
The posets of exact subcategories

1. Synopsis

This is the quest to extend known descriptions of the lattice of exact structures on a given additive
category to the much bigger lattice of all exact subcategories.
What is new? This question is usually not considered, so everything in this chapter.

2. Introduction

Now, we fix one essentially small, idempotent complete exact category E = (A,S) and introduce the
following four posets of exact subcategories (the first poset is just auxiliary):

ADD(A) = all additively closed subcategories A′ of A
EX(E) = exact categories (A′,S ′) such that A′ ∈ ADD(A)

with (A′,S ′) ⊆ (A,S) is an exact functor

Ex(E) = (A′,S ′) ∈ EX(E) such that A′ is extension-closed in E
ext(E) = fully exact subcategories A′ in ADD(A)
ex(E) = exact substructures of E

here, fully exact extension-closed means that the exact structure S ′ on A′ is all kernel-cokernel pairs
(i, p) in A′ such that (i, p) ∈ S.
Observe that Ex(E) contains ext(E) and ex(E).
We have the following operation on EX(E)

(A′,S ′) ∧ (A′′,S ′′) := (A′ ∩ A′′,R = {σ ∈ S ′ ∩ S ′′ | all three objects are in A′ ∩ A′′})

with respect to this operation, EX(E) becomes a complete meet-semilattice and all three
Ex(E), ext(E), ex(E) are closed under this operation (making them complete meet-subsemilattices).
If a complete meet-semilattice (X,≤,∧) has a unique maximal element then one can define a join
such that it becomes a complete lattice, so given a subset {xi | i ∈ I} of X its join is given by∨

i∈I
xi :=

∧
y : xi≤y∀i∈I

y.

Observe that the joins obtained this way for EX(E),Ex(E), ext(E) usually differ.

We first make the following easy observation.

Theorem 2.1. (cf. Thm 3.3) EX(E),Ex(E), ext(E) are complete lattices and ex(E) is a complete
sublattice of EX(E) and of Ex(E).

Open question 2.2. Considering the bijection between Ziegler-closed subsets (containing a given
closed set) and exact structures on an idempotent complete small additive category with weak
cokernels (cf. Chapter 2), we ask: Are the opposite lattices frames? Are they even coherent frames?
(see e.g. [9] for the definitions)
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As a corollary of Rump (cf. in Chapter 1, Cor. ??) we deduced that for every additive functor
between small exact categories f : F → E there is a unique maximal exact substructure of F such
that f becomes an exact functor on it.
Let now E = (A,S) be a small exact category and i : B ⊆ A a full additively closed subcategory. We
write S ∩ B for the subset of S given by all short exact sequences such with all three objects in B
(also denoted by Si in Chapter 1).
Let F = Fmax the maximal exact structure on B and we look at the inclusion functor i : F → E ,
then we denote by

FB := (B,S≤(S∩B)

the maximal exact structure on B such that i is an exact functor on it.

Then our second result is the following simple corollary of this:

Theorem 2.3. . Let E = (A,S) be an idempotent complete essentially small exact category. Then
we have equalities of sets

EX(E) =
⊔

B∈ADD(A)

ex(FB)

Ex(E) =
⊔

E ′∈ext(E)

ex(E ′)

To our knowledge, usually either only the lattice of exact structures is studied or a chosen subposet
of ext(E) assuming extra-properties (such as Serre subcategories, torsion classes, thick subcategories,
wide subcategories, resolving subcategories, tilting subcategories etc.).

We are interested in the following questions

(1) Explicit descriptions
(2) Lattice isomorphisms for EX(E)
(3) Can we find homological properties which are preserved under forming meets?

In neither case we claim to have a good answer but we give some partial answers.
Representation-finite means here:
Krull-Schmidt, K-linear (for some field K), Hom-finite with only finitely many indecomposables.
The first task is even in the representation-finite complicated because of the size of the constructed
lattice, see e.g. some enumerative example in the end. We remark that the Ziegler spectrum is not
functorial and even in the representation-finite case we do not see how we can use it here. In this
case the cogenerators (whose indecomposable summands) give Ziegler-closed subsets in the Ziegler
spectrum of B ∈ ADD(A) are those which contain the cogenerator from the dual of Lemma 6.1.

For the second task, we look again at Auslander’s functorial point of view (cf. Chapter 2). We extend
the three lattice isomorphisms from ex(E) to the whole lattice EX(E): Using the Auslander category,
the tf Auslander category and the category of effaceble functors. This result is Theorem 4.15.

For the third question:
Is a given homological1 condition preserved under taking meet in EX(E)?
We have no systematic way of studying this, we just collect some answers (if you know more please
let me know).
Some negative answers:

(1) homologically exactness (and also homologically faithfulness)
(2) gldim = n (same fixed n)
(3) having enough projectives (or injectives)
(4) ((2) for n = 1 but more specifically:) hereditary exact substructures in an hereditary exact

category

1i.e. defined by imposing conditions on the Ext-functors.
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Also, the subposet of hereditary exact substructures may not have a unique maximal element.
Some positive answers:
This is what I found:

(1) 1-homologically exact (i.e. extension-closed).
Special case: If E is hereditary exact, all extension-closed subcategories are

homologically exact (and also hereditary exact)
(2) n-rigid subcategories (all with the same n).

Special case: self-orthogonal subcategories (n-rigid for all n)
(3) resolving subcategories in an exact category with enough projectives
(4) (only wrt. finite meets!) exact substructures with enough projectives in an exact structure

with enough projectives

There are probably many more. We also give the following examples (without further applications).
Given an exact fully faithful functor f : F = (B,S ′)→ E We say that the f − gldimF ≤ n if
ExtnE(f(X), f(σ)) is right exact for all objects X in B and F-exact short exact sequences σ.
This can be seen as a relative version of gldim, since for f = id: E → E we have f − gldim E ≤ n iff
gldim E ≤ n by Lemma 5.4.
We observe the following completely obvious:

Lemma 2.4. Let E be essentially small idempotent complete exact category and Fj = (Bj ,Sj) be in
EX(E), j ∈ J . Then:
If all Fj have relative global dimension ≤ n for all j ∈ J , then also

∧
j∈J Fj has relative global

dimension ≤ n.

