
The poset of exact structures

1. Synopsis

We survey the theory of exact structures on an essentially small idempotent complete additive
category. We focus on explicit answers and examples. But we also collect/recall several lattice
isomorphisms for the lattice of all exact structures. Several of these isomorphisms are induced by
equivalences of 2-categories which we collect in an Appendix.
What is new here? The description of exact structures with enough projectives. The equivalence
of 2-categories with tf-Auslander categories (i.e. the subcategory of torsionfree objects in the
Auslander exact category) is new. Apart from the Auslander correspondence none of the
equivalences of 2-categories are formulated as such in the literature that I know (we treat them for
time reasons also somewhat sketchy). Furthermore, we look at all exact substructures in examples
(e.g. finitely generated abelian groups) and establish some of their global dimensions.

2. Introduction

Now, we fix one essentially small, idempotent complete exact category E = (A,S) and introduce the
following posets of exact substructures

ex(E) = exact substructures of E .

Here the poset structure is given by inclusion on the collection of short exact sequences, i.e. E1 ≤ E2
means the identity functor E1 → E2 is an exact functor. Rump showed [35] that for every essentially
small additive category there always exists a maximal structure (independently this had been shown
by Crivei [16] under the assumption that the underlying additive category is weakly idempotent
complete). Therefore, we may as well define ex(A) := ex(Emax) where Emax is the maximal exact
structure on the additive category A.
As it is very easy to see that arbitrary intersections of exact structures give an exact structure, we
have a complete meet semi-lattice. Using the existence of a maximal exact structure, this implies
that ex(E) is a complete lattice, cf. [8]. We are interested in the following types of results:

(1) Explicit parametrizations and constructions of exact structures
(2) Lattice isomorphisms for ex(E)

We survey three explicit answers in sections 2,3,4 respectively. Firstly, the easiest construction are
exact substructures induced by subcategories, these include all exact structures with enough
projectives (or resp. with enough injectives). They have been introduced by Auslander and Solberg
in [6]. Secondly, in the representation-finite case, we obtain the very easy Boolean lattice of
generators - first observed by Enomoto, cf. Enomoto’s theorem 4.4.
Thirdly, for essentially small additive categories with weak cokernels, there exists a topological space
called the Ziegler spectrum consisting of certain indecomposables in the ind-completion. The
indecomposable injectives in the ind-completion of the maximal exact structure define a
Ziegler-closed subset Umax. Then there is a bijection between Ziegler-closed subsets containing Umax

and exact structures. This connection has been observed by Schlegel (in [36]), cf. Theorem 5.6. We
apply this result in some examples with known Ziegler spectrum to have an understanding all exact
substructures.
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Furthermore, we study lattice isomorphisms which are not leading (us) to explicit answers. First of
all, all four equivalences of 2-categories from the Appendices A,B,C give such lattice isomorphisms.
The most classical lattice isomorphism is the Butler-Horrock’s theorem (Appendix A) which
identifies ex(E) with the lattice of closed sub-bifunctors of Ext1Emax

. Auslander correspondence can
be seen as an equivalence of 2-categories (cf. [22]) - as a companion we add the tf-Auslander
correspondence (Appendix B). Ind-completion gives the forth equivalence of 2-categories (Appendix
C).

(2a,2b,2c) We follow Auslander’s idea to study associated functor categories. An exact structure is
determined by three different classes of morphisms, the i) admissible morphisms, ii) the
deflations, iii) the inflations. When looking at functors represented by either of these three
classes we obtain three correspondences ,respectively, i) the Auslander correspondence (cf.
also Appendix B), ii) Enomoto’s correspondence and iii) a new one which we call
tf-Auslander correspondence. The first and third are induced by the equivalences of
2-categories (cf. Appendix B). These lead to three further poset isomorphisms.

What remains open:
(2*)(Q1) Assuming the additive category has weak cokernels, [36] found several other lattice

isomorphisms to ex(A) (with certain Ziegler-closed mentioned before, with
fp-idempotent ideal, with torsion classes etc.). Can (some of it) be generalize to
arbitrary small additive categories?

(Q2) Let E be an essentially small exact category and I = I(
−→
E ) the injectives in the

Ind-completion. Properties of the Ind-completion imply

gldim E ≤ gldim
−→
E ≤ gldim Imod∞

where Imod∞ is the category of all additive functors F : I → (Ab) such that there
exists an exact sequence

· · · → Hom(I2,−) → Hom(I1,−) → Hom(I0,−) → F → 0

with In ∈ I. This is always an exact category with set-valued Ext-groups (even though
IMod may not be).
Assume that there is a correspondence of exact structures with subsets of the Ziegler
spectrum Zg (see Q1) by assigning E → UE = I ∩ Zg. Is there an upper bound for
gldim E using UE?

3. Elementary constructions of exact substructures

Lemma 3.1. ([17], Section 1.2) Let (A,S) be an exact categeory. We have an obvious bijection
between the following two sets

(a) (additive) subfunctors F ⊂ Ext1S
(b) subclasses S ′ of S closed under isomorphisms (and direct sums of short exact sequences),

pullback and pushout of short exact sequences, i.e. (Ex2) holds for S ′.

given by F 7→ SF where SF consists of all exact pairs Y → E → X in S such that its equivalence
class is in F (X,Y ). Conversely, S ′ 7→ F ′ with F ′(X,Y ) consists of all equivalence classes of exact
sequences in S ′.

As indicated by the brackets, the property of being an additive subfunctor translates into the
property that the short exact sequences are closed under direct sums. To study the structures
corresponding to additive sub(bi)functors the notion of weakly exact structure (i.e. those classes
of kernel-cokernel pairs which fulfill (b) in the previous theorem) has been introduced and studied by
[8].
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Since exact structures are always closed under direct sums of short exact sequences, we will restrict
to consider additive functors.

Definition 3.2. Given an exact category (A,S) and a sub(-bi)functors F ⊂ Ext1S . We call F closed
if it is additive and F (X,−) and F (−, Y ) are half exact for all objects X and Y in A (here: A functor
is half exact if applied to a short exact sequence it gives a sequence which is exact in the middle).

Definition 3.3. We say an exact sequence 0 → X
i−→ E

d−→ Y → 0 is F-exact if the equivalence class
of (i, d) in Ext1S(Y,X) lies in F (Y,X). So SF in Lemma 3.1 consists of F -exact sequences.

Then we have

Theorem 3.4. (Butler-Horrock’s Theorem, [17, Prop.1.4]) Let (A,S) be an exact category. The
assignment F 7→ SF from Lemma 3.1 is a bijective map from

(1) closed sub(bi)functors of Ext1S to
(2) exact structures S ′ on the additive category A with S ′ ⊂ S.

Remark 3.5. Theorem 3.4 has been generalized to n-exangulated categories in [23], section 3.2.
One can also assume that it was part of the inspiration to the definition of an extriangulated
category.

Corollary 3.6. If A is an additive category. Let Smax be its maximal exact structure. Then, the
bijection of the Theorem 3.4 gives a 1− 1 correspondence between

(1) closed sub(bi)functors of Ext1Smax
and

(2) exact structures on A.

Continuing to ignore set-theoretic issues, we have the following:

Corollary 3.7. Let (A,S) be an exact category. The class of all closed sub(bi)functors of Ext1S
forms a poset with respect to inclusion of functors. It is even a lattice which is isomorphic via the
bijection in Theorem 3.4 to the full sublattice of all exact structures which are contained in S.

Definition 3.8. Let F be an additive closed sub(bi)functor F of Ext1S . We write P(F ) (resp. I(F ))
for the category of projectives (resp. injectives) in (A,SF ) We will say that a closed sub(bi)functor
F of Ext1S has enough projectives (resp. has enough injectives) whenever SF has. Instead of
the index SF we write just F , e.g. Ext1F := Ext1SF

etc.

Lemma 3.9. Let (A,S) be an exact category.

(a) If F ⊂ Ext1S has enough projectives, then an exact sequence (i, d) is F -exact if and only if
HomA(P,−) applied to it gives a short exact sequence in abelian groups for every P ∈ P(F ).

(b) If F ⊂ Ext1S has enough injectives, then an exact sequence (i, d) is F -exact if and only if
HomA(−, I) applied to it gives a short exact sequence in abelian groups for every I ∈ I(F ).

Proof. The proof of [6], Prop. 1.5, also works for exact categories. □

Remark 3.10. One can prove a stronger statement than the previous lemma, see [12], Ex. 11.10:
Let (A,S) with enough projectives. Given any two composable morphisms (i, d), then this is an
exact sequence if and only if Hom(P,−) applied to it gives a short exact sequence of abelian groups
for all P ∈ P(S).

3.1. Subfunctors from subcategories. We continue to look at an exact category (A,S). Let
X ⊆ A be a full subcategory of A. We define two subfunctors FX and FX of Ext1S for X,Z in A

FX (Y,Z) := {0 → Z → E → Y → 0 in Ext1S(Y,Z) | HomA(X,−) exact on it for all X in X}
FX (Y,Z) := {0 → Z → E → Y → 0 in Ext1S(Y,Z) | HomA(−, X) exact on it for all X in X}
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These are (the standard examples of) closed sub(bi)functors (closedness is proven in [17, Prop. 1.7]).
The generalization of these functors to n-exangulated categories can be found in [23], Def. 3.16.

Definition 3.11. For two additive subcategories C and D of A we write C ∨ D for the smallest
additive subcategory containing C and D. We call this the join of C and D.

Remark 3.12. We remark that we have the obvious inclusions: X ∨ P(S) ⊂ P(FX ) (resp. dually

X ∨ I(S) ⊂ I(FX )). Furthermore, it is clear that FX = FX∨P(S) (resp. F
X = FX∨I(S)). Also, one

can see easily that any sub(bi)functor F of Ext1S is also a sub(bi)functor of FP(F ) (resp. of F
I(F ))

since an F -exact sequence η fulfills that HomA(P, η) is exact for any P ∈ P(F ).

Remark 3.13. Let (A,S) be an exact category. It is obvious that the inclusion of two additive

subcategories X ⊂ X ′ of A implies FX ⊃ FX ′ and FX ⊃ FX ′
.

There are two trivial examples

(1) X = P(S), in this case SFX = S and Ext1FX
= Ext1S . This is the unique maximal element in

the poset of exact structures induced by closed sub(bi)functors of Ext1S .
(2) X = A, in this case, the exact structure is the split exact structure and Ext1FA

= 0. This is
the unique minimal element in the lattice of all exact structures.

One can ask now: When is an exact structure S ′ ⊂ S on an exact category (A,S) is of the form SX
for an additive subcategory X ⊂ A?

Definition 3.14. We call a subcategory X of A projectively saturated (resp. injectively
saturated) if P(SX ) = X (resp. if I(SX ) = X ). We call an exact structure S ′ ⊂ S projectively
determined (resp. injectively determined) if it is of the form SX (resp. SX ) for some additive
subcategory X ⊂ A.

Lemma 3.15. Let (A,S) be an exact category and X ⊂ A an additive category. We have the
following properties

(1) P(SX ) is the smallest projectively saturated subcategory that contains X .
(2) If S ′ ⊂ S is an exact structure with enough projectives, then S ′ is projectively determined.

Proof. (1) It is straight-forward to see that FP(SX ) = FX (since X ⊂ P(SX ) implies
FX ⊃ FP(SX ) and conversely an SX -exact sequence fulfills by definition of the projectives that it is
SP(SX )-exact). This implies that P(SX ) is projectively saturated. If we have X ⊂ Y with Y
projectively saturated, then SX ⊃ SY and therefore P(SX ) ⊂ P(SY) = Y.
(2) Follows from Lemma 3.9. □

Proposition 3.16. Let (A,S) be an exact category. The assignments X 7→ SX and S ′ 7→ P(S ′) give
inverse bijections between

(1) projectively saturated subcategories X ⊂ A
(2) projectively determined exact structures S ′ ⊂ S on A

The proof is obvious. We leave the trivial dual statements to the imagination of the reader.

In [11], section 5 one can find an example of an exact structure on category of finite-dimensional
modules over the Kronecker algebra which is not projectively determined.

3.2. Exact structures with enough projectives.

Definition 3.17. Let A be an additive category. We call a subcategory M contravariantly (resp.
covariantly) finite in A if every object X in A admits a right (resp. left) M-approximation,
that is a morphism α : M → X (resp. β : X →M) with M ∈ M such that every f : M ′ → X with
M ′ in M factors over α (resp. such that every g : X →M ′ factors over β). We say M is
functorially finite if it is co- and contravariantly finite.
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We remark that intersections of two contravariantly finite (resp. covariantly finite) subcategories do
not necessarily have this property. We start with the following easy observation.

