
Derived categories and functors for exact categories

This includes a joint result with Juan Omar Gomez.

1. Synopsis

By now, derived categories and derived functors for abelian categories are standard topics in a
course on homological algebra. This is a an introduction to derived categories of exact categories
assuming that the reader is familiar with the theory for abelian categories. Other sources which
include exact categories are [12], [14], [5].
Our treatment of derived functors is only shortly summarizing the results in [12].
What is new? We characterize when derived categories of exact categories are locally small (i.e.
Hom-classes are sets).

2. Why derived categories?

This is an attempt in trying to explain in a nutshell why derived categories have homological algebra
as their heart.
An exact category (in the sense of Quillen) is an additive category together with a collection of
kernel-cokernel pairs called short exact sequences fulfilling axioms such that Ext1E = (taking
equivalence classes of short exact sequences) becomes an additive bifunctor. Using longer exact
sequences one can find higher Ext-functors Extn - for the moment we assume that these are all
set-valued functors (cf. next section).
Homological algebra for exact categories is the study of the bifunctors ExtnE and in particular the
conversion of short exact sequences into long exact sequences using higher Ext-groups.
Philosophically: Can we enlarge E to a category D such that these bifunctors become restrictions of
the Hom-functor and are connected by an auto-equivalence Σ: D → D as
ExtnE(X,Y ) = HomD(X,ΣnY )?
For every short exact sequence X ↣ Y ↠ Z in E representing σ ∈ Ext1E(Z,X) = HomD(Z,ΣX) we
look at the sequences in D

X → Y → Z
σ−→ ΣX

and call these ’distinguished triangles with three objects in E ’. This wish list on such a category D
has been formalized in the notion of a triangulated category with initial data an additive category D
with an auto-equivalence Σ, called suspension, and a collection of distingished triangles such that a
list of axioms is fulfilled (cf. TR0-TR5 in [9, Def. 10.1.6]). As the long exact sequences have no
negative parts, we find another condition which the bounded derived category has to fulfill

Ext−n
E (X,Y ) = Hom(X,Σ−nY ) = 0 ∀X,Y ∈ E , n ≥ 1.

The structure preserving functors between triangulated categories are called triangle functors.
’Structure preserving functors’ from exact categories into triangulated categories are called δ-functors
(in the sense of Keller [11] or one can view them as extriangulated functors in the sense of [3]):

Definition 2.1. ([11]) Let E be an exact category and D be a triangulated category. A δ-functor
E → D consists of a pair (F, δ) consisting of an additive functor F : E → D and an assignment δ
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mapping short exact sequences σ = (i, d) : X ↣ Y ↠ Z to a morphism δσ : F (Z) → ΣF (X) fitting
into a distinguished triangle

F (X)
F (i)−−→ F (Y )

F (d)−−−→ F (Z)
δσ−→ ΣF (X).

We call a δ-functor E → D homological if δ induces natural isomorphisms
ExtnE(Z,X) → HomD(F (Z),ΣnF (X)) for every n ∈ Z.

So, we hope for the following naive definition:
The bounded derived category should be the universal homological δ-functor into triangulated
categories. This means we have an homological δ-functor E → Db(E) such that every homological

δ-functor E → D factors as E → Db(E) R−→ D. We also want R to be unique up to natural
isomorphism. Unfortunately, uniqueness is in general unknown. We call it a realization functor
for E (if it exists).
The existence of R can be proven when restricting to suitably enhanced triangulated categories
(filtered derived [4], Neeman enhanced [18] or algebraic due to [13], proven in [15]). Uniqueness is
usually not discussed, it requires restriction to triangle functors which are preserving the fixed
enhancement (for algebraic triangulated categories it follows from the construction, cf. [15]).

Remark 2.2. Why would one also look at D+(E), D−(E), D(E)?
The reason is that we can usually not define right and left derived functors on Db(E) but if we
extend our derived category we (often) can.
At the level of positive (resp. negative) derived categories we have an explicit method to calculate
(at least partially) right (resp. left) derived functor using Deligne’s right (resp. left) acyclic objects.
For example, injective objects are always right acyclic and injective coresolutions (if they exist) can
then be used to calculate right derived functors (as in the abelian case). We come back to this in
detail in the last section of this chapter.
Our motivation to look at D(E) is not so strong but if you want for example a triangulated category
with arbitrary set-valued coproducts then you would look at D(E) where E has arbitrary coproducts.

2.1. Explicit construction(s). Let us start with an exact category E with underlying additive
category A and ∗ ∈ {∅,+,−, b}.