Here is another property one may consider: Let E be an exact category. Contravariantly-finite
E-generators G (i.e. for every object X in E there is an E-deflation dX : GX → X which is also a
right G-approximation) which are also E-subobject-closed (i.e. given an E-exact sequence
X ↣ G ↠ Y with G ∈ G, then X is also in G) induce always hereditary exact substructures with
enough projectives (by looking at the exact substructure such that Hom(G,−) becomes exact for all
G ∈ G). These give usually not all hereditary exact substructures. But we observe that
E-subobject-closedness is preserved under arbitrary intersections (but we do not know when such an
intersection is contravariantly finite!).

Lemma 2.5. Let E be an exact category such that the underlying additive category is
representation-finite (see above). Then all generators are contravariantly finite. The set of all
hereditary exact substructures with enough projectives given by an E-subobject-closed generator is
closed under taking arbitrary joins in EX(E).

Proof. Given Gi subobject-closed generators with Ei corresponding exact substructures such
that P(Ei) = Gi. As we are in a finite-type situation the join is

∨
i Ei = F with P(F) =

⋂
Gi =: G

which is again a subobject-closed generator. □

Example 2.6. Let E = Λnmod with Λn the path algebra over 1→ 2→ · · · → n. In this case, the
subobject-closed generators are not only closed under intersections but also by taking direct sums
and form a sublattice of ex(E). This is in bijection with subobject-closed subcategories in Λn−1mod.
In general, subobject-closed subcategories in Λmod with Λ a Dynkin quiver has been studied,
explicit bijections to the elements of the Weyl group of the corresponding (simply-laced)
Dynkin-type have been found in [10].

What I do not know:
In the following we do not know the answer (cf. Chapter 1 for the definitions): Left (or right)
cofinal, (co)resolving (in general exact category), partially (co)resolving
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3. The lattice of exact subcategories in an exact category

Let E = (A,S) be an exact category.
We will always assume A is idempotent complete We also will assume that A is essentially small
(else we would have to generalize the notion poset from sets to classes).
Let ADD(A) be the collection of all additively closed subcategories of A (this is a complete lattice).
Observe that additively closed subcategories are also idempotent complete.
For A′ ∈ ADD(A) we denote bu iA′,A (or if there is no confusion, just i) for the inclusion A′ ⊆ A.

Definition 3.1. Now we define EX(E) as the collection of exact categories (A′,S ′) with
A′ ∈ ADD(A) and iA′,A an exact functor (wrt. (A′,S ′) and (A,S)). We call this the poset of
exact subcategories of E .
We also consider Ex(E) ⊆ EX(E) consisting of all (A′,S ′) such that A′ is also extension-closed in E .
This implies that (A′,S ′) is an exact substructure on (A′,S ∩ A′). We call this the poset of
extension-closed exact subcategories of E .

In the literature two subposets of Ex(E) are studied:

(1) ext(E) consisting of all additively closed fully exact subcategories E .
(2) ex(E) consisting of all exact substructures of E (cf. [1, Thm 5.3] for the lattice

structure).

We have by definition

Ex(E) =
⊔

E ′∈ext(E)

ex(E ′)

Remark 3.2. If f : E ′ → E is a fully faithful exact functor, then the additive closure of the essential
image equipped with the exact structure induced from E ′ gives an element in EX(E). It lies in Ex(E)
if and only if the essential image is extension closed in E .

We have the obvious poset structure on EX(E):
E1 ≤ E2 if E1 ∈ EX(E2)

Theorem 3.3. EX(E),Ex(E), ext(E) are complete lattices and ex(E) is complete sublattice of EX(E)
and of Ex(E).

All four posets have a unique maximal element E and a unique minimal element (which is {0} except
for ex(E) where it is the split exact structure).

The main ingredient is the following observation

Proposition 3.4. Let A be a small additive category and ij : Aj → A, j ∈ I (for some set I)
inclusions of full, additively closed subcategories (recall these also closed under isomorphism).
Assume, we have exact structures E = (A,S), Ej = (Aj ,Sj) such that ij are exact functors. Then:∧

Ej := (B :=
⋂
j∈I
Aj , R := {X1

i−→ X2
p−→ X3 : Xi ∈

⋂
j∈I
Aj , (i, p) ∈ Sj∀j ∈ I})

is an exact category such that the inclusion
∧

j∈I Ej → Ei is an exact functor for all i ∈ I.

Remark 3.5. I = {1, 2}, the exact category E1 ∧ E2 is an exact category, it will fulfill the universal
property of a pullback in the category of exact categories with exact functors (warning: This will
fulfill the universal property of the strict 2-pullback, we are not considering other versions of
2-pullbacks here!).

Proof. Clearly, (i, p) ∈ R implies that (i, p) is a kernel-cokernel pair in B as this is the case in
the bigger categories Aj for each j ∈ I.
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Assume we have a cospan of objects in B: Y p−→ Z
f←− C such that p is an Ej-deflation for all j ∈ I.

