
Exact categories represented by morphisms

1. Synopsis

For every module over a ring there is the associated module category over the endomorphism ring,
i.e. a construction of a new module category over a ring.
This has the following generalization to exact categories: For an exact category E and a full
subcategory M we look at all the E-admissible morphisms S in M and define the category of
S-presented functors F : Mop → (Ab), this is a fully exact category of all finitely presented functors.
Interestingly, we can also choose other classes of morphisms (for example deflations or inflations) and
still obtain an exact category. Of course this topic deserves a systematic study that I can not give
(due to time constraints).
We have already seen in Chapter 2, the Auslander exact category as an instance of this construction,
we explain its generalizations which lead to the generality of a contravariantly finite generator M in
an arbitrary exact category. We give a short history of ideas in the next section.
Furthermore, we have an exact category with enough projectives always presented by its admissible
morphism between the projectives. Tilting subcategories are a generalization of the subcategory of
projectives and we start using this construction in tilting theory for exact categories (cf. Chapter 10).
What is new? Functor categories represented by (general) classes of morphisms (in the literature
you find either admissible morphisms or deflations). The generator correspondence for exact
categories.

2. A short history of ideas

Of course, one would like to have an endo-dictionary translating properties into each other. Related
to this is the question: Can one reconstruct the module category/exact category from this
endomorphism ring/admissibly presented functor category?
This question has been answered in many different situations, we quickly survey the history of ideas
here: We start recalling two result of M. Auslander.

Theorem 2.1. (Auslander correspondence, 1971, [2]) There exists a bijection between the set of
Morita-equivalence classes of representation-finite finite-dimensional algebras Λ and that of
finite-dimensional algebras Γ with gldimΓ ≤ 2 ≤ domdimΓ. It is given by Λ 7→ Γ = EndΛ(M) where
modΛ = add(M)

This has further generalizations to (from special to more general, some predate Auslander’s result)

(*) The higher Auslander correspondence [10]
(*) The Morita-Tachikawa correspondence [14], [16]
(*) The generator correspondence [15], [3]

They are all instances of faithfully balancedness which we explain by considering an assignment of
Morita equivalence classes of pairs of rings and modules and the assignment

E : [Λ, ΛM ] 7→ [Γ = EndΛ(M), ΓM ]

Then we call a module ΛM faithfully balanced if E2[Λ,M ] = [Λ,M ]. All correspondences (for rings
and modules) using this assignment E are instances of faithfully balanced modules. As a feature,
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Hom(−,M) then always gives a duality between certain subcategories of the module categories
[12, Lem 2.9] and all dualities given by such a Hom-functor arise from faithfully balanced modules
(e.g. Matlis duality - [11]). The best studied examples apart from (co)generators are (co)tilting (cf.
[13]) in which the duality becomes the Theorem of Brenner and Butler ([4]). There are many more
correspondences of faithfully balanced modules, we recommend to read the introduction in [12].
In loc. cit. we generalized faithfully balanced to Auslander-Solberg exact structures of finite type on
f.d. module categories of f.d. algebras. In Chapter 5 we look at faithfully balancedness in functor
categories (because we need some of the results in tilting theory for exact categories).
(It is unclear how general faithfully balancedness can be defined - but all ambient exact categories
are with enough projectives and we think that having enough projectives will always be an
assumption for the set-up.)
Then, secondly

Theorem 2.2. (Auslander’s formula, 1966, [1]) Let C be a small abelian category and mod1 C
the category of finitely presented additive functors Cop → (Ab). Then this is an abelian category and
there exists a left adjoint exact functor L : mod1 C → C to the Yoneda embedding. Its kernel is a
Serre subcategory, called the effaceable functors, kerL = eff(C) and there is an induced equivalence

mod1 C/eff(C) → C

This suggest a different way of reconstructing the category C from its module category mod1 C,
namely as localization with respect to the subcategory of effaceable functors. We call this approach
reconstruction using Auslander’s formula. Using this the following has been generalized to arbitrary
exact categories

(*) The Auslander correspondence [9]
(*) The higher Auslander correspondence [7]
(*) The Morita-Tachikawa correspondence [8]
(*) The generator correspondence, cf. Theorem 3.28

Nevertheless, the assignment considered in all cases is the following:
To an exact category E and an additively closed subcategory M, we assign the category modS M of
additive functors F : Mop → (Ab) such that there exists an E-admissible morphism s : M1 → M0,
Mi ∈ M such that F = cokerHomM(−, s). We write this as assignment of (exact equivalence classes
of) pairs of exact categories together with a subcategory.

