = j. Conversely, every X ∈ Y(E) with Ydeg(X) = i, Ydegop(X) = j can be
written in this way. In particular, for X ∈ Y(E), we have X ∈ E if and only if
Ydeg(X) = 0 = Ydegop(X).
Now, on Db(E), for n,m ∈ N, the conditions Ydeg ≥ n and Ydegop ≤ m are extension-closed. This
implies that the Yoneda degrees are well-defined for all X ∈ Db(E) because this is the
extension-closure of Y(E).
Remark 7.3. We have a problem when we want to extend this definitions to the stable category of
Yoneda-effaceables as then the support is no longer a well-defined invariant of the isomorphism class
(e.g. the zero functor is isomorphic to every projective - but their supports vary).

To overcome this issue, we define these degree functions first for triangles.

Definition 7.4. Given a triangle without a split summand ∆: A → B → C
+1−−→, A,B,C ∈ Y(E).

We number the objects as follows A[n] =: D3n−2, B[n] =: D3n−1, C[n] =: D3n, n ∈ Z. We define

Ydeg(∆) := (inf{n ∈ Z | Ydeg(Dn) > 0})− 1

If Ydeg(∆) = t and ∆ has no split triangles as summands, then we have for the suitably times

rotated triangle ∆′ : Dt−2 → Dt−1 → Dt +1−−→ the following property

(*) Ydeg(Dt) = Ydeg(Dt−1) = Ydeg(Dt−2) = 0.
To see this, by definition Ydeg(Dt+1) ≥ 1, so Ydeg(Dt−2) ≥ 0. But by definition

Ydeg(Dt−2) can not be > 0, so it has to be = 0. Also by definition
Ydeg(Dt) ≤ 0,Ydeg(Dt−1 ≤ 0. Assume that Ydeg(Dt) = (−n) < 0, take X[−n] ∈ E [−n|,
then (Dt, X[−n]) ∼= (Dt−1, X[−n]). Then one can get a contradiction to the assumption
that ∆ has no split summand. Therefore we have Ydeg(Dt) = 0 and as Ydeg ≥ 0 is
extension-closed, we conclude that Ydeg(Dt−1) = 0

Furthermore, Ydeg(∆) only depends on the homotopy equivalence class of the complex
HomDb(E)(∆,−) ∈ K(P(ModY(E ic)op)). In particular, if F ∈ Yeff(E) is represented by ∆, then

Ydeg(∆) is well-defined for TrF ∈ Yeff and Tr is a duality on Yeff, so

deg(F ) := Ydeg(∆) for F ∈ Yeff(E)
is a well-defined integer.
Dually, we may define for a triangle as before

Ydegop(∆) = (sup{n ∈ Z | Ydegop(Dn) < 0}) + 1

If Ydegop(∆) = s, then for the suitable rotated triangle ∆′′ : Ds → Ds+1 → Ds+2 +1−−→ the following
property holds

(*)op Ydegop(Ds) = Ydegop(Ds+1) = Ydegop(Ds+2) = 0

In this case, also degop(F ) := Ydegop(∆) is well-defined for F represented by ∆ in Yeff(E).

Example 7.5. Let F be in Ωtẽff, then deg(F ) = t, degop(F ) = t− 2.

Lemma 7.6. Given a Yoneda-effaceable functor F and t = deg(F ). Then deg(F ) ≥ degop(F )− 2

and it is = if and only if F ∈ Ωtẽff.

Proof. The inequality follows by definition. Equality means that the triangles ∆′ and ∆′′

coincide. But this means that Ydegop = Ydeg = 0 for Dt−2, Dt−1, Dt, i.e. we have a distinguished
triangle with three consecutive terms in E . Then the first two maps in such a triangle are given by a
short exact sequence in E and the claim follows. □
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We think of the number dF = deg(F )− degop(F ) + 2 as the distance of F being a (co)syzygy of an
effaceable. Now, the strategy is the following: Show that every F ∈ Yeff(E) fits into a short exact
sequence G ↣ F ↠ ΩtE for some t such that dG < dF .

Remark 7.7. Observe that mod ∞Y(E) is deflation-closed in ModY(E) and
Gp(mod∞ Y(E)) is deflation-closed in mod∞ Y(E) and Yeff(E) is deflation-closed in
Gp(mod∞ Y(E)). Therefore we have that arbitrary kernels of epimorphisms between Yoneda
effaceable functors are again Yoneda effaceable.

Lemma 7.8. Let E be weakly idempotent complete. Given a triangle

∆: Z → Y → X
+1−−→, X, Y, Z ∈ Y(E) without split summands of Ydeg(∆) = 0. Then we have

Z>0 ⊕ Z0

(
c d
0 f

)
−−−−−−→ Y = Y>0 ⊕ Y0

(
a b
0 p

)
−−−−−→ X>0 ⊕X0

(
α β
γ δ

)
−−−−−−→ Z>0[1]⊕ Z0[1]

where Z>0, X>0, Y>0 ∈
∨

i>0 E [i], X0, Y0, Z0 ∈ E and p : Y0 → X0 an deflation.

Proof. That we can write it in this form follows from (*). Now, δ : X0 → Z0[1] corresponds to a

short exact sequence, say this is Z0
i
↣ V0

q
↠ X0. Then,

(
0
q

)
: V0 → X>0 ⊕X0 satisfies(

α β
γ δ

)(
0
q

)
=

(
0
0

)
. Therefore there exists a morphism

(
g
h

)
: V0 → Y>0 ⊕ Y0 such that(

a b
0 p

)(
g
h

)
=

(
0
q

)
, this implies p ◦ g = q. Now, as E is weakly idempotent complete it follows from

the obscure axiom [8, Prop. 7.6] that p is a deflation. □

Remark 7.9. If we could show that p is a deflation, then the proof can be completed: let
u : Y → Z, F = coker(−, u)|Y(E) be as before, take E = cokerHom(−, p)|Y(E) then the kernel can be
described as G = coker(−, a)|Y(E). As we know that G is Yoneda eaffaceable, it follows from Prop.
5.2 that a has a cone in Y(E) and can be completed to a complete projective resolution of G. Then
Ydeg(G) < 0 = Ydeg(F ) and Ydegop(G) = Ydegop(F ), so the induction would work.