Then by [2], Prop.2.12: We have an Ej-exact sequence Kj
kj−→ Y ⊕ C

(p,f)−−−→ Z for j ∈ I. But as ij are
exact functors, we find all kj are A-kernels of the same map, so they are isomorphic and therefore
K := Kj ∈ B. Now, as the Aj-pullback of p coincides with the Aj′-pullback for every j, j′ ∈ I, it is
an R-deflation K → C.
For C = 0, we also get the Aj-kernel and the Aj′-kernel of p are isomorphic for all j, j′ ∈ I, then it is
obvious that composition of R-deflations are R-deflations.
Now, assume we have a span in B: D g←− X

i−→ Y with i an Ej-inflation for j ∈ I. As above we
observe that we have Q = coker(X → D ⊕ Y ) ∈ B and then the Aj-pushout of i coincides with the
Aj′-pushout of i for all j, j

′ ∈ I and is an R-inflation. We also easily see that composition of
R-inflations are R-inflations. □

Proof. (of Thm. 3.3) From the previous Proposition, we can conclude that EX(E) is a complete
meet semi-lattice. As we have an obvious unique maximal element E ∈ EX(E) it becomes a lattice
via the following join described in the introduction. □

Remark 3.6. In given B ∈ ADD(A), and E = (A,S) an exact category. We may look at B ∩ S, i.e.
all short exact sequences with all three terms in B. To characterise when this is an exact structure is
technical (and not very enlightning), see Lemma below. Here are some easy positive answers:
If B is extension-closed it is and in this case Ext1S∩B = (Ext1E)|B.
If B is deflation- and inflation-closed (i.e. closed under kernels of arbitary deflations and cokernels of
arbitrary inflations between objects in B) then it also is.
A negative answer is provided below.

Example 3.7. (A negative answer) Consider the abelian category of finite-dimensional
representations (over some field) of the quiver 1→ 2→ 3. The indecomposables are the projectives
Pi, injectives Ii (with I3 = P1) and S2. We consider B = add(P3 ⊕ P1 ⊕ I2 ⊕ S2). We have an exact
sequence 0→ P3 → P1 → I2 → 0. Which in E has a pull-back along S2 → I2 given by P2. But in
B ∩ S there does not exist a kernel-cokernel pair to which it could pullback.

Example 3.8. Consider E = ModA for a ring A. Let I be a two sided ideal, then
A′ = {X ∈ Mod−A | IX = 0} is extension-closed if and only if I2 = 0. In either case the restriction
of scalars Mod−(A/I)→ Mod−A is a fully faithful exact functor with essential image A′ and A′ is
inflation- and deflation-closed. So this gives an element (A′,S ′) ∈ EX(E). It is easily see that this
exact structure is abelian (since it is equivalent to the one on Mod−A/I).

Lemma 3.9. Let E = (A,S) be an exact category and B ∈ ADD(A). Then, the following are
equivalent:

(1) (B,S ∩ B) is an exact category
(1’) S ∩ B are closed under pull-back and S ∩ B are closed under push-out.

(In particular, these pull-back and push-out have to exist in B).
(2) For every inflation i : B ↣ B′ in S ∩ B we have: If i factors in A as i = ba, a : B → C with

coker a in B, then C ∈ B.
For every deflation d : B′ ↠ B′′ in S ∩ B we have: If d factors in A as d = ef ,

e : D → B′′ with ker e in B then D ∈ B.

In this case, iB,A is an exact functor, i.e. (B,S ∩ B) ∈ EX(E).

Proof. The equivalence (1) to (1’) follows from [4, Lem. 1.9, Prop.1.10]. The equivalence (1’)
to (2) follows from the strong Obscure axiom [2, Prop. 7.6]. □

This is one of the few instances where more general exact subcategories than just extension-closed
are considered:
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Example 3.10. Not extension-closed exact subcategories in (the following exact categories)
Hausdorff locally convex spaces, Frechet spaces and topological vector spaces respectively are studied
in [3].

As a direct corollary of Chapter 1, Cor. ?? we have the following: Every F ∈ EX(E) we have
i : F → E can be factorized either as

F ≤ FB
i−→ E

where FB is the maximal exact structure making i exact (and ≤ means we have an inclusion of a
substructure). Or it can be factorized as

F i−→ E ′ ≤ E

where E ′ =
∧
E ′′ where E ′′ runs through all exact substructures such that i : F → E ′′ is exact.

From the first factorization we can conclude:

Theorem 3.11. Let E = (A,S) be an i.c. small exact category then we have

EX(E) =
⊔

B∈ADD(A)

ex(FB)

Ex(E) =
⊔

E ′∈ext(E)

ex(E ′)

There are many other posets one can define here. Since we think fully faithful exact functors with
extension-closed images are interesting, these two posets are our main interest. But for example we
could also look at

Ex′(E) :=
⊔

E ′∈ex(E)

ext(E ′)

Example 3.12. Let T ⊆ E be a self-orthogonal category, then
presE(T ) = {X : ∃T ↠ X, with T ∈ T } is extension closed in E . If E ′ is an exact substructure of E ,
we have T ⊆ E ′ is still self-orthogonal and presE

′
(T ) ⊆ presE(T ). We get a subposet of Ex′(E)

{presE ′
(T ) | E ′ ∈ ex(E)}

It has a unique maximal element presE(T ) and a unique minimal element T .

Remark 3.13. Let A′ ∈ ADD(A) and E = (A,S) an exact category. Let IA′ ⊆ ex(E) be the exact
substructures of E such that A′ is extension-closed in it. I do not know anything on maximal
elements in IA′ .

4. The functorial point of view

Let E be an essentially small exact category. We consider three classical assignments (which are all
2-functorial on the category of small exact category with exact functors) for F = (B,S ′) ∈ EX(E) the
Auslander exact category, tf Auslander category and effaceable functors respectively

AE(F) = {coker(HomB(−, f)) | f F-admissible}
H(F) := {cokerHomB(−, i) | i F-inflation}
eff(F) := {coker(HomB(−, d) | d F-deflation}

All will be considered fully exact subcategories in mod1A (where A is the underlying additive
category of E). By a results of [7] and [6] (cf. Chapter 2), we have characterizations of the
subcategories when we look only at exact substructures of E . Our aim is to extend these to the
whole lattice EX(E).
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4.1. Partially resolving subcategories. We start with some background definitions.