E′ : [E ,M] 7→ [modS M, eff(M)]

We will consider E′ and E at least on the first entry as the same assignment.
The question is: ”Can we find a localization sequence as in Auslanders formula which reconstructs E
and M and therefore gives an inverse assignment to E′?”.

The obvious general open question

Open question 2.3. How does the first and the second type correspondence fit together? Both are
crucially using adjoint pairs of functors, is there a joint generalization?

Let us look at an idempotent recollement on an endomorphism ring of a generator. In this situation
we can study this generclosedator as a faithfully balanced module or we can look at the recollement
and can recover the right hand side abelian category as a localization. Yet for other faithfully
balanced modules this is not known to be true, so a description with an Auslander formula can not
really be expected.
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always small exact categories with subcategory M:

contrav. fin. gen.

f. b. in (*)

generator in (*)

where (*) is an exact category in which faithfully balanced (f.b.) is defined, so far only for
Auslander-Solberg exact structures of finite type [12] and for categories of all additive functors
ModP with P essentially small, cf. Chapter 5.

3. Presentations of exact categories

We start with a study of exact categories of the form modS M (called exactly presented by (M, S))
for some class of morphisms S in the first section. Then we translate properties of S into properties
of modS M. The most important: S has weak kernels in S translates into modS M is has enough
projectives given by the presentables.

Definition 3.1. Given an additive category M and a class of morphisms S in M. We say it is
closed under homotopy if for two morphisms s, t in M with
cokerHomM(−, s) ∼= cokerHomM(−, t) in mod1M we have s ∈ S if and only if t ∈ S.

Being homotopy-closed is often useful, such as:

Lemma 3.2. If S is closed under homotopy and direct sums and summands of morphisms (i.e.
s, t ∈ S iff s⊕ t ∈ S) then modS M is an additively closed subcategory in ModM.

The proof is obvious.

Remark 3.3. If S is homotopy closed then it contains all split epimorphisms. If every representable
Hom(−,M) is of the form cokerHom(−, s) for some s ∈ S and if S is homotopy closed then all split
admissible morphisms are contained in it.

Lemma 3.4. If S ⊆ MorM is a class of morphisms which is closed under direct sums and
summands. If S contains all split epimorphisms then S is homotopy-closed.

Proof. Assume F = cokerHomM(−, s) = cokerHomM(−, t). We look at the projective
presentations of F in ModM, say s : M1 → M0, t : N1 → N0. Then we have
s⊕ idN0 ⊕ (N1 → 0) ∼= t⊕ idM0 ⊕ (M1 → 0) and by assumption s ∈ S if and only if t ∈ S. □

Definition 3.5. Let M be an additive category and S a class of morphisms in M. We define the
category of S-represented M-modules modS M to be the full subcategory of ModM consisting
of the functors F : Mop → (Ab) such that there exists an exact sequence

Hom(−,M1)
Hom(−,f)−−−−−−→ Hom(−,M0) → F → 0
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Definition 3.6. We say that a class of morphisms S on an additive category M (or the pair
(M, S)) is an exact presentation if E = modS M is an extension-closed subcategory in ModM
(we will always equip it with this exact structure). In this case, we also say the exact category E is
exactly represented by (M, S).

We will from now on assume that S is homotopy-closed and closed under direct sums.

Example 3.7. Exactly presented exact categories are precisely all fully exact subcategories of
mod1M for some additive category M. If E is a fully exact subcategory of mod1M, take S to be the
class of all morphisms s in M such that cokerHomM(−, s) lies in E , then obviously E = modS M.

Definition 3.8. We say an exact category E is projectively determined (by Q ⊆ P(E)) if a
kernel-cokernel pair (i, p) is an exact sequence in E if and only if (Hom(Q, i),Hom(Q, p)) is an exact
sequence of abelian groups for all Q ∈ Q.
More generally, given an exact subcategory i : E ′ ⊆ E , we say that E ′ is projectively determined
by Q ⊆ P(E ′) inside E if: An E-exact sequence X ↣ Y ↠ Z with X,Y, Z in E ′ is E ′-exact if and
only if (Hom(Q, i),Hom(Q, p)) is an exact sequence of abelian groups for all Q ∈ Q.

In particular if E is projectively determined by Q than it is projectively determined by Q inside the
maximal exact structure on the underlying additive category.

Example 3.9. Given an exact category E with enough projectives then E is projectively determined.