Proposition 7.10. Let E be weakly idempotent complete. Assume F ∈ Yeff(E) is represented by a
triangle ∆ without split summands and Ydeg(∆) = 0, then there exists a short exact sequence in
Yeff(E)

ΩG ↣ ΩF ↠ ΩE

with E in Ẽ and if F is not in ẽff then dG < dF .

Proof. We take for ∆ the notation of the previous Lemma and set u :=

(
a b
0 p

)
, v =

(
c d
0 f

)
,

i.e. F = coker(−, u)|Y(E). By the previous Lemma, p is a deflation, say with E-kernel K0
j−→ Y0, then

E = coker(−, p)|Y(E) is in ẽff. Furthermore, we define G = coker(−, a)|Y(E). By the 3× 3-Lemma for
traingulated categories we find an object C and morphisms such that all rows and columns are
distinguished triangles in the following diagram

X0[−1] K0[−1] Y0[−1] X0[−1]

X>0[−1] C Y>0 X>0

X[−1] Z Y X

X0[−1] K0 Y0 X0

0 0 0

( 10 )
z

a

( 10 ) ( 10 )

(0,1)

v u

(0,1) (0,1)

j p
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Observe that by definition ΩG = Im(−, a)|Y(E), ΩF = Im(−, u)|Y(E), ΩE = Im(−, p)|Y(E) . We now
look at the induced diagramm of all representable functors (−, A)|Y restricted to the Yoneda
category Y = Y(E).

(−, X>0[−1])|Y (−, C)|Y (−, Y>0)|Y (−, X>0)|Y

(−, X[−1])|Y (−, Z)|Y (−, Y )|Y (−, X)|Y

(−, X0[−1])|Y coker(−, z)|Y (−, Y0)|Y (−, X0)|Y

( 10 ) (−,z)

a

( 10 ) ( 10 )

(0,1)

v u

(0,1) (0,1)

j p

Now, use the snake lemma (in ModY(E)) to obtain an exact sequence ΩG ↣ ΩF ↠ ΩE. We
conclude that G is also Yoneda effaceable and by Prop. 5.2 it follows C in Y(E). As Ydeg() > 0 is
extension-closed it follows Ydeg(C[1]) > 0, so, let us denote ∆′ the distinguished triangle

C → Y>0 → X>0
+1−−→. By definition, if F is not in ẽff, then we have Ydeg(∆′) ≤ (−2) and we have

Ydegop(∆′) ≥ Ydegop(∆) (use the columns in the 3× 3 diagram and the definition to see this). □

Then just use the distinguished triangles induced by a the short exact sequence from the previous
Proposition and an induction on dF , to see the following corollary.

Corollary 7.11. If E is weakly idempotent complete: Thick(ẽff) = Yeff(E)

Remark 7.12. We conjecture Y(E) = Y(E ic), this would imply that we can leave out the
assumption E weakly idempotent complete in the corollary 7.11 is obsolete.

8. Main results

From the previous two sections we conclude the following theorem which is our main result

Theorem 8.1. If E is a weakly idempotent complete exact category. Then the realization functor for

the admissible exact category eff(E) ∼= ẽff ⊆ Yeff(E) is a triangle equivalence

Db(eff(E)) → Yeff(E).

Theorem 8.2. If E → E ′ is a homologically exact functor. Then the induced functor eff(E) → eff(E ′)
is homologically exact.

Proof. We get a commutative diagram

Db(eff(E)) //

��

Db(eff(E ′))

��
Yeff(E) // Yeff(E)

with the vertical arrows are fully faithful triangle equivalence and the lower one is fully faithful by
Lemma 5.8. This implies the upper triangle functor is also fully faithful. □

9. Some special situations

Definition 9.1. For an exact category we define a Frobenius pair (in the sense of Schlichting) by

eff(Gp(E)) ⊆ Gp(eff(E))
The associated Verdier quotient

Gp(eff(E))/eff(Gp(E))
will be called the Frobenius gap of E .
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Open question: Is E a Frobenius category if and only if its Frobenius gap is zero? (This seems to be
true for exact categories with enough projectives...)

Similary, if E is an exact category then P<∞(E) = {X ∈ E | pdE X < ∞} is a thick subcategory We
say E is regular if E = P<∞(E). If we assume that E has enough projectives, then P<∞(E) is a
resolving subcategory of E , so in particular it is homologically exact. Then, we have a chain of
homological exact functors eff(P∞(E)) ⊆ P<∞(eff(E)) ⊆ eff(E) this induces three short exact
sequences of triangulated categories

Db(eff(P<∞(E))) →Db(P<∞(eff(E))) → Db(P<∞(eff(E)))/Db(eff(P<∞(E))

Db(eff(P<∞(E))) →Db(eff(E)) → Db(eff(E))/Db(eff(P<∞(E))

Db(P<∞(eff(E))) →Db(eff(E)) → Dsg(eff(E))
and we get an induced fourth exact sequence of exact categories

Db(P<∞(eff(E)))/Db(eff(P<∞(E)) → Db(eff(E))/Db(eff(P<∞(E)) → Dsg(eff(E))
If E is regular then eff(E) is regular and all three triangulated categories are zero.
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