Definition 4.1. Let E be an exact category with enough projectives P. Let F ⊆ E be a fully exact
subcategory. We say that F is partially resolving if

(PR1) F = add(F) (i.e. F is closed under taking direct summands in E)
(PR2) For every F ∈ F we find an E-short exact sequence ΩF → P → F with P ∈ P ∩ F and

ΩF ∈ F (we call this property: F is closed under taking syzygies)

Then F also has enough projectives with P(F) = Q ⊆ P(E) and we say F is partial resolving with
respect to Q ⊆ P.

Remark 4.2. A partially resolving subcategory F in an exact category with enough projectives P is
resolving if and only if P ⊆ F .

Lemma 4.3. ([5], Lem. 2.5) Let E be an exact category with enough projectives P. Let F be a fully
exact subcategory which is closed under taking summands in E, then the following are equivalent:

(1) F is partially resolving
(2) F is deflation-closed with enough projectives Q and Q ⊆ P.

The proof is completely analogue to the given reference, we leave it to the reader.

Remark 4.4. If we are in a Krull-Schmidt category (say we have minimal projective covers) then
the syzygies in (PR2) can be always taken with respect to the minimal projective cover and in this
case we can find intersections of arbitrary partially resolving subcategories are partially resolving.

Remark 4.5. If F is partially resolving in E then it is homologically exact, cf. Chapter 1.

For a small additive category A, we denote by mod1A the category of all additive functors
F : Aop → (Ab) with F ∼= cokerHomA(−, f) for some morphism f in A (f ∈ Mor−A). We see this
as a fully exact subcategory of the abelian category Mod−A (all additive contravariant functors
Aop → (Ab)).
For a full additive subcategory B ⊆ A we define the full subcategory of mod1A

mod1(A|B) := {F ∈ mod1A | F ∼= cokerHomA(−, f), f ∈ Mor− B}
Then this is a fully exact subcategory of mod1A by the horseshoe lemma.

Lemma 4.6. The restriction functor

Φ: mod1(A|B)→ mod1 B, F 7→ F |B
is an equivalence of additive categories which is also an exact functor.

The proof is straight-forward. This is usually not an equivalence of exact categories, the
quasi-inverse functor is a not necessarily exact tensor functor - we see mod1(A|B) as an exact
substructure of mod1 B.
(Nevertheless it restricts to an exact equivalence of many smaller categories, e.g. on
mod2(A|B)→ mod2 B it is already an exact equivalence, see other instances later).

Recall a Serre subcategory is a full additive subcategory F in an exact category E with the following
property: For every E-short exact sequence X ↣ Y ↠ Z we have Y ∈ F if and only if X,Z ∈ F .

Definition 4.7. We denote by P2(A) the full subcategory of ModA given by all functors F such
that there exists an exact sequence

0→ HomA(−, X)→ HomA(−, Y )→ HomA(−, Z)→ F → 0

for some X,Y, Z in A. Let B ⊆ A be a full additively closed subcategory. We write P2(A|B) for the
full subcategory of P2(A) given by all functors F such that there exists an exact sequence as above
with X,Y, Z in B.
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It is an easy horse-shoe-lemma argument to see that P2(A|B) ⊆ P2(A) ⊆ ModA are inclusions of
extension-closed subcategories. From now on, we equip them with the fully exact structure.

Lemma 4.8. Let B ⊆ A be a full additive subcategory. Then, P2(A|B) is a partially resolving
subcategory of P2(A). Furthermore the restriction functor

P2(A|B)→ P2(B), F 7→ F |B
is an equivalence of exact categories (i.e. an equivalence of categories which is homologically exact).

Proof. As P2(A|B) is by definition closed under taking syzygies in P2(A), it follows that it is
an exact category with enough projectives given by HomA(−, B), B ∈ B. This implies it is partially
resolving.
Restriction functors are exact functors on functor categories, therefore their restrictions to fully
exact subcategories are still exact. By definition this functor is essentially surjective. Using the
projective presentations one can see that this is an equivalence of additive categories which restricts
to an equivalence on the category of projetives. Now, both are exact categories with enough
projectives and have gldim ≤ 2, therefore the derived functor is a triangle equivalence. This implies
that the funtor is homologically exact. □

In particular, (using the quasi-inverse of the equivalence) we will consider P2(B) from now on as a
partially resolving subcategory in P2(A).

4.2. Short recap of definitions from Chapter 2. The grade of F ∈ ModA is defined as
the supremum of all natural numbers i ≥ 0 such that

ExtjModA(F,HomA(−, A)) = 0∀A ∈ A for all j < i (of course, only if this exists, else we define it to
be ∞). Let us denote by KC(A) the collection of all kernel-cokernel pairs in A

G2(A) = {F ∈ P2(A) | ∃(i, d), (j, p) ∈ KC(A), F ∼= cokerHomA(−, j ◦ d)}
⊆ {F ∈ P2(A) | grade(F) ∈ {0, 2}}

C2(A) = {F ∈ P2(A) | ∃(i, d) ∈ KC(A), F ∼= cokerHomA(−, d)}
= {F ∈ P2(A) | grade(F) = 2}

J 1(A) = {F ∈ P2(A) | ∃(j, p) ∈ KC(A), F ∼= cokerHomA(−, j)}
⊆ {F ∈ P2(A) | grade(F) = 0}

Enomoto’s duality:

E : C2(A)op → C2(Aop)

E(cokerHomA(−, d)) ∼= coker(HomA(i,−)) (i, d) ∈ KC(A)

Auslander-Bridger transpose (also a duality):
The ideal quotient of mod1A with respect to the projectives is denoted by mod1A.

Tr : (mod1A)op → mod1(Aop)

cokerHomA(−, f) 7→ cokerHomA(f,−).

Lemma 4.9. ([6, Prop. 2.8]) If there is an exact structure E and we have a short exact sequence
(i, d) and a kernel-cokernel pair (j, p) such that cokerHomA(−, d) = F = cokerHomA(−, p), then
(j, p) is also an E-short exact sequence.

