
On faithfully balancedness in functor categories

1. Synopsis

This is a generalization of some results of Ma-Sauter [3] from module categories over artin algebras
to more general functor categories (and partly to exact categories). In particular, we generalize the
definition of a faithfully balanced module to a faithfully balanced subcategory and find the
generalizations of dualities and characterizations from Ma-Sauter.
What is new? This generality is new but the results for artin algebras can be found in the joint
work [3].

2. Introduction

For an exact category E in the sense of Quillen and a full subcategoryM we define categories
genEk(M) (and cogenkE(M)) of E (consisting of objects admitting a k-presentation inM by successive
M-approximations, cf. section 4). We also consider the two functors
Φ(X) := HomE(−, X)|M,Ψ(X) := HomE(X,−)|M.

We give the relatively obvious but technical generalizations of results in [3] related to these
categories and functors. If E is a functor category (of some sort) these functors have adjoints and
therefore stronger results can be found. We state here two of these:
Let P be an essentially small additive category. We denote by ModP the category of contravariant
additive functors P → (Ab) (and we set PMod := ModPop). We write modk P for the full
subcategory of objects which admit a k-presentation by finitely generated projectives. We denote by
h : P → ModP, P 7→ hP = HomP(−, P ) the Yoneda embedding.
Cogen1-duality: Let k ∈ N0 ∪ {∞} and assume nowM⊂ modk P. We shorten the notation
cogenk(M) := cogenkmodk P(M) ⊂ modk P.
We sayM is faithfully balanced if hP ∈ cogen1(M) for all P ∈ P.

Lemma 2.1. (cf. Lem. 4.11) (cogen1-duality) IfM is faithfully balanced, we denote by

M̃ = Ψ(hP) ⊂Mmodk. Then Ψ defines a contravariant equivalence

cogen1mod1 P(M)←→ cogen1Mmod1(M̃).

The symmetry principle states as follows:

Theorem 2.2. (cf. Thm. 4.16, Symmetry principle). Let E be an exact category with enough
projectives P and enough injectives I and k ≥ 1. The following two statements are equivalent:

(1) P ⊂ cogenkE(M) and Φ(I) = HomE(−, I)|M ∈ modkM for every I ∈ I.
(2) I ⊂ genEk(M) and Ψ(P ) = HomE(P,−)|M ∈Mmodk for every P ∈ P.

A nice special case: Assume additionally that E is a Hom-finite K-category for a field K and
M = add(M) for an object M ∈ E . Then the following two statements are equivalent:

(1) P ⊂ cogenkE(M).
(2) I ⊂ genEk(M).
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Since: If we set Λ = EndE(M), then modkM,Mmodk can be identified with finite-dimensional (left
and right) modules over Λ and Φ(I) = HomE(M, I),Ψ(P ) = HomE(P,M) are by assumption
finite-dimensional Λ-modules.

3. In additive categories

Here we want to extend Yoneda’s embedding to a bigger subcategory: Let C be an additive category
andM an essentially small full additive subcategory. A rightM-module is a contravariant additive
functor fromM into abelian groups. We denote by ModM the category of all rightM-modules.
This is an abelian category. We have the fully faithful (covariant) Yoneda embeddingM→ ModM
defined by M 7→ HomM(−,M). Clearly, we can extend this functor to a functor
Φ: C → ModM, Φ(X) := HomC(−, X)|M= (−, X)|M where the last notation is our abbreviation for
the Hom functor. The aim of this section is to define a subcategoryM⊂ G ⊂ C such that Φ|G is
fully faithful.
We define a full subcategory of C as follows

genadd1 (M) :=

{
Z ∈ C |

∃M1
f−→M0

g−→ Z, Mi ∈M, g = coker(f) is an epim.

(M,M1)→ (M,M0)→ (M,Z)→ 0

exact sequence of abelian groups ∀M ∈M

}

We observe that g = coker(f) and g an epimorphism is equivalent to that we have an exact sequence
of Cop-modules

0→ (Z,−)→ (M0,−)→ (M1,−).
Furthermore the second line in the definition is equivalent to an exact sequence in ModM

(−,M1)→ (−,M0)→ (−, Z)|M→ 0.

Dually, we define cogen1add(M) := (genadd1 (Mop))op whereMop is considered as a full additive
subcategory of Cop.

