On faithfully balancedness in functor categories

1. Synopsis

This is a generalization of some results of Ma-Sauter [3] from module categories over artin algebras
to more general functor categories (and partly to exact categories). In particular, we generalize the
definition of a faithfully balanced module to a faithfully balanced subcategory and find the
generalizations of dualities and characterizations from Ma-Sauter.

What is new? This generality is new but the results for artin algebras can be found in the joint
work [3].

2. Introduction

For an exact category £ in the sense of Quillen and a full subcategory M we define categories

genf (M) (and cogenk(M)) of £ (consisting of objects admitting a k-presentation in M by successive
M-approximations, cf. section 4). We also consider the two functors

®(X) := Homg(—, X)|m, ¥(X) := Homg (X, —)|m-

We give the relatively obvious but technical generalizations of results in [3] related to these
categories and functors. If £ is a functor category (of some sort) these functors have adjoints and
therefore stronger results can be found. We state here two of these:

Let P be an essentially small additive category. We denote by Mod P the category of contravariant
additive functors P — (Ab) (and we set P Mod := Mod P°?). We write mody, P for the full
subcategory of objects which admit a k-presentation by finitely generated projectives. We denote by
h:P — Mod P, P+ hp = Homp(—, P) the Yoneda embedding.

Cogen! -duality: Let k € No U {oo} and assume now M C mod; P. We shorten the notation

cogen® (M) := cogenﬁlodkp(/\/l) C mody P.

We say M is faithfully balanced if hp € cogen!(M) for all P € P.

Lemma 2.1. (cf. Lem. 4.11) (cogen! -duality) If M is faithfully balanced, we denote by
M =V(hp) C Mmody. Then ¥ defines a contravariant equivalence

cogenrlnod1 p(M) +— cogen}\/‘ modl(/\;l).

The symmetry principle states as follows:

THEOREM 2.2. (c¢f. Thm. 4.16, Symmetry principle). Let € be an exact category with enough
projectives P and enough injectives T and k > 1. The following two statements are equivalent:

(1) P C cogenf(M) and ®(I) = Homg(—,I)[pm € mody, M for every I € T.
(2) T C gen{ (M) and ¥(P) = Homg(P, —)|pm € Mmody, for every P € P.

A nice special case: Assume additionally that £ is a Hom-finite K-category for a field K and
M = add(M) for an object M € E£. Then the following two statements are equivalent:

(1) P C cogenk(M).
(2) T C gen{(M).



Since: If we set A = Endg (M), then mody M, M mod;, can be identified with finite-dimensional (left
and right) modules over A and ®(/) = Homg (M, I), ¥V(P) = Homg (P, M) are by assumption
finite-dimensional A-modules.

3. In additive categories

Here we want to extend Yoneda’s embedding to a bigger subcategory: Let C be an additive category
and M an essentially small full additive subcategory. A right M-module is a contravariant additive
functor from M into abelian groups. We denote by Mod M the category of all right M-modules.
This is an abelian category. We have the fully faithful (covariant) Yoneda embedding M — Mod M
defined by M +— Homp(—, M). Clearly, we can extend this functor to a functor

®: C — Mod M, ®(X) :=Home(—, X)|m= (—, X)| s where the last notation is our abbreviation for
the Hom functor. The aim of this section is to define a subcategory M C G C C such that ®|g is
fully faithful.

We define a full subcategory of C as follows

M, EN My2 Z, M e M, g= coker(f) is an epim.
gen{®(M) = {Z € C | (M, My) — (M, M) — (M, Z) — 0 }
exact sequence of abelian groups VM € M

We observe that g = coker(f) and g an epimorphism is equivalent to that we have an exact sequence
of C°P-modules

0— (Z’ 7) - (M(]a 7) - (Mla 7)
Furthermore the second line in the definition is equivalent to an exact sequence in Mod M
(= M) = (= Mo) = (=, Z)[pm— 0.
Dually, we define cogenl j4(M) = (genjdd(M°P))°P where M?P is considered as a full additive
subcategory of C°P.