Following loc. cit. we say E short exact sequences are closed under homotopy (within kernel-cokernel
presentations). In Chapter 4 we investigate homotopy-closedness more generally.
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In a similar way, we showed in Lemma 4.9 that E-inflations are closed under homotopy among all
presentations.

4.3. Generalizations. Now, given a full additive subcategory ι : B ⊆ A and denote by
KC(A|B) the collection of all relative kernel-cokernel pairs in A, these are kernel-cokernel
pairs (ι(j), ι(p)) in A such that (j, p) is a kernel-cokernel pair in B.

G2(A|B) = {F ∈ P2(A|B) | ∃(i, d), (j, p) ∈ KC(A|B), F ∼= cokerHomA(−, j ◦ d)}
C2(A|B) = {F ∈ P2(A|B) | ∃(i, d) ∈ KC(A|B), F ∼= cokerHomA(−, d)}
J 1(A|B) = {F ∈ P1(A|B) | ∃(j, p) ∈ KC(A|B), F ∼= cokerHomA(−, j)}

For an exact category F = (B,S ′) in EX(E), we obviously have

AE(F) ⊆ G2(A|B), eff(F) ⊆ C2(A|B), H(F) ⊆ J 1(A|B).

The Auslander category AE(F) ⊆ P2(B) ∼= P2(A|B) ⊆ mod1A is an extension-closed subcategory.
As P2(A|B) is partially resolving in P2(A), we have that AE(F) is partially resolving in P2(A) (and
also H(F) is partially resolving in P1(A)). By Auslander correspondence we expect F 7→ AE(F) to
be a bijection with certain partially resolving subcategories of P2(A). But we have to modify the
definition of the transpose category (because it always adds all projectives).
On the other hand, for eff(F)(⊆ AE(F)) ⊆ mod1A we have to expect to get very often the same
subcategory (for example: The split exact categories F always have eff(F) = 0 no matter on which
underlying category). In fact, the data which is lost, is given precisely by the additive category B on
which the exact structure has to be defined.

Assume that we have a left exact functor f : F = (B, T )→ (A,S) = E . In [7], Thm 3.9, it is shown

that the composition F f−→ E X 7→Hom(−,X)−−−−−−−−−→ AE(E) is left exact and factors (uniquely up to
isomorphism) over an exact functor AE(f) : AE(F)→ AE(E).
Lemma 4.10. Then the following are equivalent:

(1) f is fully faithful.
(2) AE(f) is homologically exact.

Furthermore, if f is inclusion of an additively closed subcategory, we can identify AE(F) with the
essential image of AE(f) which is a partial resolving subcategory in AE(E). In this subcategory all
objects have either grade 2 ore 0. The grade 2-objects are precisely the effaceable functors eff(F), i.e.
we have

AE(F) ∩ C2(A) = eff(F)

Proof. The derived functor of AE(f) identifies with Kb(f) : Kb(B)→ Kb(A). Therefore f is
fully faithful iff Kb(f) is fully faithful iff AE(f) is homologically exact. The second claim follows
from AE(E) ∩ C2(A) = eff(E) observed in [7], then AE(f) maps the torsion pair
(eff(F) = ⊥Q,H(F) = copresQ) where Q = AE(F) to (eff(E) = ⊥P,H(E) = copresP) where
P = AE(E) because it preserves projectives and is exact. Therefore the last claim follows. □

Remark 4.11. With the same proof we also show for an inflation-preserving f : E → F : The
functor f is fully faithful if and only if H(f) is homologically exact.

Lemma 4.12. Let F ∈ EX(E) and consider eff(F) as a full subcategory of eff(E) (by applying Φ−1
A|B

to it), then we have
eff(F) ⊆ eff(E) ∩ C2(A|B)

is a Serre subcategory.
Furthermore if E restricts to F on B (i.e. every ses in E which has all three objects in B is exact in
F), then we have eff(F) = eff(E) ∩ C2(A|B).

9



Proof. Clearly eff(F) ⊆ eff(E) ∩ C2(A|B) extension-closed. As F is an exact structure, eff(F) is
already Serre subcategory in C2(B) ∼= C2(A|B), this implies it also is a Serre subcategory in
eff(E) ∩ C2(A|B).
Assume now that E restricts to F on B, then we have to show the other inclusion. Let
F ∈ eff(E) ∩ C2(A|B), then we find two A-kernel-cokernel pairs representing F and one is an E-ses
and the other one is an (i, p) ∈ KC(A|B). As E-short exact sequences are closed under homotopy
(Lemma 4.9) it follows that (i, p) is also an E-short exact sequence. By our assumption, the E-short
exact sequences with all three terms in B are just the F-short exact sequences, it follows that
F ∈ eff(F). □

We will also need the following definition.

Definition 4.13. Let X ⊆ P2(A) an additive subcategory, we define B := BX ⊆ A to be the full
(additive) subcategory of objects B ∈ A such that HomA(−, B) ∈ X .
We consider the composition P2(Aop|Bop)→ mod1A → mod1Aop as the identity on objects. In this
case we define the relative transposed category Trrel(X ) to be the full subcategory of objects X
in P2(Aop|Bop) such that X ∼= Tr(X′) in mod1Aop for some X ′ ∈ X .

Remark 4.14. By definition BG2(A|B) = B = BJ 1(A|B) and

Trrel(G2(A|B)) = G2(Aop|Bop), ΩTrrel(J 1(A|B)) = J 1(Aop|Bop)
We also remark that BC2(A|B) = {0}.

We fix an exact structure E on A. For every B ⊆ A full additively closed subcategory let
CB,max ⊆ mod1 B be the Serre subcategory corresponding to the maximal exact structure F on B
such that the inclusion F → E is an exact functor. Recall that we have an equivalence
ΦA|B : C2(A|B)→ C2(B), F 7→ F |B of exact categories.