Lemma 3.18. Let A be an additive category and B, C two additive subcategories, we write
M = B ∨ C for their join. Then we have

(1) If B and C are contravariantly finite (resp. covariantly finite), then M too.
(2) If M is contravariantly finite (resp. covariantly finite) and HomA(B, C) = 0, then B

contravariantly finite (resp. C covariantly finite).

Proof. (1) Let X be an object and assume we have a right B-approximation bX : BX → X
and a right C-approximation cX : CX → X. Then we get an induced morphism
mX := (bX , cX) : BX ⊕ CX → X. One can check that (bX , cX) is a right approximation for
B ∨ C.

(2) Let mX = (bX , cX) : MX = BX ⊕CX → X be a right M-approximation and Hom(B, C) = 0.
Then we have bX : BX → X is a right B-approximation.

□

For the later part we need to understand what it means that right approximations of a
contravariantly finite subcategory are deflations. So we look at this special situation.

Lemma 3.19. Let (A,S) be an exact category with enough projectives (resp. enough injectives). Let
X be a contravariantly finite (resp. covariantly finite) additive subcategory. Then the following are
equivalent:

(a) Any right (resp. left) X -approximation is a deflation (resp. inflation).
(b) P(S) ⊂ X (resp. I(S) ⊂ X )

In particular, if (A,S) has enough projectives and X is contravariantly finite with P(S) ⊂ X , then
any right X -approximation also admits a kernel in A.

Proof. (a) implies (b) is clear. So assume (b). Let d : X → Z be a right X -approximation of an
object Z in A. Let π : P → Z be a deflation with P ∈ P(S). Since, by assumption, P ∈ X the map
HomA(P,X) → HomA(P,Z) is surjective because d is a right approximation. Therefore, there exists
a π̃ : P → X such that d ◦ π̃ = π. Since π is a deflation, it follows that d is a deflation by axiom E2
of an exact category. □

Remark 3.20. If A is weakly idempotent complete and (A,S) an exact category. Then P(S) is
closed under direct sums and summands (cf. [12], Rem 11.5, Cor 11.6).

Theorem 3.21. Let A be weakly idempotent complete additive category and (A,S) be an exact
category. The assignments X 7→ FX 7→ SFX gives a bijections from

(1) additively closed, contravariantly finite subcategories X of A, closed under direct summands
and whose right approximations are deflations to

(2) closed sub(bi)functors of Ext1S with enough projectives and to
(3) exact structures S ′ ⊂ S which have enough projectives.

We consider the dual statement of the previous Proposition as obvious and leave it to the reader.

Proof. The bijection from (2) to (3) is clear from Theorem 3.4 and by definition of having
enough projectives. The map from (1) to (2) is well-defined since P(FX ) contains by definition X
and for any A in A we have a deflation X → A with X ∈ X given by the right X -approximation.
Now, the assignment F 7→ P(F ) goes from (2) to (1). We need to see that this is inverse to the
previous map. By Lemma 3.9 we know F = FP(F ) since F has enough projectives. On the other
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hand, let X be as in (1). We clearly have X ⊂ P(FX ). Let P ∈ P(FX ), we take the right
X -approximation X → P which is a deflation. By [12], Prop. 11.3, this map splits and P is a
summand of X. Since X is closed under direct summands, we have P ∈ X . □

Example 3.22. There exist projectively saturated categories which are not contravariantly finite.
For example, take as A the category of finite-dimensional modules over the Kronecker algebra and
consider the category X given by all the preprojective modules. This is projectively saturated but
not contravariantly finite.

Given an additive category A, we write exep(A) (resp. exei(A), resp. exepei (A) ) for the subposet of
all exact structures which have enough projectives (resp. enough injectives, resp. both).
For an interval J in the poset ex(A) we write exep(A)J (resp. exei(A)J , resp. ex

ep
ei (A)J) for the

intersection of these (respective) posets with the interval J .

Corollary 3.23. Let (A,S) be an exact category with enough projectives. Let i : B → A be an
inclusion of a full additively closed, contravariantly finite subcategory which contains P(S). Then,
SX 7→ Si(X ) is an isomorphism of posets

exep(B,S≤S∩B) → exep(A)Si(B)≤∗≤S

Proof. The inclusion functor i : B → A gives a natural bijection between

(1) contravariantly finite, additive, summand-closed subcategories X of B with P(S) ⊂ X .
(2) contravariantly finite, additive, summand-closed subcategories X of A with

P(S) ⊂ X ⊂ i(B).

The rest of the claim follows from Prop.3.21 and Lem.3.19. □

Example 3.24. Let Λ be an artin algebra and A = Λ-mod be the category of finitely generated left
Λ-modules. Let C be a cotilting Λ-module (i.e. idC <∞, Ext>0(C,C) = 0 and there is an exact
sequence 0 → DΛ → C0 → · · · → Cr → 0 with Ci ∈ add(C)). Then B = ⊥C :=

⋂
i≥1 kerExt

i(−, C)
is full, extension-closed, summand-closed, contravariantly finite subcategory which contains Λ.

3.3. A classical situation. Let φ : A → B be an exact functor between exact categories (A,S)
and (B, T ). Then we have maps natural in X and Y

φX,Y : Ext1S(X,Y ) → Ext1T (φ(X), φ(Y )).

This gives an additive sub(bi)functor F := kerφ∗,∗ ⊂ Ext1S . It is closed by [17], Prop. 1.10. The
F -exact sequences are the exact sequences in (A,S) which are split exact once we apply the functor
φ.

Remark 3.25. If λ is a left adjoint functor to φ, then the counit λφ(X) → X for an object X in A
provides a right λ(B)-approximation of X. In particular, λ(B) is contravariantly finite in A.

Lemma 3.26. If the functor φ has a left adjoint λ then

(1) F = Fλ(B) = Fλ(B)∨P(S).
(2) If all counits λφ(X) → X are deflations in (A,S), then F has enough projectives and

furthermore, P(F ) consists of all direct summands of objects in λ(B).
(3) If A is weakly idempotent complete and (A,S) has enough projectives, then F has enough

projectives and P(F ) consists of direct summands of λ(B) ∨ P(S).

Dually, if the functor φ has a right adjoint ρ then

(1’) F = F ρ(B)

(2’) If all units X → ρφ(X) are inflations in (A,S), then F has enough injectives, and
furthermore, I(F ) consists of all direct summands of objects in ρ(B).
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(3’) If A is weakly idempotent complete and (A,S) has enough injectives, then F has enough
injectives and I(F ) consists of direct summands of ρ(B) ∨ I(S).

Proof. (1) Let η be an exact sequence in (A,S). We have the adjunction property
HomA(λ(V ),W ) ∼= HomB(V, φ(W )) for all V in B and W in A. Therefore, exactness of
HomA(λ(V ), η) ∼= HomB(V, φ(η)) for all V in B means that φ(η) is FB-exact is. But
FB-exactness is the same as split exactness.

(2) By (1) we have λB ⊂ P(F ). Let X be in A. By assumption, the counit λφ(X) → X is a
deflation in (A,S) and as just observes λφ(X) ∈ P(F ). We want to see, that this map is
split when we apply the functor φ. But by the second triangle identity of the adjunction, we
have that φλφ(X) → φ(X) has a section and therefore it splits (true?). Now given any
P ∈ P(F ), we have just constructed an F -epimorphism λφ(P ) → P and so this map has to
be split, i.e. P is a summand of an object in λB. Since λB ⊂ P(F ) by (1) and P(F ) is
closed under summands, equality follows.

(3) Since λ(B) is contravariantly finite (cf. Rem. 3.25) we have that add(λ(B)) is
contravariantly finite. By Lemma 3.18 we also have add(λ(B)) ∨ P(S) is contravariantly
finite. Therefore, the claim follows from Theorem 3.21 and Lemma 3.19.

The dual statement can be proven analogously. □

Example 3.27. Let f : B → A a ring homomorphism and φ : A-Mod → B-Mod, X 7→ BX the
functor given by restriction of scalars along f .
Then, there is a left adjoint given by the following tensor functor λ(X) := A⊗B X called the
induced module and a right adjoint given by the following Hom-functor ρ(X) := HomB(A,X)
called the co-induced module. The counits λφ(X) = A⊗B X → X are epimorphisms since their
restrictions of scalars are surjective maps, this follows from the triangle identity. The units
X → HomB(A,BX) are monomorphisms since their restrictions of scalars are injective maps by the
triangle identity. Therefore, by the previous lemma we have for F = kerφ∗,∗ the following

(1) F = FA⊗BB-Mod = FHomB(A,B-Mod)

(2) F has enough projectives and enough injectives. The F -projectives are the direct
summands of A⊗B B-Mod, the F -injectives are the direct summands of HomB(A,B-Mod).

This exact structure on A-Mod has been introduced by Hochschild in [24] in 1956. In loc. cit. this
has been used to define relative Hochschild homology, a Tor and Ext functor have been defined for
this setup. A very nice application of the classical situation is the finite representation type
classification for group algebras, cf. [7], chapter III, section 3. A recent application to Han’s
conjecture can be found in [13].

Example 3.28. Let Γ be a ring and e ∈ Γ an idempotent, we define Λ := eΓe. Then, the restriction
functor e : Γ-Mod → Λ-Mod, X 7→ eX has a left adjoint ℓ = Γe⊗Λ (−) and right adjoint
r = HomΛ(eΓ,−). Therefore, we have for F = ker e∗,∗ the following description (numbered by the
parts of the lemma 3.26 that are used)

(1) F = FΓe⊗ΛΛ-Mod = FHomΛ(eΓ,Λ-Mod).
(3) Since Γ-Mod is abelian, it is weakly idempotent complete. It has enough projectives and

enough injectives. So, it follows that F has enough projectives and enough injectives. We
have P(F ) consists of direct summands of (Γe⊗Λ Λ-Mod) ∨Add(Γ) and I(F ) consists of
direct summands of HomΛ(eΓ,Λ-Mod) ∨ I(Γ-Mod).

If we take a noetherian ring Γ and consider the abelian Γ-mod category given by finitely
generated Γ-modules, then this category has not in general enough injectives but it has
enough projectives given by add(Γ). Assume that Λ = eΓe is again noetherian, then the
restriction functor e : Γ-mod → Λ-mod has a well-defined left adjoint functor ℓ = Γe⊗Λ (−).
We conclude that in this case F has enough projectives given by the direct summands of
(Γe⊗Λ Λ-Mod) ∨ add(Γ).
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4. The representation-finite case - Enomoto’s result

Definition 4.1. For a ring Γ, we denote by proj(Γ) the category of finitely generated projective left
Γ-modules. We say an idempotent complete additive category A is representation-finite if it is
equivalent to proj(Γ) for some ring Γ.

By definition, A = proj(Γ) is Krull-Schmidt if and only if Γ is semi-perfect.

We recall Enomoto’s results from [18, section 3].

Lemma 4.2. Let A = proj(Γ) a Krull-Schmidt category and E an exact structure on E. Then there
exists an idempotent e ∈ Γ such that P(E) = add(Γe). Then E has enough projectives if and only if
Γ/ΓeΓ is a finite length left Γ-module.

Assume additionally that we have a commutative artinian ring R and Γ is a finitely generated
R-algebra with R ⊂ Z(Γ). This is saying that A = proj(Γ) is Hom-noetherian R-linear. Then every
exact structure on A = proj(Γ) has enough projectives and enough injectives.

Definition 4.3. Let E be a an exact category and M a full subcategory. We say M is a generator
if M is additively closed and for every X in E there exists a short exact sequence Y →M → X with
M in M. A cogenerator is a generator in Eop.
If A is an additive category and M a full subcategory, then we call M a generator (resp.
cogenerator) if it is one in the maximal exact structure on A.

Theorem 4.4. (Enomoto’s Theorem) Let R be a commutative artinian ring. Let A idempotent
complete, representation-finite, Hom-noetherian R-linear. Let P = add(Γe) be the projectives in the
maximal exact structure on A. Then generators in A are given by the Boolean lattice of all additively
closed subcategories containing P, we denote it by Generators(A). Then

ex(A) → Generators(A),

E 7→ P(E)
is an isomorphism of lattices.