Lemma 3.1. (1) The functor genjd (M) — Mod M defined by Z +— (—, Z)|am is fully faithful.

We even have for every Z € genjd4(M),C € C a natural isomorphism

Home(Z, C) — Homyoq m((—, 2)| s (=, C)| M)
(2) The functor cogenl (M) — Mod M defined by Z v+ (Z,—)|m is fully faithful. We even
have for every Z € cogenl, (M), C € C a natural isomorphism
HOIDC(C, Z) — HomModMOP((Za 7)|Ma (Ca 7)|M>

PrROOF. We only prove (1), the second statement follows by passing to opposite categories. We
consider the functor ®: C — Mod M defined by ®(X) := (—, X)|x. Since Z € genjd(M) we an
exact sequences

0— (Z,C) = (My,C) — (M1,C) of ab. groups
and ®(M;) — ®(My) — ®(Z) — 0 in Mod M. By applying (—, ®(C)) to the second exact sequence
we obtain an exact sequence
0— (®(2),2(C)) = (P(My),®(C)) = (P(M;1),®(C)) of ab. groups.

Since @ is a functor, we find a commuting diagram

0 (4,C) (Mo, C) (M, C)

| i i

0 ——(®(2), ®(C)) — (2(Mp), ®(C)) — (®(M)1), ®(C))

By the Lemma of Yoneda, we have for every F' € Mod M and M € M that
Hompyioa m(P(M), F') = F(M). This implies that the maps (M;, C) — (®(M;), ®(C)) are
isomorphisms of groups. and therefore, the induced map on the kernels is an isomorphism. O
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Remark 3.2. If M is not essentially small, Homrqnod(F, G) is not necessarily a set. But if one
passes to the full subcategory of finitely presented M-modules mod; M, this set-theoretic issue does
not arise: Observe that Z — (—, Z)|s defines by definition a covariant functor

®: gen?id(M) = mod; M,
the same proof as before shows that this is fully faithful. Similarly, the functor Z + (Z, —)|ar defines
a fully faithful contravariant functor

T cogenlyq(M) — mod; M.
4. In exact categories

This section is a generalization of results from [3]. For exact categories we have subcategories of
cogen!,, such that ¥ induces isomorphisms on (some) extension groups (cf. Lemma 4.3).

Given an exact category £ with a full additive subcategory M, we define cogen§ (M) C € to be the
full subcategory of all objects X such that there is an exact sequence

0=>X—->My—--—>M,—~2Z—0
with M; € M,0 < i < k such that for every M € M the sequence
Homg (M, M) — --- — Homg (Mo, M) — Homg (X, M) — 0

is an exact sequence of abelian groups.
We define gen‘g (M) to be the full additive category of £ given by all X such that there is an exact
sequence

0—-Z—->My,—---—My—X—0

with M; € M,0 < i < k such that for every M € M we have an exact sequence
Homg (M, My) — - - — Homg (M, My) — Home (M, X) — 0

of abelian groups.
If it is clear from the context in which exact category we are working, then we leave out the index &
and just write cogen® (M) and gen(M).

Remark 4.1. Observe that cogenk(M) C cogen! (M), genf (M) C gen§dd(M) for k > 1 and
therefore the functor ¥: X — (X, —)|p (resp. ®: X — (—, X)|m) is fully faithful on cogenf (M)
(resp. on gen{ (M)) by Lemma 3.1 and Remark 3.2.

Remark 4.2. Let £k > 1. We denote by modj M the category of M-modules which admit a
k-presentation (indexed from 0 to k) by finitely presented projectives. For F' € mod; M the
Ext-groups Ext yoq(F, G) with 0 < i < k are sets.

If X € cogenf (M), then we have ¥(X) = (X, —)|m € mody, M (=: M mody).

If Y € gen{ (M), then we have ®(Y) = (—,Y)|m € mody M.

Since we are now working in exact categories, we observe the following isomorphisms on extension
groups:

Lemma 4.3. Let k> 1.