Theorem 4.15. Let A be an idempotent complete, small additive category and E = Emax the
maximal exact structure on it. Then the assignments

F 7→ AE(F), F 7→ inf(F), F = (B,S) 7→ (B, eff(F))
give bijections between EX(E) and (1), (2) and (3) respectively.

(1) Partially resolving subcategories X ⊆ P2(A) such that X ⊆ G2(A|B) for B = BX and
Trrel(X ) ⊆ P2(Aop) is also partially resolving.

(2) Partially resolving subcategories J ⊆ P1(A) such that J ⊆ J 1(A|B) for B = BJ and
ΩATrrel(J ) ⊆ P1(Aop) is also partially resolving.

(3) pairs of categories (B, C) with
(*) B ⊆ A a full additively closed subcategory and
(*) C ⊆ C2(A|B) a full additively closed subcategory such that ΦA|B(C) is a Serre

subcategory in CB,max.

Proof. We observe that (3) is just a trivial consequence of Enomoto’s bijection, Chapter 2,
Theorem ??, we just state it here for completeness sake.
Let us turn to (1) and (2) and show the assignments are well-defined. Let F = (B,S) ∈ EX(E).

(1) We already observed that X := AE(F) is partially resolving in P2(A). We want to see
AE(Fop) = Trrel(X ). We denote by G2(A) the essential image of G2(A)→ mod1A. When

we restrict the functor TrA we a commutative diagram (*)

G2(A|B) G2(A)

G2(Aop|Bop) G2(Aop)

incl

TrB TrA

incl

10



The underline on the right hand side can either be seen as the essential image in mod1A(op)

or the essential image in mod1B(op), the functors TrA and TrB coincide on this subcategory.
This means that the relative trace category Trrel(X ) = TrB(X ) = AE(Fop) and this is
partially resolving in P2(Aop).

(2) We already know that J := H(F) is partially resolving in P1(A) and we want to see
H(Fop) = ΩATrrel(J ). We look at the diagram (*). Not just trace also ΩA and ΩB identify
on these subcategories, so ΩATrrel(J ) = ΩBTrB(J ) = H(Fop) and this is partially resolving
in P1(Aop).

Now, we define the inverse assignments:

(1) Assume we have X as in (1) and define B = BX , then we see that X ⊆ P2(A|B) ∼= P2(B) is
resolving and as we have X ⊆ G2(A|B), it follows as above
Trrel(X ) = TrB(X ) ⊆ G2(Aop|Bop) is resolving in P2(Aop|Bop) ∼= P2(Bop). By Theorem ?? it
follows that X = AE(F) for an exact structure F on B. The inclusion X ⊆ AE(E) apriori
corresponds to a fully faithful left exact functor f : F → E . But the inclusion
Trrel(X )→ AE(Eop) corresponds to fop also being left exact, we conclude that f : E → F is
exact and so F ∈ EX(E). This gives the inverse map.

(2) Assume we have J as in (2) and define B = BJ , then J is resolving in P1(A|B) ∼= P1(B).
As J ⊆ J 1(A|B) we conclude ΩATrrel(J ) = ΩBTrB(J ) is resolving in P1(Aop|Bop). By
Theorem ?? it follows that J = H(F) for an exact structure on B and as we have
J ⊆ J 1(A|B) we conclude (using Lemma 4.9) hat all short exact sequences in F are
mapped to kernel-cokernel pairs in A. Then we look at the H(F) ⊆ H(E), by Appendix B,
Chapter 2, it corresponds to a fully faithful inflation-preserving functor E → F , but as this
functor also maps short exact sequences to kernel-cokernel pairs it is exact.

□

5. Meet-preserving of homological conditions

5.1. Examples for negative answers. We collected these negative answers:

(1) homologically exactness and also homologically faithfulness
(2) gldim = n
(3) having enough projectives (or injectives)
(4) hereditary exact substructures in an hereditary exact category

Also, the subposet of hereditary exact substructures may not have a unique maximal element.
The following is an example for (1).

Example 5.1. Intersections of homologically exact subcategories may not be homologically exact
subcategories. We give an example of a resolving and a coresolving subcategory in an abelian
category whose intersection is a semi-simple subcategory which is not homologically exact in the
abelian category. Take E = Λmod, with Λ = KQ/I where (Q, I) is the following bound quiver

3

1
a // 2

b
@@��������

c
��>

>>
>>

>>
>

4

I = (ba)

Then this has nine indecomposable representations (the projectives, the injectives S2 and rad(P1)).
Then R = add(Λ⊕ rad(P1)⊕ I1) is resolving and C = add(DΛ⊕ S2 ⊕ P3) is coresolving. Their
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intersection is add(P1 ⊕ I1 ⊕ P3). This is a semi-simple extension-closed subcategory (observe
P1 = I4). Since Ext2Λ(I1, P3) ̸= 0 it is not homologically exact in E .

For (3), one just has to observe that given infinitely many contravariantly finite generators Pi in an
exact category, it is generally not true that

∨
Pi (i.e. the smallest generator containing all Pi) is

contravariantly finite.

Example 5.2. Let E = Λmod with Λ the path algebra of the Kronecker quiver. We find finite
dimensional preprojective generators Gn = Λ⊕ τ−Λ⊕ · · · ⊕ τ−nΛ, n ∈ N such that

∨
n∈N add(Gn) is

the preprojective component. Then we observe that the preprojective component is not
contravariantly finite.

The following gives an example for (2), (4) and shows that homologically faithfulness is not
preserved under forming meet.

Example 5.3. We give an example of an hereditary exact category with two hereditary exact
substructures such that the intersection is no longer hereditary exact. Let E = Λmod where Λ is the
path algebra of 1→ 2→ 3→ 4. We choose two generators G1 = Λ⊕ I3 ⊕ S3 ⊕ S1 and G2 = Λ⊕ S2.
Let Ei = (Λmod, FGi) be the exact substructure such that Hom(Gi,−) is exact on short exact
sequences, then E1 ∩ E2 = (Λmod, FG1⊕G2). By looking at projective resolutions of non-projective
indecomposables one easily see gldim(Λmod, FGi) = 1 for i = 1, 2 and gldim(Λmod, FG1⊕G2) = 2.