Lemma 3.1. (1) The functor genadd1 (M)→ ModM defined by Z 7→ (−, Z)|M is fully faithful.
We even have for every Z ∈ genadd1 (M), C ∈ C a natural isomorphism

HomC(Z,C)→ HomModM((−, Z)|M, (−, C)|M)

(2) The functor cogen1add(M)→ ModMop defined by Z 7→ (Z,−)|M is fully faithful. We even
have for every Z ∈ cogen1add(M), C ∈ C a natural isomorphism

HomC(C,Z)→ HomModMop((Z,−)|M, (C,−)|M)

Proof. We only prove (1), the second statement follows by passing to opposite categories. We
consider the functor Φ: C → ModM defined by Φ(X) := (−, X)|M. Since Z ∈ genadd1 (M) we an
exact sequences

0→ (Z,C)→ (M0, C)→ (M1, C) of ab. groups

and Φ(M1)→ Φ(M0)→ Φ(Z)→ 0 in ModM. By applying (−,Φ(C)) to the second exact sequence
we obtain an exact sequence

0→ (Φ(Z),Φ(C))→ (Φ(M0),Φ(C))→ (Φ(M1),Φ(C)) of ab. groups.

Since Φ is a functor, we find a commuting diagram

0 // (Z,C) //

��

(M0, C) //

��

(M1, C)

��
0 // (Φ(Z),Φ(C)) // (Φ(M0),Φ(C)) // (Φ(M1),Φ(C))

By the Lemma of Yoneda, we have for every F ∈ ModM and M ∈M that
HomModM(Φ(M), F ) = F (M). This implies that the maps (Mi, C)→ (Φ(Mi),Φ(C)) are
isomorphisms of groups. and therefore, the induced map on the kernels is an isomorphism. □
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Remark 3.2. IfM is not essentially small, HomMMod(F,G) is not necessarily a set. But if one
passes to the full subcategory of finitely presentedM-modules mod1M, this set-theoretic issue does
not arise: Observe that Z 7→ (−, Z)|M defines by definition a covariant functor

Φ: genadd1 (M)→ mod1M,

the same proof as before shows that this is fully faithful. Similarly, the functor Z 7→ (Z,−)|M defines
a fully faithful contravariant functor

Ψ: cogen1add(M)→ mod1Mop.

4. In exact categories

This section is a generalization of results from [3]. For exact categories we have subcategories of
cogen1add such that Ψ induces isomorphisms on (some) extension groups (cf. Lemma 4.3).

Given an exact category E with a full additive subcategoryM, we define cogenkE(M) ⊂ E to be the
full subcategory of all objects X such that there is an exact sequence

0→ X →M0 → · · · →Mk → Z → 0

with Mi ∈M, 0 ≤ i ≤ k such that for every M ∈M the sequence

HomE(Mk,M)→ · · · → HomE(M0,M)→ HomE(X,M)→ 0

is an exact sequence of abelian groups.
We define genEk(M) to be the full additive category of E given by all X such that there is an exact
sequence

0→ Z →Mk → · · · →M0 → X → 0

with Mi ∈M, 0 ≤ i ≤ k such that for every M ∈M we have an exact sequence

HomE(M,Mk)→ · · · → HomE(M,M0)→ HomE(M,X)→ 0

of abelian groups.
If it is clear from the context in which exact category we are working, then we leave out the index E
and just write cogenk(M) and genk(M).

Remark 4.1. Observe that cogenkE(M) ⊂ cogen1add(M), genEk(M) ⊂ genadd1 (M) for k ≥ 1 and

therefore the functor Ψ: X 7→ (X,−)|M (resp. Φ: X 7→ (−, X)|M) is fully faithful on cogenkE(M)
(resp. on genEk(M)) by Lemma 3.1 and Remark 3.2.

Remark 4.2. Let k ≥ 1. We denote by modkM the category ofM-modules which admit a
k-presentation (indexed from 0 to k) by finitely presented projectives. For F ∈ modkM the
Ext-groups ExtiMMod(F,G) with 0 ≤ i < k are sets.
If X ∈ cogenkE(M), then we have Ψ(X) = (X,−)|M ∈ modkMop(=:Mmodk).
If Y ∈ genEk(M), then we have Φ(Y ) = (−, Y )|M ∈ modkM.

Since we are now working in exact categories, we observe the following isomorphisms on extension
groups:

Lemma 4.3. Let k ≥ 1.

(a) If X ∈ cogenkE(M), then the functor Z 7→ Ψ(Z) = (Z,−)|M induces a well-defined natural
isomorphism of abelian groups

ExtiE(Y,X)→ ExtiMMod(Ψ(X),Ψ(Y )), 0 ≤ i < k

for all Y ∈
⋂

1≤i<k kerExt
i
E(−,M).