Example 3.10. Let E be an exact category. Every additive subcategory M of E gives an exact
substructure EM ≤ E defined as follows: A E-exact sequence (i, p) is an exact sequence in EM if and
only if (Hom(Q, i),Hom(Q, p)) is an exact sequence of abelian groups for all Q ∈ M.
These exact substructures are called Auslander-Solberg structures. By definition they are
projectively determined by M inside E . In particular, if E is projectively determined by Q, then
E = Emax

Q is the Auslander-Solberg structure given by Q of the maximal exact structure on the
underlying additive category.

Example 3.11. Given an exact category E which is projectively determined by Q. If E ′ is a fully
exact subcategory which also contains Q then E ′ is also projectively declosedtermined by Q and also
projectively determined by Q inside E .

Definition 3.12. Let S be a class of morphisms in an additive category M, then we say S has
weak kernels in S if for every morphism s : M → N in S there exists another morphism t : L → M
such that

HomM(−, L)
Hom(−,t)−−−−−−→ HomM(−,M)

Hom(−,s)−−−−−−→ HomM(−, N)

is exact in the middle (in ModM).
Dually weak cokernels in S if Sop has weak kernels in Sop.

Lemma 3.13. Let S be a class of morphisms closed under isomorphism, direct sums and summands
and contains all split admissible morphisms. Let E be exactly presented by (M, S). Let

M̃ = {Hom(−,M) ∈ mod1M : M ∈ M} and S̃ := {Hom(−, s) | s ∈ S}.
The following are equivalent

(a) S has weak kernels in S

(b) S̃ equals all E-admissible morphisms in M̃
(c) E has enough projectives given by add(M̃).

Proof. Very easy. We leave it to the reader. □

Definition 3.14. We call a class of morphisms S in a category M suitable if (M, S) is an exact
presentation and S has weak kernels in S and is closed under homotopy.
In this case we say that the exact category modS M is suitably presented by (M, S).
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We also observe that M̃ ⊆ E implies E is projectively determined by M̃ (as ModM fulfills this and
E is fully exact in it).

Lemma 3.15. Let E be an exact category and M a full additively closed subcategory. Let S be either

(1) Sadm all E-admissible morphisms in M, or
(2) Sinfl all E-inflations in M, or
(3) Sdefl all E-deflations in M,

then S is an exact presentation. If the ambient exact category E is clear, we will use the following
notation:

(1) modadmM = modSadm
M, (2) HM := modSinfl

M, (3) effM = modSdefl M

Proof. (1) The proof is an easy adaptation of [9, Prop. 3.5].
(2), (3) We just need to see that HM and effM are extension-closed in modadmM but this follows
from the horseshoe lemma and [5, Cor. 3.2]. □

Corollary 3.16. If E is an exact category with enough projectives P. Then

P : E → modadm P, E 7→ Hom(−, E)|P
is an exact equivalence (i.e. equivalence which is an exact functor and its quasi-inverse is also an
exact functor). If P is idempotent complete, then modadm P is a resolving subcategory in mod∞ P.

Now, we need the following observation:

Lemma 3.17. ([6, Lemma 21, 22]) Let E be an exact category.

(a) E-inflations is closed under direct summands iff
E is weakly idempotent complete iff
E-deflations are closed under direct summands.

(b) E-admissible morphisms are closed under direct summands if and only if E is idempotent
complete.

This can be used to:

Example 3.18. If M ⊆ E is a contravariantly finite generating subcategory and Sadm the class of
admissible morphisms on M. Then Sadm has weak kernels in Sadm and modadmM has enough

projectives given by add(M̃). We have that the functor E 7→ Hom(−, E)|M restricts to a fully
faithful functor Φ: E → modadmM.
By the previous Lemma and Lemma 3.4: If E is idempotent complete then (M, Sadm) is a suitable
presentation.

Example 3.19. If the exact structure of E restricts to M to an abelian structure, then every
E-admissible has a kernel in M which is given by an E-inflation and so the class of E-admissible
morphism on M coincides with all morphisms in M and this is suitable (this presents the abelian
category mod1M).

Here is a little warning.

Remark 3.20. Given a fully exact subcategory F ⊆ E , then there might be many more E-admissible
morphisms on F than there are F-admissible ones. Even if F is homologically exact- just consider
the case above: F = P(E) is semi-simple, only projections onto summands are F-admissible.