(a) If X € cogenk(M), then the functor Z v V(Z) = (Z,~)|m induces a well-defined natural
isomorphism of abelian groups
Exti (Y, X) = Extimoa(¥(X), ¥(Y)), 0<i<k
for allY € (1<, ker Exté(—, M).
(b) IfY € gen§ (M), then the functor Z v ®(Z) = (—, Z)|m induces a well-defined natural
isomorphism of abelian groups

Exts (Y, X) — Extloq m(®(Y), ®(X)), 0<i<k



PROOF. (a) the proof is a straight forward generalization of [3, Lemma 2.4, (2)](using Rem. 4.1)
and (b) follows from (a) by passing to the opposite exact category E. O

We will later use the following simple observation:

Remark 4.4. Let £ be an exact category, X be a fully exact category and M C X an additive
subcategory. We say X is deflation-closed if for any deflation d: X — X’ in £ with X, X’ in X it
follows kerd € X. The dual notion is inflation-closed.

If X is deflation-closed then genyt (M) = gen{ (M) N X. If X is inflation-closed then

cogenk, (M) = cogenk (M) N X.

4.1. Inside functor categories. Let P be an essentially small additive category. We denote
by h: P — Mod P, P — hp = Homp(—, P) the Yoneda embedding, we write hp for the essential
image of h.

4.1.1. Adjoint functors. Let now M be an essentially small full additive subcategory of Mod P.
We consider the contravariant functor
V: ModP — M Mod,

X = Hompjoa p (X, —)|m= (X, —)[m
We also consider the contravariant functor
U': M Mod — Mod P
Z = (P Hompmmod(Z, ¥ (hp)))

We generalize [1, Lemma 3.3].

Lemma 4.5. The functors ¥ and ' are contravariant adjoint functors, i.e. the following is a
(bi)natural isomorphim

X: HOH]MOdp(X, \I//(Z)) — HomM Mod(Z; \II(X))

defined as follows: A natural transformation f € Homyoqp (X, V'(Z)), is determined by for every
PeP,xe X(P),M e M a group homomorphism

fpa(M): Z(M) = W(hp)(M) = M(P)

then, we define a natural transformation x(f): Z — ¥(X) = Hompoq p(X, —)|a for M € M as

follows
X(f)(M) Z(M) - HomModP(Xv M)a

fp,—(2)
— 5

z = (X(P) M(P),x = fpa(M)(2))pep

PRrROOF. We define x': Hompmod(Z, ¥ (X)) = Hompoap (X, ¥/ (7)) as follows: For
g: Z — ¥(X) = Hompjoq p(X, —)|pm we have for every M € M,z € Z(M) a natural transformation
gm,z: X — M, ie. for every P € P a group homomorphism

ga1-(P): X(P) = M(P), v gur-(P)(a),
then we define x'(¢)(P): X(P) — ¥/ (Z)(P) = Homamod(Z, (hp, —)|m) as follows
= (Z(M) = M(P),z — gum2(P)(z)) Mem-
Then Y/ is the inverse map to . O
Remark 4.6. Given an adjoint pair of contravariant functors ¥ and ¥’, the natural isomorphisms
Hom(X,¥(Z)) — Hom(Z, ¥ (X))
induce natural transformations a: id — W'V (and o/: id — ¥¥’) as follows

Hom(X, X) % Hom(¥(X), ¥(X)) = Hom(X, WW(X)), idyx — ax
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in this case we have triangle identities

idyx) = (U(X) 9% go'p(x) 20, g (x))
idy () = (V'(2) 22 vww'(z2) 27, v(2))

In [4, sectiond] a tensor bifunctor is introduced
— m —: Mod M x M Mod — (Ab), (F,G) = Fom G
Now, we consider the covariant funtor
®: ModP — Mod M, X — Hompear(—, X)|m=: (—, X)|m
and the following covariant functor
®': Mod M — ModP, Zw (P Z @ ¥Y(hp))
Lemma 4.7. The functor ® is right adjoint to ®', i.e. we have a (bi)natural maps
Homyjoap(®'(Z), X) — Homyod m(Z, ®(X))

Remark 4.8. If F': C <» D: G is an adjoint pair of functors (with F' left adjoint to G), then we have
a unit u: 1l¢ = GF and a counit, ¢: FG — 1p. Let C, be the full subcategory of objects in X in C
such that «(X) is an isomorphism. Let D, be the full subcategory of objects Y in D such that ¢(Y)
is an isomorphism. Then, the triangle identities show directly that F, G restrict to quasi-inverse
equivalences F': C, <> D.: G.