Example 4.5. We look at the quiver 1 → 2 → 3 and at its Auslander-Reiten quiver

P1

P2 I2

P3 S2 I1

To see the generators, fix the projectives P1, P2, P3 and add any subset of {S2, I2, I1}. So this is just
the power set of this set with three elements. More interesting is to observe that we have seven
hereditary exact substructures and one exact substructure of global dimension 2, corresponding to
the generator P1 ⊕ P2 ⊕ P3 ⊕ I2.

More generally for type An-equioriented quivers the maximal global dimension is n− 1.

Remark 4.6. We think that substructures of finite-dimensional Dynkin quiver representations are
always of finite global dimension but we have not worked this out (except for type A-equioriented).
This should be mainly due to the Auslander-Reiten quiver has no oriented cycles. Then
endomorphism rings of modules can be realized as upper triangular rings and should admit a
quasi-hereditary structure which implies that they have finite global dimension.

If we are looking at representation-finite finite-dimensional algebras of global dimension 2, then we
can already find examples of exact substructures of infinite global dimension.
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Example 4.7. Let Γ be the Auslander algebra of K[X]/(X3). This has global dimension 2 and is
representation-finite. Then look at the Frobenius exact substructure described in [3] on the
Auslander algebra of a self-injective algebra.

5. Parametrization using the Ziegler spectrum - Schlegel’s result

We refer to Appendix C for Ind-completion of additive and exact categories. For an essentially small

additive category C we call
−→
C =: A its Ind-completion. Let E be an exact structure and

−→
E be its

ind-completion and i : E →
−→
E the Yoneda embedding. We call X in

−→
E is fp-

−→
E -injective if

Ext1−→
E
(i(E), X) = 0 for all E in E .

Definition 5.1. An object in an additive category M is called indecomposable if M = N ⊕ L
implies N = 0 or L = 0.

Let A =
−→
C be a locally finitely presented additive category. We define the pure exact structure

to be Ap :=
−−−→
Csplit to be the ind-completion of the split exact structure. An object in A is called

pure injective if it is an injective in Ap . Then we define the following class

ZSp(A) := {M ∈ A |M indecomposable and pure injective}

Remark 5.2. For general locally finitely presented additive categories we do not know of ZSp(A) is
a set or if it is one if it is non-empty.

Definition 5.3. Let C be an essentially small additive category, A =
−→
C and S a class of morphisms

in C. Let X (S) be the full subcategory of A of all objects I with the following property: For any
map s : M →M ′ in S and any map f : M → I there exists f ′ : M ′ → I such that f ′s = f .
Alternatively, one can descibe this as

X (S) = {I ∈ A | cokerHomA(s, I) = 0 ∀s ∈ S}

A full subcategory X of
−→
A is called definable if there exists a class of morphisms S in A such that

X = X (S).
Assume that ZSp(A) is a set, then a subset U ⊆ ZSp(A) is called Ziegler-closed if there exists a
definable subcategory X such that U = ZSp(A) ∩ X .

From now on, we impose the condition that C has weak cokernels, this means that for every
morphism f : X → Y in C there exists a morphism g : Y → Z such that the following sequence is
exact (in the middle) in the abelian category Mod Cop (all covariant, additive functors C → (Ab))

HomC(Z,−)
Hom(g,−)−−−−−−→ HomC(Y,−)

Hom(f,−)−−−−−−→ HomC(X,−)

This condition is equivalent to mod1 Cop is abelian, in which case it also has enough projectives. This

has been used in [14] and [36] to embed A =
−→
C in a locally coherent abelian category called the

purity category. We are not going to explain this construction here, as we hope that these results can
be generalized (without using this embedding).

Theorem 5.4. (combine [14, section (3.5), Lem 1] with [27, Lem. 12.1.12]) If C has weak cokernels
then ZSp(A) is a set and we have a topology on ZSp(A) with closed sets given by Ziegler-closed
subsets. This topological space is called the Ziegler spectrum of A.

Lemma 5.5. ([36], proof of Lem. 2.9) Let C be essentially small, idempotent complete with weak

cokernels and E an exact structure on it. Let
−→
E be its Ind-completion.

(1) Let XE be the full subcategory fp-
−→
E -injectives, then this is a definable subcategory since it

can be written as

XE = X (InflE)

where InflE denotes the E-inflations.
9



(2) Let UE be the set of indecomposable injectives in
−→
E . Then UE is Ziegler-closed because

UE = ZSp(A) ∩ XE

Theorem 5.6. ([36], Thm B) Let C be an idempotent complete essentially small additive category
with weak cokernels and Emax its maximal exact structure. We write Xmax := XEmax ,Umax := UEmax.
Then the assigment E 7→ XE and resp. E 7→ UE gives a an lattice isomorphism between ex(A) and

(1) the lattice of definable subcategories which contain Xmax and resp.
(2) the lattice of Ziegler-closed subsets which contain Umax.

We want to understand the exact substructures in cases where the Ziegler spectrum is known. For
this we need the following:

Proposition 5.7. In the situation of the previous theorem, we have a map

{U Ziegler-closed ,Umax ⊆ U} → ex(A)

U 7→ (Emax)
U

where EU
max consists of all Emax-short exact sequences σ such that HomA(σ, U) is exact for all U ∈ U .

This map is the inverse to the bijective map ex(A) → {U Ziegler closed ,Umax ⊆ U} in Theorem 5.6.

We need the following easy lemma for the proof.

Lemma 5.8. Let C be an idempotent complete essentially small category and A =
−→
C its

Ind-completion. Assume we have an exact structure E on C and U some set of pure injective objects
in A. We denote EU the exact substructure of E consisting of E-exact sequences σ such that
HomA(σ, U) exact for all U ∈ U .
Then all objects in U are fp(

−−→
EU )-injectives.

Proof. (of Lemma 5.8) Let U be in U and X be an C and we take a
−→
EU -short exact sequence

σ : U ↣ Y ↠ X

We need to see it splits. We write σ = colimσi as a filtered colimit of EU -short exact sequences
Ui ↣ Yi ↠ Xi. Now, we factorize the canonical morphisms σi → σ, i ∈ I of short exact sequences
following [12]..

σi Ui Yi Xi

ηi U Zi Xi

σ U Y X

This means ηi is the push-out of σi along the canonical morphism Ui → U . As HomA(σi, U) is exact,
it follows that ηi is split exact. Now, it is a straight forward observation to see that we have
colimI ηi = σ. As ηi are split exact they are also pure exact sequences. Now, filtered colimits of pure
exact sequences are again pure exact as the pure exact structure is a locally coherent exact structure
(cf. Appendix..). In particular σ is pure exact and U is pure injective, it splits. □

Let us come back to:

Proof. (of Prop. 5.7) Let E be an exact structure on C and we set U := UE . As E is fully exact

in
−→
E we have that E ≤ F := EU

max is an exact substructure. To see that they are equal, it is enough

to see that U = UF . As E ≤ F we have that
−→
E ≤

−→
F this implies that the subcategory of injectives

fulfill I(
−→
E ) ⊇ I(

−→
F ) and therefore U ⊇ UF . Now, for the other inclusion we conclude from Lemma

5.8 that U ⊆ XF . This implies U ⊆ XF ∩ ZSp(A) = UF by Lemma 5.5. □
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Let us also note the following corollary.

Corollary 5.9. Let C be an idempotent complete essentially small category and A =
−→
C its

Ind-completion. Assume we have an exact structure E on C and U some set of pure injective objects
in A. Then

EU = EU

where U denotes the closure of U in the Ziegler spectrum.

Proof. By definition EU is an exact substructure of EU . This implies that U ⊆ XEU ⊆ XEU .

This implies U ⊆ UEU ⊆ UEU = U but as UEU is Ziegler-closed, it has to be equal to U . Since we have

a bijection it follows that EU = EU . □

Let Λ be a ring, then we define the (left) Ziegler spectrum of Λ as ZgΛ := ZSp(ΛMod).

5.1. Examples.

Example 5.10. As a consequence of [31, Cor. 5.3.36, Cor. 5.3.37, Thm 5.1.12] one obtains: For a
finite-dimensional algebra Λ the following are equivalent

(1) Λ is of finite representation-type
(2) ZgΛ is a finite set
(3) ZgΛ does not contain any infinite-dimensional modules.

In this case, ZgΛ is a discrete topological space, Umax consists of the indecomposable injectives in
Λmod. So, Ziegler-closed subsets containing Umax are in bijection with basic cogenerators in Λmod.
This is easily seen to be an equivalent description to Enomoto’s theorem in this case.

Example 5.11. Ziegler spectrum in tame hereditary case has been described by Ringel in [33], we
just look here at the easiest case:
We define Q to be the Kronecker quiver 1 2

oooo and Λ = KQ for some infinite field K. Its
Auslander-Reiten quiver (see picture below) has as vertices the indecomposables in Λmod, they are
divided in three types 1) P preprojectives (in the τ−-orbit of the projectives), they are denoted by
their dimension vector (n+ 1, n) , 2) R regulars, they are determined by the regular simple which
they contain and their dimension vector, the regular simples are denoted by Sλ, λ ∈ K ∪ {∞} =: Ω ,
3) Q preinjectives (in the τ -orbit of the injectives), they are denoted by their dimension vector
(n, n+ 1).

...
...

Sλ[3] Sµ[3]

(2, 1) (4, 3) · · · Sλ[2] Sµ[2] · · · (3, 4) (1, 2)

(1, 0) (3, 2) · · · Sλ Sµ · · · · · · (2, 3) (0, 1)

P R Q
The arrows between the vertices indicate irreducible maps between the indecomposables and the
dotted arrow the Auslander-Reiten translate, for every dotted arrow there is an almost split
sequence. For more details look into [32].
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Then ZgΛ consists of the following points

(1) indecomposables in Λmod
(2) For every λ ∈ Ω a Prüfer module Sλ[∞], which is the filtered colimit (union) over

Sλ ↣ Sλ[2] ↣ Sλ[3] ↣ · · ·
(3) For every λ ∈ Ω an adic module Ŝλ, which is the limit over · · · ↠ Sλ[3] ↠ Sλ[2] ↠ Sλ
(4) The generic module G, it is characterized by being an indecomposable module with

HomΛ(G,Sλ) = 0 = HomΛ(Sλ, G) for all λ ∈ Ω

Now, Umax = {(1, 2), (0, 1)} only consists of the two indecomposable injectives in Λmod. Given a
subset U ⊆ ZgΛ containing Umax we find T,M ⊆ Ω

Ufin := {U ∈ U | U ∈ Λmod, U /∈ Umax}

UT,M := Umax ∪ {St[∞] | t ∈ T} ∪ {Ŝm | m ∈M} ∪ {G}

such that U = Umax ∪ Ufin ∪ UT,M or U = Umax ∪ Ufin ∪ UT,M \ {G}. Following Ringel’s
characterization in [33] we find that U is Ziegler-closed iff

(a) Ufin finite, then it and T,M can be arbitarily chosen (also empty is allowed) and
U = Umax ∪ Ufin ∪ UT,M or if T =M = ∅ we can also have U = Umax ∪ Ufin.

(b) Ufin infinite, then always G ∈ U but T,M must satisfy the following.
(c1) If Ufin ∩ P is infinite, then M = Ω (all adics in)
(c2) If Ufin ∩Q is infinite, then T = Ω (all Prüfer in)
(c3) For every λ ∈ Ω, if Ufin ∩ {Sλ[n] | n ∈ N} is infinite, then λ ∈ T ∩M

Before we start we need to understand some properties of the functors HomΛ(−, U) and Ext1Λ(−, U)
for points of type (2,),(3),(4). In [34, p. 46] and [15, section 3] we found the following vanishing
where we set S = Sλ and denote by Rλ be (the tube of) all regular modules with S as a submodule.

HomΛ(R, G) = HomΛ(Q, G) = 0 = Ext1Λ(R, G) = Ext1Λ(P, G)

HomΛ(R, Ŝ) = HomΛ(Q, Ŝ) = 0 = Ext1Λ(P, Ŝ) = Ext1Λ(Rµ, Ŝ) µ ̸= λ

HomΛ(Rµ, S[∞]) = HomΛ(Q, S[∞]) = 0 = Ext1Λ(R, S[∞]) = Ext1Λ(P, S[∞]) µ ̸= λ

As a consequence we see: If U ∈ {G, Ŝ, S[∞]} and σ a short exact sequence in Λmod with all three
terms in either add(P), add(R) or add(Q), then Hom(σ, U) is exact.
As there are very many Ziegler-closed sets in this case, we focus on two types:

(I) Either Ufin = ∅, these give exact structures containing all almost split sequences.