5.2. Positive answers. Are already discussed in the introduction, we just prove here this
missing Lemma:

Lemma 5.4. Let E be an exact category and n ∈ N. Then the following are equivalent

(1) gldim E ≤ n
(2) Extn(X,σ) is right exact for all objects X and E-short exact sequences σ
(3) Extn(σ,X) is right exact for all objects X and E-short exact sequences σ

Proof. We only show the equivalence of (1) and (2) (the other equivalence follows from passing
to the opposite exact category). Clearly (1) implies (2) follows from the long exact sequence on the
Ext-groups. So assume (2) and take σ ∈ Extn+1

E (X,Y ). Write σ as a concatenation σ1σ2 with
σ1 : Y ↣ V ↠ W and apply Hom(X,−) to σ1. We look at the connecting morphism

ExtnE(X,W )→ Extn+1
E (X,Y )

By [8, Cor. 4.2.12] this is given by concatenation with σ1. In particular σ2 7→ σ and so σ is in the
image. But as ExtnE(X,σ1) is right exact, this is zero. □

We say a bifunctor which is middle exact and fulfills the (corresponding) condition (2) and (3) from
the previous lemma is right exact. So we can identify hereditary exact substructures with right
exact subfunctors of Ext1Emax

. These are usually not closed under intersection (see: negative answers).
There also can not exist a structure as a complete lattice on hereditary exact substructures.

Example 5.5. This is an example with two maximal hereditary substructures. Let Λ be the path

algebra of 1
a−→ 2

b−→ 3 bound by the relation ba = 0. We consider the abelian category E = Λmod.
Let Ei be the exact substructure with P(Ei) = add(Λ⊕ Si), i = 1, 2. Both are hereditary exact and
maximal wrt being hereditary.

6. Representation-finiteness

Let K be a field. Now, we assume that A is Krull-Schmidt K-linear category of finite
representation-type (i.e. only finitely many indecomposable objects in A). Given a full additively
closed subcategoryM, then it is covariantly finite in a category A and we denote for any object A in
A by fA : A→MA with MA inM a leftM-approximation of A.
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Lemma 6.1. Let K be a field. Let A be a small K-linear additive, Hom-finite Kull-Schmidt category
of finite type andM = add(M) an additively closed subcategory. Let E be an exact structure on A
with enough projectives with P(E) = add(G) and let F be the maximal exact structure onM making
the inclusion an exact functor. Then we have P(F) = add(MG ⊕Mcoker fC ) where we define
copresE(M) := {X ∈ E | ∃ E-ses X ↣ M ′ ↠ Y } and since this is of finite type, we assume it is
add(C) for an object C in A.

Proof. We first show that (1) MG and (2) Mcoker fC as in the lemma lie in P(F):
(1) We show that fG is an E-deflation: Take g : G0 ↠ MG be a E-deflation with addG0 ∈ addG. We
may assume G = G0. Then g factors over f , i.e. there exists an endomorphism h ∈ End(MG) such
that g = fh. By the obscure axiom h is an E-deflation. It is an easy observation that then
dimHom(G, kerh) = 0 and therefore h an isomorphism. This implies f is also an E-deflation. In
particular Hom(f,M) : Hom(MG,M)→ Hom(G,M) is an isomorphism. This shows MG ∈ P(F).
(2) The left add(M)-approximation fC : C →MC is an E-inflation, let D := coker(fC). This implies
we have a a left exact sequence 0→ Ext1E(D,M)→ Ext1E(MC ,M)→ Ext1E(C,M). Now
fD : D →MD together with the composition MC →MD and passing looking at the inclusion of the
subfunctor Ext1F ⊆ Ext1E |M we look at the following commutative diagramm

0 Ext1E(D,M) Ext1E(MC ,M) Ext1E(C,M)

Ext1E(MD,M)

Ext1F (MD,M) Ext1F (MC ,M)

Now, we claim Ext1F (MA,M)→ Ext1E(A,M) is injective for all objects A (then applied in the
diagramm for A = D and A = C implies first that Ext1F (MD,M)→ Ext1F (MC ,M) in a
monomorphism and then that Ext1F (MD,M) = 0)).
Let us prove the claim: The map is given by pull-back F-short exact sequences ending in MA along
the map fA, assume the lower line pulls back to a split exact sequence. Then we find the dashed
morphism f : A→M1 such that the triangle commutes

A

M M1 MA

fA

As M1 ∈M using that fA is a leftM-approximation we find splitting MA →M1 of the lower exact
sequence. This show the injectivity.
Secondly, we need to see that P(F) ⊆ add(MG ⊕MD).
We claim (call this (*)): For every E-exact sequence (i, d) : X ↣ MG1 ↠ Y with G′

2 ∈ add(G) and
Y ∈ add(M) we have i is a left add(M) approximation, i.e. we may assume i = fX .
Before, we proof the claim, let us explain its consequence. Let Q ∈ P(F) and take an E-deflation
q : G′ ↠ Q with G′ ∈ add(G). It factors over an E-deflation q′ : MG′ → Q. Let X = ker q′, then by
claim (*), we have Q = coker fX = Mcoker fX ∈ add(MG ⊕MD).
Proof of claim (*): Let G =

⊕
i∈I G

i be a direct sum decomposition into indecomposables. We
assume wlog MG =

⊕
i∈I MGi . We use the horse-shoe lemma to produce split exact sequence

H1 ↣ H2 ↠ H3, Hi ∈ add(G) such that there is a morphism (p1, p2, p3) to the short exact sequence
(i, d) with all pj E-deflations. Then p2, p3 have to factor over fH2 , fH3 respectively and therefore also
p1 has to factor over fH1 (all of these are E-deflations). We find another split exact sequence
MH1 ↣ MH2 ↠ MH3 such that there exists a morphism (h1, h2, h3) of ses to (i, d) with all hi are E-
deflations. As MG′