Remark 3.21. Let us summarize the discussion from before:
We have 1) ⇒ 2) ⇒ 3) ⇒ 4) with

1) Exact categories with enough projectives
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2) Exactly presented categories, projectively determined by M̃
3) Exactly presented categories
4) Exact categories

We do not know a small exact category which is not exactly presented.
An example fulfilling 3) but not 2) is given by categories of effaceable functors on an exact category.
An example fulfilling 2) but not 1) is given by mod1M (i.e. finitely presented additive functors in
ModM) where M does not have weak kernels (then this category has not enough projectives).

3.0.1. Universal Property. Now, we take F exactly presented by (M, S) and an additive functor
f : M → B such that f(s) has a cokernel for all s ∈ S. Then we can define a functor

f : F → A, f(cokerHom(−, s)) = coker f(s)

Lemma 3.22. In the above situation

(1) Assume that A is weakly idempotent complete. If f : M → E with E an exact structure on A
and if f(s) admissible for all s ∈ S, the f : F → E is right exact.

(2) In the situation of (1); If all morphisms in s ∈ S there exist a weak kernel t ∈ S such that
(f(t), f(s)) is exact in the middle then f : F → E is exact.

Proof. (1) Assume F1 ↣ F2 ↠ F3 is exact in F . We pick si ∈ S such that
cokerHomM(−, si) = Fi, i = 1, 2, 3. We now consider the Hom(−, si) as projective
presentations of Fi in ModM. We can assume by the horseshoe Lemma (using that we
assume S is homotopy-closed) that these projective presentations are degree-wise split. As
f is an additive functor, we obtain that (f(s1), f(s2), f(s3)) is a morphism of two split exact
sequences in E . As A is weakly idempotent complete and f(si) are E-admissible we can
apply the snake lemma and we obtain a right exact sequence f(F1) → f(F2) ↠ f(F3) on
the cokernels.

(2) We repeat the same steps as in (1) but now with one longer projective presentations. The
exactness of the outer sequences implies the exactness of the middle sequence in F . Then
apply the snake lemma.

□

Lemma 3.23. (Universal property) Let F be suitably presented by (M, S). For every functor
f : M → E which maps S to E-admissible morphisms, the right exact functor f : F → E with
f(coker(HomM(−, s))) = coker f(s) for all s ∈ S is (up to isomorphism of functors) the unique right
exact functor F with F ◦ Y = f where Y : M → modadmM, M 7→ HomM(−,M) is the Yoneda
embedding.

Proof. Let F be a right exact functor with F ◦ Y = f . Then as F is right exact and Hom(−, s)
admissible for all s ∈ S (because F is suitably presented). It follows that
F (cokerHom(−, s)) = coker f(s) = f(cokerHom(−, s)). □

Remark 3.24. Observe that we do not need that F is suitably presented by (M, S) to show that f
is right exact. But for the unique characterization we assume (even though it is a bit stronger than
necessary).

3.1. Results for admissible morphisms. Let us come to the Yoneda embedding, recall from
Lemma 3.13.

Remark 3.25. Let M be an additively closed subcategory in an idempotent complete exact
category E , then the Yoneda embedding Y : M → modadmM reflects admissibility if and only if
Sadm is suitable.
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Definition 3.26. Let E be an exact category and M ⊆ E be an additively closed subcategory and
we denote by S the class of E-admissible morphisms in M. Then we define the following full
subcategory of modS M

effM = {F = cokerHomE(−, d)|M | d deflation }

and call this the subcategory of M-effaceable functors.
We say that M satisfies the Auslander formular if effM is a two-sided percolating subcategory
(definition of [9]) and the quotient modS M/effM is equivalent as an exact category to E .

Lemma 3.27. Let M be a contravariantly finite generator in E, let Sadm be all E-admissible
morphisms in M. Let inc : M ⊆ E be the inclusion functor and L = inc: modadmM → E defined by
L(cokerHomM(−, s)) = coker s. We denote by Φ: E → modadmM the functor
Φ(E) = HomA(−, E)|M.

(i) L is exact, Φ is left exact and kerL = effM
(ii) (L,Φ) are an adjoint pair, Φ is fully faithful, L is essentially surjective and L ◦ Φ ∼= idE
(iii) The subcategory effM is percolating in modadmM and the functor L factors over an

equivalence of exact categories

L′ : modadmM/ effM → E

Proof. (i) To see that L is exact we observe that we can find weak kernel of morphisms in
M which give middle exact sequences and so Lemma 3.22 (2) applies. Clearly, for an
s ∈ Sadm, we have: L(cokerHom(−, s)) = coker(s) = 0 if and only if s is an E-deflation.