(II) U = Ufin, these are so-called Auslander-Solberg exact structures. Here, this is still an
Auslander-Reiten category, the almost split sequences are precisely the ones of Λmod not
starting in Ufin.

Now, we look at the exact structures in these cases:

(I) For U = {U}, we set Ext1U := Ext1EU .
We start with the unique maximal not abelian exact structure in this case U = {G},

then Ext1G(X ,Y) = Ext1Λ(X ,Y) for all (X ,Y) ∈ {P,R,Q}2 \ {(Q,P)} and Ext1G(Q,P) = 0
(for this we leave the proof out). The interesting thing is that this is an exact substructure
of global dimension ≥ 2 (probably = 2), since the following exact sequence σ is not zero in
Ext2G(Q,P): Let R be a regular module, take a projective Λ-module resolution and an
injective Λ-module resolution of R and concatenate to an exact sequence σ

P1 ↣ P0 → I0 ↠ I1

Observe, this implies for all not abelian exact structures of type (I) that Ext1(Q,P) = 0.
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Next, we consider U = {Ŝ}, we have Ext1
Ŝ
(X ,Y) = Ext1G(X ,Y) for all (X ,Y) ̸= (Rλ,P)

and Ext1
Ŝ
(Rλ,P) = 0.

Now, we consider U = {S[∞]}. Then Ext1S[∞](Q,Rλ) = 0 and

Ext1S[∞](X ,Y) = Ext1G(X ,Y) for all (X ,Y) ∈ {P,Q,Rµ, µ ∈ Ω}2 \ {(P,Rλ)}.

In both cases U = {Ŝ} or U = {S[∞]} is the global dimension of EU still ≥ 2. Just look
at the exact sequence σ as above. Choose in its definition R to be a regular module R with
no summand in the tube λ, then for both exact substructures it gives an exact sequence
which is not 2-split.

Now, we look at intersections of these exact structures and respectively unions of the
Ziegler-closed sets.

When M = Ω and T = ∅ then the exact structure consists of ses σ = σp ⊕ σrq such that
σp is an exact sequence in add(P) and σrq is an exact sequence in add(R∪Q). It is very
easily seen to be hereditary exact.

When M = ∅ and T = Ω then the exact structure consists of ses σ = σpr ⊕ σq such that
σpr is an exact sequence in add(P ∪R) and σq is an exact sequence in add(Q). It is very
easily seen to be hereditary exact.

The case T =M = Ω, then this is the minimal exact structure containing all almost
split sequences. The short exact sequences in this structure are σp ⊕ σr ⊕ σq with σp is an
exact sequence in add(P), σr is an exact sequence in add(R) and σq is an exact sequence in
add(Q). Again, we easily see that this is hereditary exact.

(II) Ufin =: H. The exact structure corresponding to U is just given by all short exact
sequences such that Hom(−, H) is exact on it for all H in H, we write E = (Λmod, FH).
This case is well-studied in [6], [4], [5]. If H is finite, then the exact structure always has
enough projectives and enough injectives given by add(H). Its global dimension can be
characterized as follows gldim E ≤ k is equivalent to the following two conditions (i)
gldimEndΛ(

⊕
H∈HH) ≤ k + 2 and (ii) idE Λ ≤ k.

For Λ = KQ with Q the Kronecker quiver every global dimension can occur. This can
be seen directly, just take H = {(0, 1), (1, 2), (3, 4), (5, 6), (7, 8), · · · , (2n− 1, 2n)}. Then
injective coresolutions are calculated via left add(H)-approximations and it can be easily
seen that minimal injective coresolutions have at most (n+ 1)-injective modules, e.g.

(2n, 2n+ 1) ↣ (2n− 1, 2n)⊕2 → (2n− 3, 2n− 2)⊕2 → · · · → (1, 2)⊕2 ↠ (0, 1)

If you take H = {Sλ, Sλ[3]}, then you find idSλ[2] = ∞ and therefore we have infinite global
dimension.

Another class of examples always gives hereditary exact substructures, take
H = {(n, n+ 1) | 0 ≤ n ≤ N} for some N ∈ N, then the cogenerator add(H) is closed under
quotients, this is easily seen to imply that the corresponding exact structure is hereditary
exact.

Once you take H infinite, it is also easy to find infinite global dimensions:

H = {(2n− 1, 2n) | n ∈ N}

Using minimal injective coresolutions for (2n, 2n+ 1) for all n ∈ N, we find objects of
injective dimension n for every n ∈ N, this implies gldim = ∞.

Example 5.12. We describe all exact substructures on finitely generated modules over a
commutative discrete valuation ring R with maximal ideal P . We recall the description of the
Ziegler spectrum from [31, Section 5.2]:
The points in ZgR are:

(a) indecomposable modules of finite length R/Pn, n ≥ 1
(b) the P -adic completion R = limR/Pn (this is the limit over · · · → R/P 2 → R/P = k)
(c) The Prüfer module RP∞ = colimR/Pn (this is the colimit over k = R/P → R/P 2 → · · · )
(d) the quotient division ring Q = Q(R) of R

13



Now, Umax = {Q,RP∞} is the Ziegler-closed set given by the indecomposable injective R-modules.
We also observe that Zg′R := {R} ∪ Umax is Ziegler-closed.
Next, all Ziegler-closed subsets containing Umax are given by:

(1) for ∅ ≠ L ⊆ N finite, we have

UL := {R/Pn | n ∈ L} ∪ Umax

(2) for ∅ ⊆ L ⊆ N arbitrary subset we have

VL := {R/Pn | n ∈ L} ∪ Zg′R

So let us describe the exact structures on C = Rmod the category of finitely generated left
R-modules corresponding to these closed sets:

(max) Trivially Umax corresponds to the abelian structure on C, this is hereditary and with enough
projectives (but not with enough injectives)

(min) and ZgR corresponds to the split exact structure.
(Zg’) The Ziegler-closed set Zg′R corresponds to the exact structure E ′ making the torsion functor

exact. This is a hereditary exact structure , cp. example...
(UL) This corresponds to the exact substructure EL such that HomR(−, R/Pn), n ∈ L are exact

functors to abelian groups.
(VL) This corresponds to the exact substructure E ′

L such that the torsion functor and
HomR(−, R/Pn), n ∈ L are exact.

First, of all in general how can one see that for ∅ ≠ L ⊆ N finite: EL and E ′
L are different exact

structures?
Take a short exact sequence R↣ R↠ R/Pn and the pushout along R↠ R/Pm, this gives an exact
sequence R/Pm ↣ R/Pm+n ↠ R/Pn. But the cartesian square induces another exact sequence

R↣ R/Pm ⊕R↠ R/Pn

It is easily seen to be not exact in E ′ if n ̸= m and we conclude that Ext1E ′(R/Pn, R) = 0. But if you

apply HomR(−, R/P ℓ) using HomR(R/P
s, R/P ℓ) = R/Pmin(s,ℓ) we see that this is exact for n,m

both larger or equal than ℓ.
We say that L has gaps if there is an interval [a, b] such that [a, b] ∩ L = ∅ and b+ 1 ∈ L and
a− 1 ∈ L if a > 1. If L has gaps then gldim EL = ∞ = gldim E ′

L (for E ′
L we also allow L to be an

infinite subset).

In this case one can always find an infinite injective E(′)
L -coresolution for an R/P s some s ∈ [a, b]. We

give them as sequence of short exact sequences.

(a = 1) Take s = b and R/P b ↣ R/P b+1 ↠ R/P , then continue with R/P ↣ R/P b+1 ↠ R/P b and
repeat with the first short exact sequence etc.

(2) If a > 1 and b+ a even then we take s = 1
2(a+ b) and the short exact sequence

R/P s → R/P a−1 ⊕R/P b+1 ↠ R/P s

and then continue with the same sequence.
(3) If a > 1 and b+ a uneven then we take s = 1

2(b+ a− 1) and first

R/P s ↣ R/P a−1 ⊕R/P b+1 ↠ R/P s+1 then R/P s+1 ↣ R/P a−1 ⊕R/P b+1 ↠ R/P s and
then repeat with the first sequence.

If L has no gaps and L ̸= N then L = [1, n] for some n ∈ N. The set {R/P ℓ | ℓ ∈ L} is closed under
quotients, so injective coresolutions in this class of modules will always end after one short exact
sequence. We show in the next Lemma that these exact structures are hereditary exact.

Lemma 5.13. Let R denote a commutative discrete valuation ring with maximal ideal P and let
n ∈ N. We have a functor radn : Rmod → Rmod defined by radnM = PnM . Let L = [1, n] ⊆ N.
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(1) Then we have Ext1EL(−,−) = radn Ext1R(−,−) and Ext1E ′
L
(−,−) = radnR Ext1E ′(−,−)

(2) For every EL-exact sequence σ and every object X, the sequences Ext1EL(X,σ) is right exact.

For every E ′
L-exact sequence σ and every object X, the sequences Ext1E ′

L
(X,σ) is right exact.

In particular, EL and E ′
L are hereditary exact.

Proof. (1) We first describe the R-module structure on
(a) Ext1R(R/P

m, R/P ℓ) ∼= R/P s where s = min(m, ℓ). For a, b ∈ N we write
σa,b ∈ Ext1R(R/P

m, R/P ℓ) for an exact sequence with middle term R/P a ⊕R/P b

(whenever this exist). In R/P s we pick P = (p) and we have the following mult. by p
1 7→ p 7→ p2 7→ · · · 7→ ps−1 7→ 0 this corresponds to the following on the Ext-group
(a1) If s = ℓ ≤ m we have

σ0,m+ℓ 7→ σ1,m+ℓ−1 7→ · · · 7→ σℓ−1,m+1 7→ 0

Then we have radn Ext1R(R/P
m, R/P ℓ) ∼= R/P s−n whenever n < s and zero

otherwise. For n < s = ℓ it is the image of pn, i.e.
σn,m+ℓ−n 7→ σn+1,m+ℓ−n−1 7→ · · · 7→ σℓ−1,m+1

(a2) If ℓ > m = s we have
σℓ+m,0 7→ σℓ+m−1,1 7→ · · · 7→ σℓ+1,m−1 7→ 0

Then we have radn Ext1R(R/P
m, R/P ℓ) ∼= R/P s−n whenever n < s and zero

otherwise. For n < s = ℓ it contains the following elements
σℓ+m−n,n 7→ σℓ+m−n−1,n+1 7→ · · · 7→ σℓ+1,m−1

(b) Ext1R(R/P
m, R) ∼= R/Pm we write σa for the extension with R⊕R/P a as middle term.

Then the multiplication by p is given by
σ0 7→ σ1 7→ · · · 7→ σm−1 7→ 0
The submodule radn Ext1R(R/P

m, R) is of course zero is n ≥ m and if n < m is given
by the following
σn 7→ σn+1 7→ · · · 7→ σm−1

We claim Ext1E[0,n]
= radn Ext1R. First observe that in EL: R/P a 1 ≤ a ≤ n are injectives

and they are also projectives. So for s = min(ℓ,m) ≤ n we have Ext1E[0,n]
(R/Pm, R/P ℓ) = 0

and for m ≤ n we have Ext1E[0,n]
(R/Pm, R) = 0.

So we may always assume wlog that n < min(ℓ,m), then proceed by induction over n.
For n = 1, a short exact sequence of in Rmod is in E[0,1] iff the indcomposable summands of
number of the indec. summands of the outer terms add up to the indec summands of the
middle term. This means in case (a) all exact sequence are in this exact structure except
σ0,m+n and σm+n,0, in case (b) all except σ0.

For n > 1, it is enough to observe that Hom(−, R/Pn) is
(ad a1) exact on σn,m+ℓ−n and not exact on σn−1,m+ℓ−n+1

(ad a2) exact on σℓ+m−n,n and not exact on σℓ+m−n+1,n−1

(ad b) exact on σn and not exact on σn−1

Then the rest follows by induction hypothesis.
Now, for E ′

L one observes that Ext1E ′
L
(X,Y ) = Ext1EL(X,Y ) for all X,Y torsion, and for

Y free it is zero.
As Ext1E ′(X,Y ) = Ext1R(X,Y ) for all X,Y torsion and for Y free it is zero. Then the

claim Ext1E ′
L
follows from the proof for Ext1EL .