4.1.2. |cogen® |. Let k € Ny U {oo} and assume now M C mody, P. In this subsection we study
cogen®*(M) := cogen’ 4 (M) C mod; P.
Our aim is to give a different description of the categories cogen®(M) (cf. Lemma 4.9) and to
introduce faithfully balancedness which leads to the cogen' duality (cf. Lemma 4.11).

We have the contravariant functor
¥U: ModP — M Mod, X*—)HOmModp(X, *)|M

and Wlgogenk () ! cogen® (M) — Mmody, is fully faithful for 1 < k < oo.

The natural transformation a: idyeqp — VW, for X € Mod P is given by a morphism in Mod P,
ax: X = VU (X) = Hompgpod(U(X), ¥(h-)) which is defined at P € P via

X(P) = Homppoa p(hp, X) = Hom g vod (Homyoa (X, =) |, Homniea p(hp, —)| M)

f — [Hompoq p(X, —) —, Homyioa p(hp, —)]|m

We observe that oy is an isomorphism for every M € M (since
(W' W(M))(P) = Hompnioa(Homag(M, —), ¥(hp))
= V(hp)(M) = Homyoap(hp, M) = M(P)
using Yoneda’s Lemma twice).
Lemma 4.9. For 1 < k < co we have cogenﬁlodkp(./\/l) equals
{X € mody, —P |ax isom. ,¥(X) € Mmody,
Extivnod(P(X), U(hp)) =0,1 <i < k,VP € P}

PROOF. The proof is a straight forward generalization of [3, Lemma 2.2,(1)] (the functor
Homp(—, M) has to be replaced by applying Homrqniod(—, ¥(hp)) for all P € P). O

Definition 4.10. We say M is faithfully balanced if hp C cogen'(M).
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Lemma 4.11. (cogen' duality) If M is faithfully balanced, we denote by M = ¥(hp) C Mmody,
then W defines a contravariant equivalence
Cogenrlnodl P(M) A Cogen}\/l mod; ('A;l)

and contravariant equivalences

COgenﬁiodk P(M) — COgen}\/l modi (M) n ﬂ ker(Eth/\/I mody, (_’ M))
1<i<k

PROOF. Let k = 1. Since we have an adjoint pair of contravariant functors ¥, ¥’ it follows from
the triangle identities (cf. Remark 4.6): If aex is an isomorphism then also oz(p( X) and if o/, is an

isomorphism then also ag/(z). Now, since M is faithfully balanced we have that U induces an
equivalence P = M = U(hp) by Lemma 3.1. It follows from the definition of ¥’ and a right
module version of Lemma 4.9 that cogen' (M) = {Z € M mod, | o, isom}.

The rest is a straightforward generalization of the proof of [3, Lemma 2.9]. O

4.1.3. . We study geny, (M) = gen°d” (M) C Mod P. We again give a different
description of these categories using tensor products of M-modules (cf. Lemma 4.13). This is the

main ingredient in the proof of the symmetry principle in the next subsection.
We have the covariant functor

®: ModP — Mod M, X'—)HomModp(—,X)’M

and ®[gen, (1)1 geng (M) — mody M is fully faithful. We have an induced covariant functor
e=®o®: ModP — ModP, X ey
defined for P € P as
ex(P) i= B(X) @ U(hp)

and a natural transformation ¢: & — idyoqp, for X € Mod P this is given by a morphism
px:ex — X which is defined at P € P via

Hompjoqp(—, X )| m@m(Homyioa p(hp, —)|m) = Homyioa p(hp, X) = X(P)
g f = gof
S~
€Hom(M,X)®zHom(hp,M)

Remark 4.12. ® and is right adjoint functor of ® between abelian categories therefore @ is left
exact and ®’ is right exact, ¢ is the counit of this adjunction. If M € M, then @) is an
isomorphism.