2.1.1. Variant 1: As Verdier quotient. Given a full triangulated subcategory in a triangulated
category U ⊆ T there exists a triangle functor QU : T → T /S, called the Verdier localization,
which fulfills the following universal property: Every triangle functor T → R which annihilates the
objects of U factors uniquely over a triangle functor T /U → R.
There are two well-known issues

(1) T /U is defined by a localization and the Hom-classes may not always be sets.
(2) Let U ⊂ U ⊆ U⊕ with U the saturation (i.e. the closure of U under isomorphism in T ) and

U⊕ the thick closure (i.e. closure under direct summands and isomorphism in T ). Then
clearly these larger categories fulfill the same universal property and T /U = T /U = T /U⊕.
Therefore, some authors consider Verdier quotients with respect to thick subcategories.

Then take the homotopy category of the additive category K∗(A). This is a triangulated category
(cf. [9, Thm 11.3.8]).
The subcategory of E-acyclic complexes Ac∗(E) is a full triangulated subcategory (cf. [17], 1.1).

Definition 2.3. The (∗-)derived category of E is defined as the Verdier quotient

D∗(E) := K∗(A)/Ac∗(E)

Then problem (2) can be fully answered when looking at properties of the underlying additive
category. We say an additive category A is weakly idempotent complete (wic) (resp.
impotent complete (ic)) if every idempotent endomorphism e : A → A has a kernel (resp. has
kernel and image and gives rise to a split exact sequence ker e → A → Im e).
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In [5], exact structure on an exact category is extended functorially to an exact structure on an
idempotent completion of the underlying additive category. This gives an exact functor

E → E ic

Similarly a weakly idempotent completion can be constructed. This gives exact functors

E → Ewic → E ic

In [17], the following (2c) has been proven (and (2a,b) is partly attributed to Thomason):

(2a) For ∗ = b.
Acb(E) is saturated if and only it is thick if an only if E is weakly idempotent complete.
For every exact category Db(E) → Db(Ewic) is a triangle equivalence.

(2b) For ∗ = ±.
In this case we have both triangle equivalences D±(E) → D±(Ewic) → D±(E ic).

(2c) For ∗ = ∅.
Ac(E) is saturated if and only it is thick if an only if E is idempotent complete.
Then D(E) → D(E ic) is a triangle equivalence.

Remark 2.4. Then Db(E) may not be idempotent complete: Balmer-Schlichting [2] showed that the
idempotent completion of a triangulated category has a natural triangulated structure and Db(E ic) is
triangle equivalent to (Db(E))ic.

2.1.2. Variant 2: As Localization of exact category of complexes with respect to a biresolving
subcategory. This is a recent construction of Rump [23, Thm 5], cf. also [24].
A full additive subcategory C in an exact category F is a biresolving subcategory if it is thick
(i.e. closed under direct summands and every C satisfies the 2-out of 3-property for short exact
sequences (i.e. for every F-short exact sequence X → Y → Z with two out of X,Y, Z in C the third
is also in C) and it is generating-cogenerating (i.e. for every X in F there is a F-deflation
d : C0 → X and an F-inflation i : X → C1 with C0, C1 ∈ C). (We slightly differ with this definition
from loc. cit, as there it is not assumed that C is closed under direct summands. )
Then the localization F/C is defined as follows: First consider [C] to be the ideal (i.e. subfunctor of
Hom) given by all morphisms factoring through C. We take Σ(C) ⊆ (F , ) the class of all morphisms
which become in the ideal quotient category F/[C] a monomorphism and also an epimorphism. Then
in loc. cit. it is shown that there exists a left and right calculus of fractions and

F/C := Σ(C)−1F
admits a structure of triangulated category, loc. cit Theorem 5.
Now we apply this as follows: We assume that E is weakly idempotent complete (in loc. cit this is
not assumed).
We take *-chain complexes Ch∗(E) in A. We see this as an exact category with short exact
sequences are degree-wise E-short exact sequences (cf. [5, Lem. 9.1]). We look at the full
subcategory Ac∗(E) of E-acyclic-complexes. This is a biresolving subcategory of the exact category
Ch∗(E), cf. [23, Example 2]. Then this gives the second definition of the derived category (cf. [24])

D∗(E) := Ch∗(E)/Ac∗(E)

Then one can show the following Lemma as a corollary, the canonical functor of the localization is
also the composition L : Ch∗(E) → K∗(A) → D∗(E). In [25, Tag 014Z], Lemma 13.12.1, it has been
explained how to construct a δ such that (L, δ) is a δ-functor (even though in loc. cit. the category
is abelian, the same arguments work for general exact categories). The construction goes as follows:

Given a short exact sequence σ : A• a−→ B• b−→ C• in Ch∗(E), one constructs a quasi-isomorphism (i.e.
morphism with acyclic cone) q : C(a) → C where C(a) is the cone of a, then one has a standard
triangle in K∗(A) for the morphism a, and this gives a distinguished triangle in D∗(E). In particular,
we have in this triangle a morphism p : C(a) → ΣA•, so we have a well-defined

δσ := p ◦ q−1 : C• → ΣA• ∈ D∗(E)
3
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Recall that a complex is numbered as follows by the integers · · · → Xn → Xn+1 → · · · . We also have
a shift on T : Ch(E) → Ch(E), where T (X) is the shift of complexes to the right, i.e.
T (X•)n := Xn+1.
For a complex X concentrated in degree 0 we have the short exact sequence

ηX : TX ↣ (X
1X−−→ X) ↠ X with (X

1X−−→ X) is the 2-term complex concentrated in degrees 0, 1. We
have L ◦ T ∼= Σ ◦ L (we say L is shift invariant). Also, by definition δηX = 1L(X) (we say that L is
normed).