(2) Taking n-th radical of an epimorphism in Rmod is again an epimorphism - as the n-th
radical can be described as the image of multiplication by pn (making it also a quotient and
not ony a submodule). As Ext1R(X,σ) (resp. Ext

1
R(σ,X)) is right exact for all exact

sequences σ, we conclude that radn Ext1R(X, f) (resp. rad
n Ext1R(g,X)) are epimorphisms

for f an epimorphism and g a monomorphism.
Of course, on general exact sequence radn is not a middle-exact functor (but this follows

from (1) since for σ ∈ EL the sequences Ext1EL(X,σ) and Ext1EL(σ,X) are middle exact). In
particular, the right exactness claim follows.
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For Ext1E ′
L
(X,σ) we can restrict to X indecomposable torsion and as σ in E ′, it fits into

an exact sequence of ses σtor ↣ σ ↠ σfree with σtor the torsion part and σfree the free part,

and we conclude that Ext1E ′
L
(X,σ) = Ext1E ′

L
(X,σtor) = Ext1EL(X,σtor) is right exact.

□

After understanding exact substructures of Rmod for R a commutative discrete valuation ring, we
are ready to generalize this to commutative Dedekind domains:

Example 5.14. We describe all exact structures on finitely generated left modules over a
commutative Dedekind domain.
The Ziegler spectrum is studied as a more general case of the discrete valuation ring, again we follow
[31, Section 5.2] for its description: Let mSpec(R) := {P | max. ideal in R}. The points in ZgR are:

(a) indecomposable modules of finite length R/Pn, n ≥ 1, and P ∈ mSpec(R).
(b) the P -adic completion RP = limR/Pn (this is the limit over · · · → R/P 2 → R/P ) for

P ∈ mSpec(R).
(c) The Prüfer module RP∞ = colimR/Pn (this is the colimit over R/P → R/P 2 → · · · ) for

P ∈ mSpec(R).
(d) the quotient division ring Q = Q(R) of R

Now, Umax = {Q} ∪ {RP∞ | P ∈ mSpec(R)} is the Ziegler-closed set given by the indecomposable
injective R-modules. We describe all Ziegler-closed subsets containing Umax (following loc. cit.).
First we fix some notation, let L ⊆ mSpec(R)×N always denote such a subset and for P ∈ mSpec(R)
let LP := {ℓ ∈ N | (ℓ, P ) ∈ L}. Subsets of indecomposable finite length modules are of the form
FL = {R/P ℓ | (P, ℓ) ∈ L}. We fix a closed subset U and denote by FL its points of finite length.
(type 1) L = ∅. For every M ⊆ mSpec(R) we have a closed subset Zg′M = Umax ∪ {RP | P ∈M}. We
define Zg′ := Zg′mSpec(R).

(type 2) 0 < |L| <∞. Then U = FL ∪ Zg′M for an arbitrary subset M ⊆ mSpec(R) (the sets L and
M are independent from each other).
(type 3) |L| = ∞. We define ML := {P ∈ mSpec(R) | ∃ n ∈ N : (P, n) ∈ L} and in this case
U = FL ∪ Zg′ML

.
Let us look at the corresponding exact substructures:

(type 1) Make all P -torsion functors exact for all P ∈M . As we are dealing with hereditary torsion
pairs, the torsion functors are left exact and .. applies to show that these are hereditary
exact structures.

(gaps) Let us assume we are in type 2 or type 3.
If for some P ∈ mSpec(R) we have LP has a gap (see previous example), then we find

an infinite injective coresolution as in the previous example and it follows gldim = ∞.
(no gaps) Let us assume we are in type 2 or type 3. If all non-empty LP have no gaps for every

maximal ideal P , then we find LP = [1, nP ] for an nP ∈ N. We claim that we only have
hereditary exact structures in this case. We give the proof in the next Lemma.

Now, let R be a commutative Dedekind domain. Observe that Ext1R only takes values in torsion
modules. We write ()P for its P -torsion submodule and ()tor for the remaining torsion summands.
So, for two finitely generated R-modules X = Rt ⊕XP ⊕Xtor, Y = Rs ⊕ YP ⊕ Ytor we have

Ext1R(X,Y ) = Ext1R(X,Y )P ⊕ Ext1R(X,Y )tor

Ext1R(X,Y )P = Ext1R(XP , YP ⊕Rs)

Ext1R(X,Y )tor = Ext1R(Xtor, Ytor ⊕Rs)

Then Ext1R = (Ext1R)P ⊕ (Ext1R)tor is a direct sum decomposition of bifunctors (but this does not
imply that these subfunctors are middle exact for the abelian structure on Rmod). Let
FP : Rmod → Rmod be the functor X 7→ Rt ⊕XP (resp. Ftor(X) = Rt ⊕XP ), induced by the
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projection into the torsionfree part (in the split hereditary torsion pairs considered in (type 1)).
They preserve epimorphisms. In particular, if f : A↠ B is an epimorphism, then the following are
also epimorphism as Ext1R(M,−) preserves epimorphisms for all objects M

Ext1R(X, f)P = Ext1R(FP (X), FP (f))

Ext1R(X, f)tor = Ext1R(Ftor(X), Ftor(f))

As it looks simpler let us look at the case of only one prime:

Lemma 5.15. Let R be a commutative Dedekind domain. Let P be a fixed maximal prime ideal. We
define for M ∈ Rmod, P ∈ mSpec(R), n ∈ N the following radnP M := PnM . If L = {P} × [1, n] we
denote by EL the exact structure corresponding to FL ∪ Umax.

(1) Then Ext1EL = (radnP Ext1R)⊕ (Ext1R)tor
(2) The exact structure EL is hereditary exact.

Proof. (1) As for different primes the torsion submodules are HomR- and
ExtR-orthogonal, the exactness of Hom(−, R/P a) for some a ∈ N only depends on the
P -torsion and the free module summand. The same proof as in Lemma 5.13 applies.

(2) By the discussion before the Lemma and knowing that radn preserves epimorphisms, it
follows from (1) that Ext1EL preserves epimorphisms. Therefore EL is hereditary exact.

□

But it actually is the same for an arbitrary subset of primes:

Lemma 5.16. Let R be a commutative Dedekind domain.
Let L =

⋃
P∈M{P} × [1, nP ] ⊆ mSpec(R)× N and E = EU for a Ziegler-closed subset U with modules

of finite length given by FL, then E is hereditary exact.

Proof. (of Cor. 5.16) U = FL ∪ Zg′M for some subset M ⊆ mSpec(R) (type 2 or type 3).
Let us denote by an index tor(M c) the torsion summand corresponding to the complement of M .
The above Lemma generalizes to

Ext1EL =
⊕
P∈M

(radnP
P Ext1R)⊕ (Ext1R)tor(Mc)

This is clear as intersection of exact substructures correspond to intersecting the corresponding
Ext1-subfunctors.
This functor is still preserving epimorphisms as before. □

6. The functorial point of view

Let E be an essentially small exact category. We consider three classical assignments for F ∈ ex(E)

(i) the Auslander category
(ii) its category of inflation represented functors
(iii) the category of deflation represented functors (called effaceable functors)

all will be considered fully exact subcategories in mod1A (where A is the underlying additive
category). By a results of [22] and [18], we have characterizations of the subcategories when we look
only at exact substructures of E .

Recall a Serre subcategory is a full additive subcategory F in an exact category E with the following
property: For every E-short exact sequence X → Y → Z we have Y ∈ F if and only if X,Z ∈ F .
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Definition 6.1. We denote by P2(A) the full subcategory of ModA given by all functors F such
that there exists an exact sequence

0 → HomA(−, X) → HomA(−, Y ) → HomA(−, Z) → F → 0

for some X,Y, Z in A.

G2(A) = {F ∈ P2(A) | ∃(i, d), (j, p) ∈ KC(A),F ∼= cokerHomA(−, j ◦ d)}
C2(A) = {F ∈ P2(A) | ∃(i, d) ∈ KC(A),F ∼= cokerHomA(−, d)}
J 1(A) = {F ∈ P2(A) | ∃(j, p) ∈ KC(A),F ∼= cokerHomA(−, j)}

Apriory these are additive categories. The grade of F ∈ ModA is defined as the supremum of all

natural numbers i ≥ 0 such that ExtjModA(F,HomA(−, A)) = 0∀A ∈ A for all j < i (of course, only if
this exists, else we define it to be ∞). Categories defined in terms of grade equalities are by
definition extension-closed in Mod−A. We have

G2(A) ⊆ {F ∈ P2(A) | grade(F) ∈ {0, 2}}
C2(A) = {F ∈ P2(A) | grade(F) = 2}
J 1(A) ⊆ {F ∈ P2(A) | grade(F) = 0}

The two inclusions follow from the definition. The equality in the middle is proven in [18], Lemma
2.3, so C2(A) is extension-closed in P2(A). (These subcategories G2(A),J 1(A) can be fully
characterized using the Auslander-Bridger transpose, if one is keen to avoid KC(A) - look at [22],
chapter 5 and the HKR-bijection for more details). We do not mind working with KC(A) and use
these not always extension-closed subcategories.

Now we define our categories of interest.

Definition 6.2. Let E be essentially small exact. The Auslander exact category of E is defined
as the full subcategory of P2(A) given by

AE(E) = {F ∈ P2(A) | F = coker(HomA(−, f)), with f E-admissible}
It has as a subcategory

eff(E) = AE(E) ∩ C2(A) = {coker(HomA(−,d) | d E-deflation}
called the subcategory of effaceable functors and another subcategory

H(E) := {cokerHomA(−, i) | i E-inflation}
which we refer to as tf-Auslander category (cf. Appendix B).

Obviously: AE(E) ⊆ G2(A), eff(E) ⊆ C2(A),H(E) ⊆ J 1(A).
In [22, Prop. 3.5, Prop.3.6, Prop.5.4], it is shown that AE(E) is extension-closed in mod1A, even
resolving in P2(A), and (H(E), eff(E)) is a torsion pair in AE(E). In particular, H(E) is also a
resolving subcategory of AE(E).
To state the results that we look at two (different) dualities. Enomoto found the following duality
between C2(A) and C2(Aop)

Theorem 6.3. (Enomoto) Let A be an idempotent complete small additive category. There exists a
duality E : C2(A)op → C2(Aop) such that
E(cokerHomA(−, d)) ∼= coker(HomA(i,−)) for every kernel-cokernel pair (i, d) in A.

Then he can characterize exact structures as follows

Theorem 6.4. (Enomoto’s bijection) Given a small idempotent complete additive category A. Then
the assignments E 7→ eff(E) and C 7→ S := {(i, d) ∈ KC(A) | cokerHom(−,d) ∈ C} give inverse
bijections between

(1) exact structures on A
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(2) full subcategories C ⊆ C2(A) with C is a Serre subcategory in mod1A and E(C) is a Serre
subcategory in mod1Aop

If we denote by Emax the maximal exact structure on A with corresponding Serre subcategory Cmax

then (2) coincides with the following.

(2’) Serre subcategories C of Cmax

Where (2’) is an observation of Kevin Schlegel (cf. [36, Cor. 2.3]).

The second duality is Auslander-Bridger transpose. We need the ideal quotient with respect to the
projectives (called the stable category) - this exists even if the category has not enough projectives.
As there are no grade 0 objects in C2(A) the composition

C2(A) → mod1A → mod1A

is still fully faithful.

Theorem 6.5. Let A be an idempotent complete small additive category. Then we have a duality
Tr: (mod1A)op → mod1(Aop) which maps cokerHomA(−, f) to cokerHomA(f,−).

Remark 6.6. On objects (Tr ◦ Ω)(C) ∼= E(C) for C in C2(A) but in general Ω is not an endofunctor
on the stable category. (But on stable categories of exact categories with enough projectives, Ω
defines an endofunctor.)

For a subcategory X ⊆ mod1A, we denote by Tr(X ) the full subcategory of mod1Aop consisting of
objects X such that X ∼= Tr(X′) in mod1Aop for some X ′ in X .

Remark 6.7. By definition

Tr(G2(A)) = G2(Aop), ΩTr(J 1(A)) = J 1(Aop)

For every X ⊆ G2(A) containing all representables: TrTr(X ) = X .
For every J ⊆ J 1(A) containing all representables: ΩTrΩTr(J ) = J .