2
∈ add(MG) it follows that h2 is a split epimorphism, i.e. we find another split

exact sequence MG2 ↣ MH2 ↠ MG′
2
. Now, we define G1 to be the largest common summand of the

two summands H1 and G2 in H2 and we set G′
1 = H1/G1. As MG1 is mapped under q1 to zero, we

get a commutative diagram

13



MG′
1

MG′
2

X MG′
2

split

q′1 =

i

with q′1 an E-deflation. Right, now after all this affords we produced a split monomorphism
j : G′

1 → G′
2 with r : G′

2 → G′
1, rj = idG′

1
such that we find a commutative diagram

G′
1 G′

2

X MG′
2

j

g1 fG′
2

i

with g1 also an E-deflation. Then we look at a morphism t : X →M and we want to see it factors
over i. We have there exists m : MG′

2
→M such that

tg1r = mfG′
2
⇒ tg1 = mfG′

2
j = mig1

and since g1 is an epimorphism it follows t = mi. □

Remark 6.2. Even in the representation-finite case: Exact subcategories can have more, less or
equal number of indecomposable projectives to the exact category in which they are embedded into.

By a result of Enomoto, [6, Prop. 3.14, Cor. 3.15], every exact structure on A has enough
projectives and enough injectives and is an Auslander-Reiten category.
Exact structures on A is the boolean lattice of generators. The lattice of all exact subcategories has
for every additively closed subcategory B a boolean sublattice of all generators containing the
generator constructed in the previous lemma (for E = Emax the maximal exact structure on A). The
disjoint union of all these sublattices contains all exact subcategories in A.
We also easily find:

Lemma 6.3. Let A as through-out in this subsection. Then EX(A) is a finite poset, let Fi be an
exact structure on Bi ⊆ A, i = 1, 2. Let F1 → F2 be an arrow in the Hasse diagramm, then:
(1) If the underlying additive categories are equal, then it is an arrow in the Boolean lattice
corresponding to this subcategory.
(2) If they are not equal we have |B1| < |B2| and F1 is the maximal exact structure making the
inclusion B1 → F2 exact and for all proper intermediate B1 ⊊ B ⊊ B2, if FB is the maximal exact
structure making the inclusion B → F2 exact then the inclusion F1 → FB is not exact.

The proof is obvious.
With the previous two Lemmata we can theoretically compute these lattices. Instead we just look at
the easiest non-trivial case and count how many objects we have (that already takes some time).

Exact structures on A is a graded poset by the map: E 7→ |P(E)| ∈ N where the last one is the
number of indecomposable projectives (up to isomorphism). Let E be an exact structure on A and
E(E) ∈ {EX(E),Ex(E), ext(E), ex(E)}. As these lattices are notoriously big, we look instead at the
following simple generating function

µE(E)(X,Y, T ) :=
∑

E ′∈E(E),gldim E ′<∞

X |P(E ′)|Y |E ′|T gldim E ′

e.g. if we set aEijk to be the multiplicity of XiY jT k. For example, let Q be a Dynkin quiver, then

a
ext(KQmod)
nn0 with n = |Q0| is the number of basic tilting KQ-modules.

Now, let us look at the simplest cases.
Let E = Λ-mod with Λ = K(1→ 2→ 3→ · · · → n) and let G be basic module given by the direct
sum of all indecomposable non-projectives. As a lattice ex(E) is a cube given by all summands of G,
the meet of add(G′) and add(G′′) is given by add(G′ ⊕G′′), and the join is given by
add(G) ∩ add(G′).
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Example 6.4. n = 2, then EX(E) has 9 elements, the cube on the bottom is ADD(A) (i.e. all split
exact structures) and the maximal element is the abelian structure on E , i.e. the Hasse diagramm
looks like

•

•

• • •

• • •

•

Example 6.5. n = 3, we have 8 generators, so ex(E) has 8 elements, we have 26 = 64 additively
closed subcategories in ADD(A) of whom 34 are extension-closed, then Ex(E) has 56 elements and
EX(E) has 95.

µex(A3)(X,Y, T ) = Y 6[X6 + (X3 + 2X4 + 3X5)T +X4T 2]

µext(A3)(X,Y, T ) = 1 + 6(XY ) + 10(XY )2 + 5(XY )3

+ [4Y 3X2 + (5Y 4 + 2Y 5 + Y 6)X3]T

µEx(A3)(X,Y, T ) = 1 + 6(XY ) + 10(XY )2 + 9(XY )3 + 5(XY )4 + 2(XY )5 + (XY )6

+ [4Y 3X2 + (5Y 4 + 2Y 5 + Y 6)X3 + (4Y 5 + 2Y 6)X4 + 3Y 6X5]T

+ Y 6X4T 2

µEX(A3)(X,Y, T ) = 1 + 6XY + 15(XY )2 + 20(XY )3 + 15(XY )4 + 6(XY )5 + (XY )6

++[4Y 3X2 + (9Y 4 + 2Y 5 + Y 6)X3 + (8Y 5 + 2Y 6)X4 + 3Y 6X5]T

+ (Y 4X3 + Y 6X4)T 2

Example 6.6. n = 4, E(E) = ex(E) has 26 = 64 elements. Then one can calculate

µex(A4)(X,Y, T ) = Y 10[X10 + (X4 + 3X5 + 7X6 + 14X7 + 12X8 + 6X9)T

+ (3X5 + 7X6 + 5X7 + 3X8)T 2 + (X6 +X7)T 3]

Observe, that we have 42 exact substructures of gldim = 1, this means the poset of hereditary exact
substructures has 43 elements, which is substantially more then the 24 submodule-closed generators.
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