We need to see that Φ maps deflations to admissible morphisms. So given an exact
sequence X ↣ Y ↠ Z in E we have a left exact sequence of functors
0 → Φ(X) → Φ(Y ) → Φ(Z). So we need to see that if a is an inflation or a deflation then
cokerΦ(a) in ModM is already in modadmM. Let a : X → Y , let p : MY ↠ Y be a right
M-approximation, we pull back p along a, i.e. we have a commutative diagram

R MY

X Y

b

p

a

We claim in both cases (a inflation or deflation) we have a commutative diagram with right
exact rows

Φ(R) Φ(MY ) F

Φ(X) Φ(Y ) F

Φ(b)

p =

Φ(a)

Then let r : MR ↠ R be a right M-approximation, it follows br ∈ Sadm and F = cokerΦ(br).
(ii) As M is a contravariantly finite generator, L is surjective and Φ is well-defined and fully

faithful. Furthermore, we have L ◦ Y = inc: M → E and Φ|M = Y. For E in E we find an
E-admissible s : M1 → M0 in Sadm such that E = coker(s) and M0 → E, M1 → Im s are
M-approximations, this implies that we have a right exact sequence

Φ(M1)
Φ(s)−−−→ Φ(M0) ↠ Φ(E), the apply L to conclude LΦ(E) ∼= E.

For the adjunction, let F ∈ modadmM and E ∈ E , we claim
Hommodadm M(F,Φ(E)) ∼= HomE(L(F ), E).

Choose s ∈ Sadm such that Φ(M1)
Φ(s)−−−→ Φ(M0) ↠ F is exact in modadmM. Now given

a morphism F → Φ(E), then the composition Φ(M0) → Φ(M1) → Φ(E) is zero. As Φ is
fully faithful, there is a unique morphism L(F ) = coker(s) → E. Conversely, as F is the
cokernel of Φ(s), we have a unique morphism c : F → Φ(coker(s)) = ΦL(F ), so given an
a : L(F ) → E we just map it to Φ(a)c.
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(iii) The argument that effM is percolating is just the observation that [9, Prop 3.6, 3.17]
generalize to this set-up. By [9, Thm 2.12] we have the induced functor L′ such that
L′ ◦Q = L. As Q,L are exact, the same is true for L′. By the same argument as in
[9, Thm3.11], L′ is an additive equivalence. As LΦ = idE and L = L′Q, we see that QΦ is
the quasi-inverse of L′. We want to see that QΦ is exact, as it is already left exact, it is
enough to show that it preserves deflations. Let f : X ↠ Y be an E-deflation. We take a
right M-approximation MY ↠ Y and pull back f along it, to an object Z. Then we take
the M-approximation of MZ ↠ Z. Now, we have a commutative diagramm

MZ MY

X Y

with all arrows are E-deflations. Now, Φ maps the right M-approximations to deflations
and QΦ maps the E-deflation MZ → MY to one in modadmM/ effM. This implies by the
diagonal MZ → Y is mapped under QΦ to a deflation and then by the obscure axiom it
follows that QΦ(f) is a deflation.

□

We look at the assignment of (exact equivalence classes of) pairs of exact categories together with a
subcategory.

E′ : [E ,M] 7→ [modS M, eff(M)]

As a reformulation we of (3) and (4) one gets:

Theorem 3.28. (Generator correspondence for exact categories) The assignment E′ gives a
bijection between

(1) Pairs of an exact category E together with a contravariantly finite generator M
(2) Pairs of an exact category F with a percolating subcategory eff satisfying

(i) F has enough projectives P
(ii) eff ⊆ ⊥P (= {X ∈ F | Hom(X,P ) = 0 ∀P ∈ P}) and eff is a torsion class
(iii) Ext1(eff,P) = 0

Proof. First of all, we need to see that E′ is well-defined, by Lemma 3.27, (3) we have that
effM is percolating and by Ex. 3.18 we have that F = modS M has enough projectives. For the
properties (ii) and (iii), we leave the reader to check that the proofs of [9, Prop. 3.6, Prop. 3.17 (3)]
generalize to this more general situation.
Define F[F , eff] := [E = F/ eff, Q(P(F))] where Q : F → F/ eff is the localization with respect to the
percolating subcategory and P := P(F) are the projectives in F . We first show: Condition (ii) and