Theorem 6.8. (HKR-bijection) Given a small idempotent complete additive category A. Then the
assignments E 7→ AE(E) gives a bijection between

(1) exact structures on A
(2) resolving subcategories X ⊆ P2(A) with all objects have either grade 0 or 2 such that

Tr(X ) ⊆ P2(Aop) is resolving and all objects have either grade 0 or 2.

Furthermore, in this case, the full subcategory of grade 2 objects is AE(E) ∩ C2(A) = eff(E) and the
one of grade 0-objects is AE(E) ∩ J 1(A) = H(E).

Open question 6.9. In (2) we could use G2(A) as well. Furthermore, we can also use the maximal
exact structure, let Xmax be the resolving subcategory of P2(A) corresponding to the maximal exact
structure. Is the following (2’) equivalent to (2)?
(2’) Resolving subcategories X in Xmax.

We add the following third bijection.

Theorem 6.10. Given a small idempotent complete additive category A. Then the assignments
E 7→ H(E) gives a bijection between

(1) exact structures on A
(2) full subcategories J ⊆ J 1(A) such that J ⊆ P1(A) and ΩTr(J ) ⊆ P1(Aop) are both

resolving.
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Open question 6.11. Again, we look at Jmax to be the resolving subcategory of P1(A)
corresponding to the maximal exact structure, then can we describe the subcategories in (2) also as
the following?
(2’) Resolving subcategories J in Jmax.

Remark 6.12. As P1(A) is an hereditary exact (i.e. gldim ≤ 1) with enough projectives we have
that a full subcategory is resolving if and only if it is fully exact, closed under summands and
contains the projectives.

We need the following lemma for the proof.

Lemma 6.13. If i is a monomorphism in A such that F = cokerHomA(−, i) ∈ J 1(A) then there is
(i, p) ∈ KC(A). Also, if A is idempotent complete then J 1(A) is closed under taking direct sums and
summands (in P1(A)).

Proof. By assumption we can find a commutative diagram

X
j //

a
��

Y

b
��

q // Z

U
i // V

with (j, q) ∈ KC(A) and X
(a,j)t−−−→ U ⊕ Y

(i,−b)−−−→ V (call this (*)) a split exact sequence (this implies
in particular that the commuting square is a pullback-pushout diagramm in A). Then there exists
p : V → Z with q = pb and p = coker(i) - see e.g. [16], Lemma 2.3 (or prove this directly). We claim
that (using the split exact sequence) we can also show i = ker(p) (i.e. (i, p) ∈ KC(A).
Given r : R→ V with pr = 0. We claim that r factors over i (as i is a monomorphism, such a
factorization is unique). We form the pullback (see below) of (*) along r in the split exact category
and consider the commutative diagramm:

X //

=
��

E
d //

(u,y)t

��

R

r
��

X // U ⊕ Y
(i,−b) //

(0,−q) ##G
GG

GG
GG

GG
V

p

��
Z

As (0,−q) ◦ (u, y)t = 0 we find that (u, y)t factors uniquely through
(1, j)t = ker(0,−q) : U ⊕X → U ⊕ Y , i.e. y = jx for an x : E → X. Therefore, we have (using the
two commuting squares from before)

rd = iu− bjx = iu− iax = i(u− ax)

As d is a split epimorphism there exists an s : R→ E with ds = 1R and therefore r = i(u− ax)s as
claimed.
Closed under direct sums: Straight forward using the horseshoe lemma and the fact that direct sums
of kernel-cokernel pairs are again kernel-cokernel pairs.
Now assume F ⊕G ∈ J 1(A). As P1(A) is closed under taking summands, choose monomorphisms
i, j such that F = cokerHomA(−, i), G = cokerHomA(−, j) and by the horseshoe lemma we conclude
F ⊕G = cokerHomA(−, i⊕ j). By the previous part it follows that there exists (i⊕ j, g) ∈ KC(A).
We look at projection onto and then inclusion of the summand i of the two-term complex given by
i⊕ j. This induces an idempotent endomorphism e on the cokernel Z → Z. By assumption this

idempotent is split admissible, i.e. factors as Z
π−→ Z1

ι−→ Z with π split epimorphism and ι split
monomorphism. Then, it is straight forward to see that g = p⊕ q with (i, p), (j, q) ∈ KC(A) and
therefore F,G ∈ J 1(A).

□
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Proof. (of Thm 6.10). Given an exact structure E , the category J = H(E) ⊆ J 1(A) and
ΩTr(J ) = H(Eop) ⊆ J 1(Aop) by definition. As observed before J is resolving in AE(E) which is
resolving in P2(A) by Thm 6.8, this implies that it is also resolving in P1(A). Dually, we also have
ΩTr(J ) is resolving in P1(Aop), so the map is well-defined.
Conversely given J as in (2), we consider S = {(i, d) ∈ KC(A) | cokerHomA(−, i) ∈ J } and claim
that E = (A,S) is an exact structure. As J contains the projectives, all split exact sequences are
contained in S. For (i, d) ∈ S we call i an E-inflation and d an E-deflation. We claim the following

(e1) composition ji of two (composable) E-inflations j,i are E-inflations
(e2) for every morphism f and every E-inflation i (starting at the same object), the morphism(

i
−f

)
is an E-inflation with cokernel (f ′, i′) where i′ is again an E-inflation.

Together with the dual statements for the deflations implied by ΩTr(J ) having the same properties
it follows that E is an exact category.
We use the following notation PX = HomA(−, X) and for a morphism f : X → Y we have
Pf = HomA(−, f) : PX → PY .

(e1) Let i : X → Y and j : Y → V be two E-inflations in A, we look at the commutative diagram
where F,G,H are defined as cokerPi, cokerPji, cokerPj respectively.

0 // PX
Pi //

=

��

PY
//

Pj

��

F //

��

0

0 // PX

Pji //

Pi

��

PV
//

=

��

G //

��

0

0 // PY

Pj // PV
// H // 0

In particular i, j, ji are monomorphisms and the three rows are exact (in P1(A)). Now,
using the ker-coker sequence (e.g. [12], Prop. 8.11), in Mod−A, we can deduce that
0 → F → G→ H → 0 is a short exact sequence on P1(A). As J is extension-closed, it
follows that G is an object in J . By Lemma 6.13 it follows that ji is an E-inflation.

(e2) We have

(
i

−f

)
=

(
i 0
0 1

)(
1 0
−f 1

)(
1
0

)
and as composition and direct sums of E-inflations

are E-inflations by (e1) and Lemma 6.13 we conclude that

(
i

−f

)
is again an E-inflation. So

there exists (

(
i

−f

)
,
(
g j

)
) ∈ KC(A), i.e. we have a pullback-pushout diagramm in A

X
i //

f
��

Y

g

��
U

j // V

We need to see that j is an E-inflation. It is again a monomorphism in A, therefore we have
F = cokerPj ∈ P1(A). We will show F ∈ J :

As we have an (i, p : Y → Z) ∈ KC(A) we can find a cokernel q = coker(j) with p = qg.
But j = ker q is not directly clear.

We look at the covariant functors PA = HomA(A,−) and define G := cokerPi. We find
a commutative diagram with rows exact in Mod−Aop:

0 // PZ // P Y // PX // Tr(G) // 0

0 // PZ //

=

OO

P V //

OO

PU //

OO

Tr(F)

OO

// 0
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We get an induced commutative diagram with exact rows

0 // PZ // P Y // ΩTr(G) // 0

0 // PZ //

=

OO

P V //

OO

ΩTr(F)

OO

// 0

Therefore, the right hand square is a pullback-pushout square and we get an induced exact
sequence

0 → P V → P Y ⊕ ΩTr(F) → ΩTr(G) → 0

As ΩTr(J ) is resolving, it follows that ΩTr(F) ∈ ΩTr(J ). This implies F ∈ J .

If we denote this exact category by E = EJ , then we easily see by definition J = H(EJ ).
Also, by definition we have for an exact structure E that E ≤ EH(E) is an exact substructure. For
equality, we need to see: If (i : X → Y, p) ∈ KC(A) such that F := cokerPi ∈ H(E) then i is an
E-inflation. By definition there exist an E-inflation j : U → V such that cokerPj = F . Looking at the
projective presentations we get a morphism of exact sequences

0 // PU

Pj //

Pu

��

PV
//

Pv

��

F

=

��

// 0

0 // PX
Pi // PY

//

OO

F // 0

Since the right hand square has to be bicartesian it follows that we have a split exact sequence
PU ↣ PX ↠ PV → PY which has to be split as PY is projective. This means we have split exact
sequence U ↣ X ⊕ V ↠ Y , in particular we have a pullbak-pushout diagram in A

U
j //

u
��

V

v
��

X
i // Y

As j is an E-inflation it follows that i is also one. □

7. Appendix on equivalences of categories

We shortly review three equivalences of 2-categories for small exact categories.
We will only consider strict 2-categories, i.e. they are enhanced in the category of small categories.
This means 1-morphisms will be certain functors between categories and 2-morphisms will be
natural transformations between them. We only consider strict 2-functors, i.e. these are which
preserve compositions of 1-morphisms and compositions of 2-morphisms.

(A) The Butler-Horrock theorem (seeing exact categories as extriangulated categories)
(B) The Auslander correspondence (going to functor categories)
(C) Ind-completion (passes from small exact to locally coherent exact structures)

8. Appendix A: Going into extriangulated - The Butler Horrocks Theorem

For a small additive category A we denote by Emax its maximal exact structure and we set
Ext1A := Ext1Emax

.
The Butler Horrock’s theorem (Thm. 3.4) gives for a small additive category a one-to-one
correspondence between closed sub-bifunctors of Ext1A and exact structures on A. By [28], the pair
(A,Ext1E) gives an extriangulated category.
We have Ex is the 2-category of small exact categories, 1-morphisms are exact functors and
2-morphisms are natural transformations.
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In [9] the 2-category Extri is defined and exact categories are embedded via the Butler-Horrocks
theorem as objects in it. Let BH be the full 2-subcategory of the 2-category of extriangulated
categories with objects in exact categories. It can be described as follows:

(1) Objects are pairs (A,E) of a small additive category A together with an additive bifunctor
E : A×Aop → (Ab) which is a closed sub-bifunctor of Ext1A.

(2) 1-Morphisms (A,E) → (A′,E′) are pairs of an additive functor f : A → A′ and a natural
transformation φ : E → E′(f(−), f(−)) of functors on A which satisfies the following
connecting-property : Let E , E ′ be the exact categories corresponding to (A,E), (A′,E′). For
every E-exact sequence (i, p) we have an associated distinguished triangle in Db(E), with
X

i−→ Y
p−→ Z

σ−→ X[1], then we have a distinguished triangle in Db(E ′)

f(X)
f(i)−−→ f(Y )

f(p)−−→ f(Z)
φ(σ)−−−→ f(X)[1]

A morphism (f, φ) induces a functor Ses(f) : Ses(E) → Ses(E ′) on the categories of short
exact sequences.

(3) 2-Morphisms between two 1-morphisms (f, φ), (g, ψ) : (A,E) → (A′,E′) are given by
natural transformations Φ: f → g. These always induce natural transformations
Ses(f) → Ses(g), i.e. for every E-short exact sequence X ↣ Y ↠ Z we have a commutative
diagram with E ′-exact rows

f(X) f(Y ) f(Z)

g(X) g(Y ) g(Z)

ΦX ΦY ΦZ

such that for every morphism of short exact sequences are mapped into the corresponding
3-dimensional diagram.

The connecting property is a reformulation of: The composition E → E ′ → Db(E ′) is a δ-functor in
the sense of Keller ([26]) - or in a modern language: We only want extriangulated functors as
morphisms in BH in the sense of [10, Def. 2.32].

Theorem 8.1. (cf. Thm 3.4 together with [10, Thm 2.34]) The assignment E = (A,S) 7→ (A,Ext1E),
and mapping an exact functor to the underlying additive functor gives an equivalence of strict
2-categories Ex → BH.

As morphisms in BH are defined, we can obviously write down the inverse 2-functor.

9. Appendix B: Auslander correspondences as equivalence(s) of 2-categories

We recall the equivalence of 2-categories to Auslander exact categories from [22] and on the way the
explain the similar equivalence of 2-categories to torsionfree subcategories in Auslander exact
categories.
Let E = (A,S) be an essentially small exact category. We have the Auslander exact category and the
tosionfree subcategory assigned to E

AE(E) := modadmA ⊇ modinflA =: H(E)

Here H stands for hereditary (i.e. gldim ≤ 1)1. We endow both with the fully exact substructure
restricted from ModA. As we have no suitable name for it, we call H(E) the tf-Auslander
category (tf stands for torsionfree).