(b) If Y ∈ genEk(M), then the functor Z 7→ Φ(Z) = (−, Z)|M induces a well-defined natural
isomorphism of abelian groups

ExtiE(Y,X)→ ExtiModM(Φ(Y ),Φ(X)), 0 ≤ i < k

for all X ∈
⋂

1≤i<k kerExt
i
E(M,−).
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Proof. (a) the proof is a straight forward generalization of [3, Lemma 2.4, (2)](using Rem. 4.1)
and (b) follows from (a) by passing to the opposite exact category Eop. □

We will later use the following simple observation:

Remark 4.4. Let E be an exact category, X be a fully exact category andM⊂ X an additive
subcategory. We say X is deflation-closed if for any deflation d : X → X ′ in E with X,X ′ in X it
follows ker d ∈ X . The dual notion is inflation-closed.
If X is deflation-closed then genXk (M) = genEk(M) ∩ X . If X is inflation-closed then

cogenkX (M) = cogenkE(M) ∩ X .

4.1. Inside functor categories. Let P be an essentially small additive category. We denote
by h : P → ModP, P 7→ hP = HomP(−, P ) the Yoneda embedding, we write hP for the essential
image of h.

4.1.1. Adjoint functors. Let nowM be an essentially small full additive subcategory of ModP.
We consider the contravariant functor

Ψ: ModP →MMod,

X 7→ HomModP(X,−)|M= (X,−)|M
We also consider the contravariant functor

Ψ′ :MMod→ ModP
Z 7→ (P 7→ HomMMod(Z,Ψ(hP )))

We generalize [1, Lemma 3.3].

Lemma 4.5. The functors Ψ and Ψ′ are contravariant adjoint functors, i.e. the following is a
(bi)natural isomorphim

χ : HomModP(X,Ψ′(Z))→ HomMMod(Z,Ψ(X))

defined as follows: A natural transformation f ∈ HomModP(X,Ψ′(Z)), is determined by for every
P ∈ P, x ∈ X(P ),M ∈M a group homomorphism

fP,x(M) : Z(M) 7→ Ψ(hP )(M) = M(P )

then, we define a natural transformation χ(f) : Z → Ψ(X) = HomModP(X,−)|M for M ∈M as
follows

χ(f)(M) : Z(M)→ HomModP(X,M),

z 7→ (X(P )
fP,−(z)
−−−−→M(P ), x 7→ fP,x(M)(z))P∈P

Proof. We define χ′ : HomMMod(Z,Ψ(X))→ HomModP(X,Ψ′(Z)) as follows: For
g : Z → Ψ(X) = HomModP(X,−)|M we have for every M ∈M, z ∈ Z(M) a natural transformation
gM,z : X →M , i.e. for every P ∈ P a group homomorphism

gM,z(P ) : X(P )→M(P ), x 7→ gM,z(P )(x),

then we define χ′(g)(P ) : X(P )→ Ψ′(Z)(P ) = HomMMod(Z, (hP ,−)|M) as follows

x 7→ (Z(M)→M(P ), z 7→ gM,z(P )(x))M∈M.

Then χ′ is the inverse map to χ. □

Remark 4.6. Given an adjoint pair of contravariant functors Ψ and Ψ′, the natural isomorphisms

Hom(X,Ψ(Z))→ Hom(Z,Ψ′(X))

induce natural transformations α : id→ Ψ′Ψ (and α′ : id→ ΨΨ′) as follows

Hom(X,X)
Ψ(−)−−−→ Hom(Ψ(X),Ψ(X)) ∼= Hom(X,Ψ′Ψ(X)), idX 7→ αX
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in this case we have triangle identities

idΨ(X) = (Ψ(X)
α′
Ψ(X)−−−−→ ΨΨ′Ψ(X)

Ψ(αX)−−−−→ Ψ(X))

idΨ′(Z) = (Ψ′(Z)
αΨ′(Z)−−−−→ Ψ′ΨΨ′(Z)

Ψ′(α′
Z)

−−−−→ Ψ′(Z))

In [4, section4] a tensor bifunctor is introduced

−⊗M − : ModM×MMod→ (Ab), (F,G) 7→ F ⊗M G

Now, we consider the covariant funtor

Φ: ModP → ModM, X 7→ HomModP(−, X)|M=: (−, X)|M
and the following covariant functor

Φ′ : ModM→ ModP, Z 7→ (P 7→ Z ⊗M Ψ(hP ))

Lemma 4.7. The functor Φ is right adjoint to Φ′, i.e. we have a (bi)natural maps

HomModP(Φ
′(Z), X)→ HomModM(Z,Φ(X))

Remark 4.8. If F : C ↔ D : G is an adjoint pair of functors (with F left adjoint to G), then we have
a unit u : 1C → GF and a counit, c : FG→ 1D. Let Cu be the full subcategory of objects in X in C
such that u(X) is an isomorphism. Let Dc be the full subcategory of objects Y in D such that c(Y )
is an isomorphism. Then, the triangle identities show directly that F,G restrict to quasi-inverse
equivalences F : Cu ↔ Dc : G.