Lemma 4.13. For 1 < k < oo we have
geny 1P (M) =
{X € Mod P | px isom. ,®(X) € mod, M, Tor’y(®(X),¥(hp)) =0,1<i< k,VP € P}

PROOF. Let X € geny (M), then there exists an exact sequence My — --- — My — X — 0 such
that ® preserves its exactness, this implies ®(X) € mod; M. Now, we apply € = ®'® and consider
the commutative diagram

M;, My X 0
@MkT SOMOT QOXT
ng 6M0 5X

Now, since ®’ is right exact and )y, is an isomorphism for 0 < i < k, we conclude that ¢x is an
isomorphism and the lower row is exact. This implies Tor’((®(X), ¥(hp)) =0,1 <i < k.
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Conversely, if we take X € Mod P fulfilling the assumptions in the set bracket of the lemma. We can
apply @' to the projective k-presentation of ®(X), then we can find a diagram as before but this
time we know from the assumptions that the bottom row is exact. Furthermore, since ¢, is an
isomorphism in all places of the diagram, we have that also the top row is exact. This implies

X € genMedP (M), O

4.2. The symmetry principle. Now, we study these subcategories in more general exact
categories. For an exact category £ with enough projectives P and an exact category F with enough
injectives Z, we consider the covariant, exact, fully faithful functors

P: £ - mode P, X — Homg(—, X)|p
I: 7 = modo Z%, X — Homz(X, —)|zor
cf. [2, Prop. 2.2.1, Prop.2.2.8]
Remark 4.14. For an additive category M of &€ (resp. of F) we have:
P(geni (M)) = Im P N geny*? (P(M)),
I((cogen:(M))) = I(gen?™ (M) = Tm I 1 gen}*I 2% (M)

This follows from remark 4.4 since P: £ — ImP is an equivalence of exact categories and ImP is
deflation-closed in mody, P and mody, P is deflation-closed in Mod P. The second statement follows
by passing to the opposite category.

As before, let ®: &€ — Mod M, ®(X) = Homg(—, X)|pm, U: € = M Mod, ¥(X) = Homg(X, —)| -
We have the immediate corollary:

Corollary 4.15. (of Lem. 4.13 and Rem. 4.14) (1) Let € be an exact category with enough
projectives P and M a full additive subcategory. Then the following are equivalent:

(1) X € gen§, (M)
(2) ®(X) € mody M and for every P € P:
O(X)®@m ¥ (P)— Homg(P, X), g fr—gof
is an isomorphism, Tor’y(®(X), ¥(P)) =0, 1 <i < k.

(2) If € is an exact category with enough injectives T and M a full additive subcategory. Then the
following are equivalent:

(1) X € cogenf(M)
(2) ¥(X) € Mmody, and for every I € L:
(1) @p V(X) = Homz(X, 1), g@ frrgof
is an isomorphism, Tor'y(®(I),¥(X))=0,1<i < k.

THEOREM 4.16. (Symmetry principle). Let € be an exact category with enough projectives P and
enough injectives T and k > 1. The following two statements are equivalent:

(1) P C cogenf(M) and ®(I) = Homg(—,I)|pm € mody, M for every I € T
(2) T C gen{ (M) and ¥(P) = Homg(P, —)|p € Mmody, for every P € P

PrROOF. We consider P, 1 as before defined for the category €. Then, it is straight forward from
the previous Lemma to see that (1) and (2) are both equivalent to for all P € P,I € Z,
U(P) € Mmodyg, ®(I) € modx M and

O(I) @pm ¥(P) — Homg(P,I), g frgof
is an isomorphism, Tor’(®(I), ¥(P)) =0, 1 < i < k. Therefore (1) and (2) are equivalent. O
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