Definition 9.1. We call an additive functor between to exact categories f : E → F
inflation-preserving if it maps E-inflation to F-inflation. We call it left exact if every E-short

1please do not confuse this with the Hall algebra of the exact category
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exact sequence (i, p) is mapped to a pair (f(i), f(p) = j ◦ q) with f(i), j F-inflations and
q = coker f(i) an F-deflation.

Obviously, every left exact functor is inflation-preserving.

We define the following 2-categories
Ex ⊆ ExL ⊆ Exinf

with

(a) Ex is the 2-category of small exact categories, 1-morphisms are exact functors and
2-morphisms are natural transformations.

(b) ExL is the 2-category of small exact categories, 1-morphisms are left exact functors and
2-morphisms are natural transformations.

(c) Exinf is the 2-category of small exact categories, 1-morphisms are inflation-preserving
additive functors and 2-morphisms are natural transformations.

Lemma 9.2. (1) The assignment modadm : E 7→ AE(E) defines a 2-functor which is left adjoint
to Ex ⊆ ExL

(2) The assignment modinf : E 7→ H(E) defines a 2-functor which is left adjoint to the inclusion
Ex ⊆ Exinf

For (1), look at [22, Cor 3.15] and (2) is completely analogue - just observe that the Yoneda
embedding into the Auslander exact category is left exact and the Yoneda embedding into the
tf-Auslander category is only inflation-preserving (and usually not left exact).
Recall the intrinsic definition of an Auslander exact category

Definition 9.3. An exact category E is called an Auslander exact category if it is an exact
category with enough projectives P such that

(1) (⊥P =: eff, cogen(P) =: H) is a torsion pair (here H is the torsionfree subcategory)
(2) Every morphism to an object in eff is admissible with image also in this category
(3) Ext1E(eff,P) = 0
(4) gldim E ≤ 2

Now we define the following two 2-categories

(d) AE is the 2-category of Auslander exact categories with 1-morphsims are exact functors
mapping projectives to projectives and 2-morphisms are natural transformations.

(e) H is the 2-category of tf-Auslander categories with 1-morphisms are a exact functors
mapping projectives to projectives and 2-morphisms are natural transformations.

Observe that we have a 2-functor
Res : AE → H

assigning to an Auslander exact category its torsionfree subcategory. Exact functors preserving
projectives restrict to the torsionfree subcategory (as it can be presented as objects which admit an
inflation to a projective).

Theorem 9.4. The 2-functors modadm,modinf induce equivalences of 2-categories

modadm : ExL → AE modinf : Exinf → H
These fit into a diagram which commutes up to

ExL
modadm//

⊆
��

AE

Res
��

Exinf
modinf // H
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This is all adapted from [22, Thm 4.8]. For the second equivalence of 2-categories, we just define the
inverse 2-functor H → Exinf . On objects assign to a tf-Auslander category H its category of
projectives P(H) and the exact structure such that the inflations are the H-inflations in P(H).
On morphisms, an exact functor f : H → H ′ which restricts to projectives, is restricted to
projectives f |P : P(H) → P(H ′) an inflation-preserving functor.
A natural transformation Φ: f → g between two exact functors which preserve the projectives,
restricts to a natural transformation Φ|P : f |P → g|P between the restricted functors.

9.0.1. Properties of tf-Auslander algebras.

Remark 9.5. The category H = H(E) is always hereditary exact with enough projectives P. Every
object admits a monomorphism (in H) m : X → PX with PX in P such that HomH(m,P ) is an
isomorphism for all P in P.
If X = coker i for a P-monomorphism i : P1 → P0, then a P-cokernel for i is obtained by the
composition p : P0 → X → PX . This way we find the short exact sequences (i, p) for the exact
structure on P.

Observe in a hereditary exact category with enough projectives: If a monomorphism X → P is an
inflation then X has to be projective as well (this follows since the category is hereditary exact). As
a consequence we see.

Remark 9.6. If H(E) is abelian then it is semi-simple and this implies E is split exact.

We link this with the following concept.

Definition 9.7. ([20], Def.1.1) An exact category is called a 0-Auslander category if it is a
hereditary exact category with enough projectives and for every projective P there exists a short
exact sequence

P → I → X

with I projective-injective.
We say an exact category is torsionfree 0-Auslander category if it is a 0-Auslander category
which is also hereditary torsionfree.

Remark 9.8. We recall [37], Thm B: Let Q be a quasi-abelian category and (T ,F) a torsion-pair
in Q, then T and F are also quasi-abelian.

We also easily deduce the following special cases.

Lemma 9.9. If E is abelian then H(E) is quasi-abelian.
If E has enough injectives then H(E) is a 0-Auslander exact category.

This is particularly interesting as 0-Auslander exact categories have a very strong mutation theory
for tilting subcategories, cf. [20].

Open question 9.10. We are missing an intrinsic characterization of tf Auslander categories.

10. Appendix C: Ind-Completion of (small) exact categories

These notes are based on the recent preprint of Positselski [29] - but we prefer the construction
using the Gabriel-Quillen embedding (this way, we extend Crawley-Boeveys classical dictionary to
exact structures [14]).
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Locally finitely presented additive categories. Here, we give a quick summary of the
correspondence from [14].

Let C an essentially small additive category. We define Ĉ := Mod C to be the category of all additive
functors Cop → (Ab), we call this the category of (left) C-modules. It is easily seen to be an abelian
category.We have the (covariant) Yoneda embedding

Y : C → Ĉ, X 7→ (−, X) := HomC(−, X)

this is fully faithful, the essential image consists of (some) projective objects which we call
representable functors.
Every object in Ĉ is as a small colimit of representables - for F ∈ Ĉ define the slice category C/F for

F ∈ Ĉ (objects: (X,x), X ∈ C, x ∈ F (X), morphisms f : X → X ′ in C such that F (f)(x′) = x), then

we have a small category and a functor Φ: C/F → Ĉ, (X,x) 7→ (−, X). Its colimit is F = colimC/F Φ.

Definition 10.1. ([2], Expose I) We define the ind-completion
−→
C (in the literature denoted as

Ind(C)) as the closure of C under arbitrary directed colimits: Objects are functors D : I → C from
small filtered categories I. Morphisms are defined as

Hom(D : I → C, E : J → C) := HomMod C(colim
I

YD, colim
J

YE)

= lim
i∈I

colim
j∈J

HomC(D(i), E(j))

Observe that the Yoneda embedding factors over
−→
C . Via the Yoneda embedding, we can identify

this with the following full subcategory of Ĉ
−→
C := {colim

i∈I
(−, Xi) | (Xi)i∈I I−shaped diagram in C with I directed set }

Remark 10.2. The second description uses that closure under small filtered colimits it the same as
closure under small directed colimits, cf. [1], Thm 1.5.

Proposition 10.3. ([2], Expose I, Prop. 8.6.4) Ind-completion is a 2-functorial.

An additive functor f is faithful (resp. fully faithful) if and only if
−→
f is faithful (resp. fully faithful).

Furthermore the ind-completion
−→
f of an additive functor f : C → D is an equivalence if and only it

is fully faithful and the essential image inclusion Im f → D induces an equivalence on idempotent
completions.

Let D be an additive category, we denote by Add(C,D) the category of additive functors from C to D
and Addfc(C,D) the subcategory of functors which preserve directed colimits (whenever these exist).

Ind-completion can be defined for arbitrary additive and even arbitary categories categories and can
be characterized by a universal property such as:

Lemma 10.4. (Universal property of ind-completion, cf. [2], Expose I, Prop. 8.7.3) Let C be

a small additive category, then
−→
C has all directed colimits.

Assume that D is an additive category which is closed under arbitrary directed colimits.

Precomposition with C →
−→
C is an equivalence of categories

Addfc(
−→
C ,D) → Add(C,D)

Furthermore, it also has the following property

Lemma 10.5. ([14], Lem. 1)
−→
C is idempotent complete.

For small additive categories, we have an alternative description of the ind-completion found in [14].

Definition 10.6. Let C be a small additive category. We say that an object F in Ĉ is flat if the
tensor functor F ⊗C − : ˆCop → (Ab) is exact. We denote by Flat(Cop, Ab) the full subcategory of flat
functors.
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Theorem 10.7. ([14], Thm p. 1646)
−→
C = Flat(Cop, Ab) and F ∈

−→
C is equivalent to

(1) C/F is filtered
(2) Every natural transformation coker(−, f) → F factors over a representable.

Definition 10.8. Let A be an additive category. We say an object X in A is finitely presented if
HomA(X,−) commutes with arbitrary filtered colimits. We denote by fp(A) the full subcategory of
finitely presented objects in A.
The additive category A is called locally finited presented if fp(A) is essentially small and A is

equivalent to
−−−→
fp(A).

Remark 10.9. If A is locally finitely presented then fp(A) is essentially small, closed under direct
sums and summands. In particular by Lemma 10.5, it is idempotent complete.

Lemma 10.10. (cf. [14], part of Thm on p.1647)

For an essentially small category C we have fp(
−→
C ) ∼= Cic is equivalent to the idempotent completion

of C.

Theorem 10.11. ([14], Thm. in (1.2), p.1645) If C is essentially small, then

fp(Ĉ) = {F ∈ Ĉ | F ∼= coker(−, f), f ∈ Mor(C)} =: mod1 C

Furthermore, Ĉ is locally finitely presented.

Example 10.12. Locally finitely presented abelian categories are Grothendieck categories (i.e.
(1) abelian, (2) with arbitrary small coproducts, (3) directed colimits are exact, (4) has a generating
object G). Here, the generator can be chosen as

G =
⊕

C∈Ob(C)

(−, C) ∈
−→
C

For the converse: If a Grothendieck category admits a set of finitely presented objects whose
coproduct is a generator, then it is locally finitely presented.
Grothendieck categories always have enough injectives (often they are hard to find), have arbitrary
small limits and colimits.

Remark 10.13. For a not necessarily small category C we can still define its ind-completion. If C is
abelian, this is an abelian category - but it may not have enough injectives (cf. [25], Prop. 15.1.2).

The following is a consequence of Lem. 10.4 together with [14], Thm in (1.4), p. 1647.

Theorem 10.14. (equivalence of (2-)categories)

The assignments C 7→
−→
C and A 7→ fp(A) are 2−functorial and give rise to an equivalence of (strict)

2−categories between

(1) essentially small, idempotent complete additive categories C with additive functors
(2) Locally finitely presented additive categories A with additive functors that preserve arbitrary

filtered colimits and restrict to the subcategories of finitely presented functors.

Let C be idempotent complete, essentially small additive category and A a locally finitely presented

(additive) category. We assume C = fp(A) and A =
−→
C . Then the following holds (by restricting

further and further):

(i) C left abelian ⇔ A abelian
the definition of left abelian (cf. [14], (2.4)): Every morphisms has a cokernel, every

epi is a cokernel and whenever A
f−→ B

c−→ C with c = coker(f) and g : D → B, cg = 0 then
there exists an epi d : E → D such that gd factors over f .

(ii) C abelian ⇔ A locally coherent
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(iii) C abelian and all objects noetherian ⇔ A locally noetherian abelian
(iv) C is length abelian ⇔ A is locally finite abelian

Example 10.15. R a ring:
(i) RMod abelian and RMod1 is left abelian
(ii) for R left coherent
(iii) for R left noetherian
(iv) e.g. for R left artinian (with Loewy length)

10.1. Gabriel Quillen embedding. We review this well-known embedding of an essentially
small exact category as a fully exact subcategory in an abelian category.
Let E = (C,S) be an essentially small exact category.

Definition 10.16. We define the category Lex(Eop,Ab) to be the category of all additive functors

F : Cop → (Ab) which map short exact sequences X
i−→ Y

d−→ Z in E to left exact sequences

0 → F (Z)
F (d)−−−→ F (Y )

F (i)−−→ F (X) in abelian groups. We will call this the category of left exact
functors on E . We define the category of locally effaceble functors EffE to be the full
subcategory of Ĉ of objects F such that for every pair (X,x) of an object X in C and x ∈ F (X)
there exists an E-deflation d : Z → X with F (d)(x) = 0.