4.1.2. cogenk . Let k ∈ N0 ∪ {∞} and assume nowM⊂ modk P. In this subsection we study

cogenk(M) := cogenkmodk P(M) ⊂ modk P.
Our aim is to give a different description of the categories cogenk(M) (cf. Lemma 4.9) and to
introduce faithfully balancedness which leads to the cogen1 duality (cf. Lemma 4.11).

We have the contravariant functor

Ψ: ModP →MMod, X 7→ HomModP(X,−)|M
and Ψ|cogenk(M) : cogenk(M)→Mmodk is fully faithful for 1 ≤ k <∞.

The natural transformation α : idModP → Ψ′Ψ, for X ∈ ModP is given by a morphism in ModP,
αX : X → Ψ′Ψ(X) = HomMMod(Ψ(X),Ψ(h−)) which is defined at P ∈ P via

X(P ) = HomModP(hP , X)→ HomMMod(HomModP(X,−)|M,HomModP(hP ,−)|M)

f 7→ [HomModP(X,−) −◦f−−→ HomModP(hP ,−)]|M

We observe that αM is an isomorphism for every M ∈M (since

(Ψ′Ψ(M))(P ) = HomMMod(HomM(M,−),Ψ(hP ))

= Ψ(hP )(M) = HomModP(hP ,M) = M(P )

using Yoneda’s Lemma twice).

Lemma 4.9. For 1 ≤ k ≤ ∞ we have cogenkmodk P(M) equals

{X ∈ modk−P |αX isom. ,Ψ(X) ∈Mmodk,

ExtiMMod(Ψ(X),Ψ(hP )) = 0, 1 ≤ i < k,∀P ∈ P}

Proof. The proof is a straight forward generalization of [3, Lemma 2.2,(1)] (the functor
HomΓ(−,M) has to be replaced by applying HomMMod(−,Ψ(hP )) for all P ∈ P). □

Definition 4.10. We sayM is faithfully balanced if hP ⊂ cogen1(M).
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Lemma 4.11. (cogen1 duality) IfM is faithfully balanced, we denote by M̃ = Ψ(hP) ⊂Mmodk,
then Ψ defines a contravariant equivalence

cogen1mod1 P(M)←→ cogen1Mmod1(M̃)

and contravariant equivalences

cogenkmodk P(M)←→ cogen1Mmod1(M̃) ∩
⋂

1≤i<k

ker(ExtiMmodk
(−,M̃))

Proof. Let k = 1. Since we have an adjoint pair of contravariant functors Ψ,Ψ′ it follows from
the triangle identities (cf. Remark 4.6): If αX is an isomorphism then also α′

Ψ(X) and if α′
Z is an

isomorphism then also αΨ′(Z). Now, sinceM is faithfully balanced we have that Ψ induces an

equivalence Pop ∼= M̃ = Ψ(hP) by Lemma 3.1. It follows from the definition of Ψ′ and a right

module version of Lemma 4.9 that cogen1(M̃) = {Z ∈Mmod1 | α′
Z isom}.

The rest is a straightforward generalization of the proof of [3, Lemma 2.9]. □

4.1.3. genk . We study genk(M) = genModP
k (M) ⊂ ModP. We again give a different

description of these categories using tensor products ofM-modules (cf. Lemma 4.13). This is the
main ingredient in the proof of the symmetry principle in the next subsection.

We have the covariant functor

Φ: ModP → ModM, X 7→ HomModP(−, X)|M

and Φ|genk(M) : genk(M)→ modkM is fully faithful. We have an induced covariant functor

ε = Φ′ ◦ Φ: ModP → ModP, X 7→ εX

defined for P ∈ P as

εX(P ) := Φ(X)⊗M Ψ(hP )

and a natural transformation φ : ε→ idModP , for X ∈ ModP this is given by a morphism
φX : εX → X which is defined at P ∈ P via

HomModP(−, X)|M⊗M(HomModP(hP ,−)|M)→ HomModP(hP , X) = X(P )

g ⊗ f︸ ︷︷ ︸
∈Hom(M,X)⊗ZHom(hP ,M)

7→ g ◦ f

Remark 4.12. Φ and is right adjoint functor of Φ′ between abelian categories therefore Φ is left
exact and Φ′ is right exact, φ is the counit of this adjunction. If M ∈M, then φM is an
isomorphism.