(iii) ensure that we always have that P ⊆ F Q−→ E is fully faithful.
A morphism P ′ → P in E with P, P ′ ∈ P is given by an equivalence class of pairs [f, s] with
f : X → P and s : X → P ′ is F-admissible such that ker(s), coker(s) ∈ eff.
First we use that we have a torsion pair (eff,G) and therefore we find an exact sequence
E ↣ X ↠ G with E ∈ eff, G ∈ G. As eff ⊆ ⊥P, we find a morphism g : G → P such that
f : X ↠ G → P . By definition [f, s] = [g, i] where i : G ↣ P ′ is the induced inflation, observe that
coker(i) = coker(s) =: E′ ∈ eff. So we look at the short exact sequence G ↣ P ′ ↠ E′ and apply
HomA(−, P ). Using also (iii) we conclude that HomA(P

′, P ) ∼= HomA(G,P ), this means that
g : G → P factors over i : P ′ → P uniquely. This implies the functor is full and also faithful because
assume that a morphism p : P ′ → P fulfills Q(p) = 0, then there exists some s : X → P ′ with
ker(s), coker(s) in eff such that ps = 0, now, as s is admissible we have pi = 0 with
i : X/ coker(s) =: G ↣ P ′. But now pi : G → P is in the image of the isomorphism from before and
therefore p = 0.
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As localization with respect to percolating subcategory reflects admissibility (cf. [9, Thm 2.16] we
get: F-admissible morphism in P are precisely E-admissible morphisms in Q(P) =: M. This
bijection restricts to the following two classes:

(a) F-admissible morphisms p : P ′ → P such that coker(p) ∈ eff
(b) E-deflations P ′ → P with P, P ′ in M

That is clear by definition as the bijection follows from applying Q and Q is an exact functor.
Therefore we conclude that F = modF−adm P ∼= modS M where S are the E-admissible morphisms
in M. Under this equivalence, we have the objects in eff, i.e. the objects represented by morphisms
in class (a) are mapped to the objects represented by morphisms in M in class (b) which is the
category effM. This shows E′ ◦ F is the identity.
Now, we look at F ◦ E′. By the previous Lemma we have E ∼= modS A/ effM. We just need to see
that M ∼= Q(P(modS A/ effM)). We define F := modS A and P = P(F). As the S are suitable
morphisms for M (cf. Example 3.18) we have that the Yoneda embedding Y : M → F identifies M
with the projectives P and S with the F-admissible morphisms between the projectives. But as the

composition P ⊆ F Q−→ E is fully faithful (see before), the claim follows. □

All other instances of E′ in the history of idea section are specializations of the generator
correspondence.

Open question 3.29. If M is a contravariantly finite generator and E has enough projectives, do
we have an adjoint triple (j!, L,Φ) defining the right half of a recollement of exact categories (cf. in
[9], this exists for M = E). Then this should be used to find the right definition of faithfully
balancedness in this situation.

3.2. Using other morphisms. In joint work in progress (with Janina Letz, Marianne Lawson)
we conjecture the following:
Let E = (A, S) be an exact category. Let Sm be one of the following

(1) Let Sm be the F-inflations for a supstructure E ≤ F on A
(2) Let Sm be the class of all A-monomorphisms.

Then we define S ⊆ Mor(A) to be the class of all morphisms s which factor as s = ip with i in Sm

and p an E-deflation.
As all morphisms in S have a kernel in A which is an E-inflation and therefore in S again: In
particular S has weak kernels. As S contains all split admissible morphisms, by Lemma 3.4, we
conclude that S is closed under homotopy. It is also straightforward to see that the proof in
[9, Prop. 3.5] generalizes to show that modS A is extension-closed in mod1A. This means we have S
is suitable.

Conjecture 3.30. Let E = (A,S) be an exact category and S be a class of morphisms just described.

(1) eff(E) is a percolating subcategory in modS A
(2) E ∼= modadmA/ eff(E) → modS A/ eff(E) is a fully exact subcategory.

We look at the commutative diagramm

modS A Kb(A)

modS A/ eff(E) Db(E)

i

where the functor i is maps F = cokerHom(−, s) to the 3-term complex with X−2 → X−1 → X0

defined as ker s → X
s−→ Y .
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We claim that modS A/ eff(E) is an admissible exact subcategory in Db(E) (i.e. the exact structure of
the localization coincides with all composable morphisms which are part of a triangle). Then we look
at E ⊆ modS A/ eff(E) ⊆ Db(E) and conjecture that Db(E) → Db(modS A/ eff(E)) is a triangle
equivalence.

This would provide a useful tool to embed an exact category within its derived equivalence class into
another exact category.
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