Lemma 10.17. [27], Prop. 2.3.7 (1),(2) (with intermediate steps)

(i) (Prop 2.2.16) D = EffE is a Serre subcategory of Ĉ closed under coproducts. Therefore, the
Serre quotient functor Q : Mod C → Mod C/D admits a right adjoint.

(ii) (Lem. 2.2.10) Let Qρ be the right adjoint. It factors as Ĉ/D Φ−→ D⊥ I−→ Ĉ with Φ an
equivalence of categories and I the inclusion functor. The quasi-inverse of Φ is given by
Q ◦ I.

(iii) Lex(Eop,Ab) = D⊥ := {Y ∈ Ĉ | HomMod C(E,Y) = 0 = Ext1Mod C(E,Y)∀E ∈ D}.

Remark 10.18. Lex(Eop,Ab) is a Grothendieck category (as it is the localization of a Grothendieck
category by a Serre subcategory?). In the abelian structure it has a generator

G =
⊕

X∈Ob(C)

(−, X)

As (−, X) are (some) finitely presented objects in Lex(Eop, Ab), it follows that Lex(Eop, Ab) is locally
finitely presented abelian.
It also has an exact substructure as fully exact category in Ĉ but these two exact structures usually
do not coincide.

Remark 10.19. The inclusion Lex(Eop,Ab) → Ĉ is not an exact functor (if we consider Lex(Eop,Ab)
with its abelian structure). Yet it reflects exactness in the following sense: If 0 → F → G→ H → 0

in Ĉ with F,G,H in Lex(Eop,Ab), then this is a short exact sequence in Lex(Eop,Ab).

Corollary 10.20. Lex(Eop,Ab) ⊆ Ĉ is a deflation-closed subcategory: Given a short exact sequence
0 → F → G→ H → 0 in ModA.
If G,H ∈ Lex(Eop,Ab), then also F ∈ Lex(Eop,Ab).
If F,G ∈ Lex(Eop,Ab) and Ext2(E,F ) = 0 for all E effaceable, then H ∈ Lex(Eop,Ab).

In general we can characterize short exact sequences in Lex(Eop,Ab) (in the abelian structure) as
follows:

Lemma 10.21. Given two composable maps 0 → F
i−→ G

p−→ H → 0 in Lex(Eop,Ab). TFAE

(1) (i, p) are an exact sequence in Lex(Eop,Ab)

(2) In Ĉ we have a exact sequence 0 → F
i−→ G

p−→ H and coker(p) is locally effaceable.
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Theorem 10.22. Let E = (C,S) be an exact category. The Yoneda functor gives a functor

i : E → Lex(Eop,Ab), X 7→ (−,X) = HomC(−,X)
with the following properties

(1) i is exact, reflects exactness and the essential image of i is extension-closed, its idempotent
completion is deflation-closed.

(2) i induces isomorphisms on all extension-groups.

Proof. (1) [12], Appendix A and [27], Prop. 2.3.7.(3). The last statement follows from [29],
Prop. 6.1, (e).
(2) [27] in Lem 4.2.17 it is shown that E → Lex(Eop,Ab) is right cofinal (Keller’s definition) that
implies the statement. □

The following result is also relevant for us:

Proposition 10.23. ([29], Prop. 6.2) For every X in the category E, the functor
ExtnLex(Eop,Ab)((−, X),−) preserves filtered colimits.

10.2. Locally coherent exact. The ind-completion of a small exact category E has a natural
exact structure (namely as fully exact in the Gabriel-Quillen embedding), this exact structure can
also be described as directed colimits of short exact sequences in E and is called locally coherent
exact structure.
The CB-correspondence (section 1) is extended to i.c. small exact categories.

We begin with the following observation.

Lemma 10.24. Let C be a small additive category, F a flat functor and X
f−→ Y

g−→ Z with
g = coker(f) in C then 0 → F (Z) → F (Y ) → F (X) is exact in abelian groups.

Proof. Define (X,−) := HomC(X,−) : C → (Ab) and the contravariant Yoneda embedding

Cop → ˆCop, X 7→ (X,−). By assumption we have an exact sequence 0 → (Z,−) → (Y,−) → (X,−).
Since F is flat, the functor F⊗A is exact and we have F ⊗C (E,−) ∼= F (E). Therefore, we obtain the
exact sequence 0 → F (Z) → F (Y ) → F (X). □

Now for an exact category E = (C,S), by the previous lemma Flat(Cop,Ab) ⊆ Lex(Eop,Ab).

Lemma 10.25. (and definition.) Flat(Cop,Ab) is closed under extensions in Lex(Eop, Ab).

We define
−→
E to be the fully exact structure on

−→
C and call this the ind-completion of the exact

category E.

Proof. (sketch) (of Lemma 10.25) Given a short exact sequence σ : F → G→ H in (the abelian
structure on) Lex(Eop, Ab) with F,H flat.
First assume H = (−, X), write F as filtered colimit and use Prop 10.23 and the fact that the
essential image of E → Lex(Eop, Ab) is extension-closed to conclude the claim.
In general, we use Thm 10.7, (2). Given a morphism θ : coker(−, f) → G. Postcompose to
coker(−, f) → H. As H is flat, this factors over a morphism g : (−, X) → H for some X in Ob(E).
Now form the pull-back of σ along g in the abelian category Lex(Eop, Ab), say this is a short exact
sequence F → E → (−, X). The universal property of the pull-back gives a morphism
θ′ : coker(−, f) → E and a morphism u : E → G with θ = uθ′. By the first case θ′ factors over a
representable, therefore θ does so too. □

Remark 10.26. (and definition) Let E = (C,S) be an essentially small exact category, then E is
fully exact in Lex(Eop, Ab). As the latter is abelian, it is idempotent complete, therefore E ic is also a
fully exact subcategory in Lex(Eop, Ab).
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But this means fp(
−→
C ) is an extension-closed subcategory in

−→
E . We define fp(

−→
E ) to be the fully

exact structure on fp(
−→
C ).

Definition 10.27. Let F = (A, T ) be an exact category. We say it is locally coherent exact if
fp(A) is essentially small and extension-closed in F -in this case we denote by fp(F) the fully exact

subcategory- and F =
−−−→
fp(F).

In an ess. small exact category E , the category of short exact sequences Ses(E) is again an essentially
small exact category (with degree-wise short exact sequences).

Theorem 10.28. ([29], proof of Lemma 1.2) A filtered colimit of short exact sequences in
−→
E is a

short exact sequence in
−→
E .

The universal property of the ind-completion yields an equivalence of categories
−−−−→
Ses(E) → Ses(

−→
E )

We also observe the following:

Lemma 10.29. For an essentially small exact category E, we have that
−→
E is a resolving subcategory

in Lex(Eop, Ab), in particular it is homologically exact.

Proof.
−→
E is extension-closed, idempotent complete and contains a generator of Lex(Eop, Ab) ,

so it is enough to see that it is also deflation-closed. Now given a short exact sequence F → G→ H
in Lex(Eop, Ab), it gives a 4-term exact sequence in Ĉ: 0 → F → G→ H → E → 0 withe E locally
effaceble. Assume that G,H are flat, we want to see that E is so too. As every finietly presented
effaceable functor has projecive dimension 2, every locally effaceable has flat dimension 2 and this
implies F is flat. □

Furthermore, since (−, X) ∈ Flat(Eop,Ab) for all X in C, we get a fully faithful exact functor with
extension-closed essential image

i : E →
−→
E , X 7→ (−, X)

Lemma 10.30. The functor i is homologically exact.

Proof. As E → Lex(Eop, Ab) is homologically exact and also
−→
E → Lex(Eop, Ab), this is

immediate. □

We directly get the following from the previous corollary and Prop. 10.23.

Corollary 10.31. For X in Ob(E), the functor Extn−→
E
((−, X),−) commutes with filtered colimits.

Let Ex(E ,F) be the category of exact functors between two exact categories and Exfc(E ,F) be the
full subcategory of exact functors which preserve filtered colimits.

Lemma 10.32. (Universal property of ind-completion for exact categories) Let E be an

essentially small exact category. Then
−→
E is closed under directed colimits and directed colimits are

exact functors.
Let F be an exact category closed under all directed colimits and they are exact functors. Then

precomposition E →
−→
E gives an equivalence

Exfc(
−→
E ,F) → Ex(E ,F)

Theorem 10.33. (equivalence of 2-categories)

The assignments E 7→
−→
E and F 7→ fp(F) are functorial and give rise to an equivalence of

(2−)categories between
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(1) essentially small, idempotent complete exact categories E with exact functors
(2) Locally coherent exact categories F with exact functors that preserve arbitrary filtered

colimits and restrict to the subcategories of finitely presented functors.

We remark that a functor that preserves filtered colimits on objects, also preserves filtered colimits
on morphism categories and this implies it also preserves filtered colimits of short exact sequences.
This implies that as exact functor between essentially small exact categories F : E1 → E2 extends

with the universal property of the ind-completion uniquely to an exact functor
−→
F :

−→
E1 →

−→
E2, this is a

consequence of Thm 10.28. Recall: F fully faithful if and only
−→
F is fully faithful by Prop. 10.3.

Ignoring set-theory for a moment: Let F be an exact category, we consider EX(F) the lattice of all
exact subcategories. For F locally coherent exact, we define EXfc(F) to be the exact subcategories
in the category (2) above, i.e. exact functors i : F ′ → F such that i is fully faithful, F ′ is locally
coherent exact and i preserves filtered colimits.

Corollary 10.34. Let E be an essentially small category. We have mutually inverse, isomorphisms
of posets

−→
(−) : EX(E) ↔ EXfc(

−→
E ) : fp(−)

It restricts to all the usual subposets such as extension-closed, exact substructures etc.

Positselski found the maximal and minimal locally coherent exact structure on a locally finitely
presented category particular interesting. The minimal exact structure is the ind-completion of the
split exact structure (on an essentially small additive category) and is called pure exact structure
on a locally finitely presented category.

Example 10.35. Let R be a ring. The abelian exact structure on RMod is the maximal locally
coherent exact structure, it corresponds to the left abelian structure on RMod1 (fp R-modules). The
category of flat R-modules RModfl is extension-closed in RMod. Its subcategory of finitely
presented objects is (add(R))ic with the split exact structure is the fully exact substructure. By a

Thm of Govorov-Lazard,
−−−−→
add(R) = RModfl. In this case: The fully exact structure is the pure exact

structure.

Stovicek generalized the notion of a Grothendieck category to an exact category of Grothendieck
type.

Theorem 10.36. ([29, Cor. 5.4]) Locally coherent exact categories are exact categories of
Grothendieck type (in the sense of Stovicek).

In particular, all established properties of exact categories of Grothendieck type hold true.

Corollary 10.37. (also [29, Cor. 5.4])
−→
E has enough injectives.

This implies that the unbounded derived category D(
−→
E ) is locally small (i.e. has Hom-sets), cf.

Chapter 6.

11. Open problems

Here is my personal (naive) list of problems

(0) Describe
−→
E for exact categories of the form modS M and for Auslander-Soberg exact

structures.
(1) If E has enough projectives/injectives what are the corresponding properties in

−→
E ?

(2) Which conditions on the exact category imply gldim(E) = gldim(
−→
E )?
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(3) When is D(E) → D(
−→
E ) fully faithful? (for some answers, cf [30])

(4) Are there situations when derived equivalence is preserved/reflected by ind-completion of
exact categories?

11.1. Literature.

11.1.1. For ind-completion. Ind-categories have been introduced for arbitrary categories by
Grothendieck in [21], and more thoroughly studied by Grothendieck-Verdier in [2], Expose I. The
concept of Finitely presented/presentable categories is due to [19].
In [14] it had been observed that in the additive category-setup, ind-completion for small additive
functors can be realized as categories of flat functors.
A (multiply) more general approach can be found in [1], where the more general analogue of finitely
presented categories is called finitely accessable categories.

11.1.2. For the Gabriel-Quillen embedding. References: Bühler exact categories, Appendix A
contains a historical discussion of the origins. Further reference [27] and [29], section 5.

11.1.3. For locally coherent exact categories. This has been introduced in [29]. In the special
case that C has weak cokernels an alternative construction is given using the embedding into the
purity category by [36].
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[26] B. Keller, Derived categories and universal problems, Comm. Algebra 19 (1991), no. 3, 699–747. MR1102982
[27] H. Krause, Homological theory of representations, Cambridge Studies in Advanced Mathematics, vol. 195,

Cambridge University Press, Cambridge, 2022. MR4327095
[28] H. Nakaoka and Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol.
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