Lemma 4.13. For 1 ≤ k ≤ ∞ we have

genModP
k (M) =

{X ∈ ModP | φX isom. ,Φ(X) ∈ modkM, ToriM(Φ(X),Ψ(hP )) = 0, 1 ≤ i < k,∀P ∈ P}

Proof. Let X ∈ genk(M), then there exists an exact sequence Mk → · · · →M0 → X → 0 such
that Φ preserves its exactness, this implies Φ(X) ∈ modkM. Now, we apply ε = Φ′Φ and consider
the commutative diagram

Mk
// · · · // M0

// X // 0

εMk

φMk

OO

// · · · // εM0

φM0

OO

// εX

φX

OO

// 0

Now, since Φ′ is right exact and φMi is an isomorphism for 0 ≤ i ≤ k, we conclude that φX is an
isomorphism and the lower row is exact. This implies ToriM(Φ(X),Ψ(hP )) = 0, 1 ≤ i < k.
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Conversely, if we take X ∈ ModP fulfilling the assumptions in the set bracket of the lemma. We can
apply Φ′ to the projective k-presentation of Φ(X), then we can find a diagram as before but this
time we know from the assumptions that the bottom row is exact. Furthermore, since φ∗ is an
isomorphism in all places of the diagram, we have that also the top row is exact. This implies
X ∈ genModP

k (M). □

4.2. The symmetry principle. Now, we study these subcategories in more general exact
categories. For an exact category E with enough projectives P and an exact category F with enough
injectives I, we consider the covariant, exact, fully faithful functors

P : E → mod∞ P, X 7→ HomE(−, X)|P
I : Fop → mod∞ Iop, X 7→ HomF (X,−)|Iop

cf. [2, Prop. 2.2.1, Prop.2.2.8]

Remark 4.14. For an additive categoryM of E (resp. of F) we have:

P(genEk(M)) = ImP ∩ genModP
k (P(M)),

I((cogenkF (M))op) = I(genF
op

k (Mop)) = Im I ∩ genMod Iop

k (I(Mop))

This follows from remark 4.4 since P : E → ImP is an equivalence of exact categories and ImP is
deflation-closed in mod∞ P and mod∞ P is deflation-closed in ModP. The second statement follows
by passing to the opposite category.

As before, let Φ: E → ModM,Φ(X) = HomE(−, X)|M, Ψ: E →MMod,Ψ(X) = HomE(X,−)|M.
We have the immediate corollary:

Corollary 4.15. (of Lem. 4.13 and Rem. 4.14) (1) Let E be an exact category with enough
projectives P andM a full additive subcategory. Then the following are equivalent:

(1) X ∈ genEk(M)
(2) Φ(X) ∈ modkM and for every P ∈ P:

Φ(X)⊗M Ψ(P )→ HomE(P,X), g ⊗ f 7→ g ◦ f
is an isomorphism, ToriM(Φ(X),Ψ(P )) = 0, 1 ≤ i < k.

(2) If E is an exact category with enough injectives I andM a full additive subcategory. Then the
following are equivalent:

(1) X ∈ cogenkE(M)
(2) Ψ(X) ∈Mmodk and for every I ∈ I:

Φ(I)⊗M Ψ(X)→ HomF (X, I), g ⊗ f 7→ g ◦ f
is an isomorphism, ToriM(Φ(I),Ψ(X)) = 0, 1 ≤ i < k.

Theorem 4.16. (Symmetry principle). Let E be an exact category with enough projectives P and
enough injectives I and k ≥ 1. The following two statements are equivalent:

(1) P ⊂ cogenkE(M) and Φ(I) = HomE(−, I)|M ∈ modkM for every I ∈ I
(2) I ⊂ genEk(M) and Ψ(P ) = HomE(P,−)|M ∈Mmodk for every P ∈ P

Proof. We consider P, I as before defined for the category E . Then, it is straight forward from
the previous Lemma to see that (1) and (2) are both equivalent to for all P ∈ P, I ∈ I,
Ψ(P ) ∈Mmodk,Φ(I) ∈ modkM and

Φ(I)⊗M Ψ(P )→ HomE(P, I), g ⊗ f 7→ g ◦ f
is an isomorphism, ToriM(Φ(I),Ψ(P )) = 0, 1 ≤ i < k. Therefore (1) and (2) are equivalent. □
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