Lemma 2.5. Let E be weakly idempotent complete exact category. Then

(1) the canonical functor L : Ch∗(E) → D∗(E) is a δ-functor which is shift invariant and
normed.

(2) Every shift invariant, normed δ-functor G : Chb(E) → D factors uniquely as G ◦ L with
G : Db(E) → D a triangle functor.

Proof. (1) has already been explained before the lemma.

(2) Let G = (G, δG) : Chb(E) → D be a shift invariant δ-functor.
The property being normed can be replace by mapping split acyclic complexes to zero, this means
that G factors over a triangle functor Kb(A) → D. As it maps E-short exact sequences to triangles,
the triangle functor maps acyclic complexes to zero (cf. same argument in [15, Lem 3.5]) and
therfore factors over a triangle functor G : Db(E) → D. Assume now, we have a second triangle

functor H : Db(E) → D with H ◦L = G ◦L. Now, L factors as LV ◦LK with LK : Chb(E) → Kb(A) is
just the ideal quotient and LV : Kb(A) → Db(E) is the Verdier quotient. By the universal property of
the Verdier quotient it is enough to see that H ◦ LV = G ◦ LV . But LK is full, so every morphism is
of the form LK(f) for some morphism and we see that HLV = GLV . □

Remark 2.6. One can also see the derived categories of exact categories as homotopy categories
associated to certain model categories (different choices might lead to the same homotopy
categories). Also derived functors can be constructed in this more general set-up. For example look
into [6] and [8].

2.2. Completions.

2.2.1. Countable envelope. Exact categories E always have a countable envelope Ẽ constructed in
[10], Appendix B:

First construct FE with objects are sequences X = (X0 i0X−→ X1 i1X−→ X2 → · · · ) of consecutively
composable inflations, and morphisms X → Y are sequences of (fp : Xp → Y p)p∈N0 such that
ipY f

p = fp+1ipX for all p ≥ 0. Then FE is an exact category with a sequence (j, e) is a short exact

sequence if and only if (jp, ep) are short exact sequences in E for all p ≥ 0. Then we define Ẽ as the
category with the same objects and morphisms Hom(X,Y ) = limp colimq Hom(Xp, Y q). By

construction we have a functor FE → Ẽ , we call a sequence (j̃, ẽ) an exact sequence if there exists an
exact sequence (j, e) in FE which maps via the natural functor to it. Observe that the underlying

additive category of Ẽ has countable coproducts (by taking only split inflations in a sequence of
inflations as before). We recall Keller’s results.

Theorem 2.7. ([10, Appendix B])

(a) Ẽ is an exact category wrt the exact sequences described before. The constant functor

E : E → Ẽ , X → (X = X = X · · · ) is a homologically exact functor (i.e. exact and inducing
isomorphisms on all Ext-groups).

(b) The following are equivalent:
(b1) E is locally small (i.e. has Hom-sets and not classes) and ExtnE are set-valued for all

n ≥ 1
(b2) Ẽ is locally small and ExtnẼ are set-valued for all n ≥ 1
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Proof. or where to find it: For (b) observe that (a) already implies (b2) ⇒ (b1). The other
implication is using that (b1) implies that FE has set-valued Extn for all n ≥ 1 and then use
[10, Lemma in B.3]. □

Remark 2.8. By the previous Lemma we have an induced fully faithful triangle functor
Db(E) → Db(Ẽ) but we do not know if D(E) → D(Ẽ) is faithful.

2.2.2. Completion of small exact categories. Small exact categories E have a completion
−→
E

(called a locally coherent exact category) with respect to filtered colimits, cf. [20] and Appendix in
Chapter 2.

E →
−→
E

Then E is a full homologically exact category of
−→
E . Also, in loc. cit, the author shows that

−→
E is a

so-called exact category of Grothendieck type which implies that it has enough injectives.

Remark 2.9. D(E) → D(
−→
E ) might be not full (examples are given by [21]), a characterization

when this triangle functor is faithful is unknown.

The difference to the countable envelope is that we assume here that E is (essentially) small. If we
drop this assumption then we do not know much about the Ind-completion (but it can have not
enough injectives).

2.3. Passing between different boundedness levels.

Lemma 2.10. ([12]) By construction we have triangle functors Db(E) → D+/−(E) → D(E). They
are all fully faithful.

Let us consider two fixed exact categories E , E ′ and the following three statements

(Db) Db(E) and Db(E ′) are triangle equivalent.
(D+) D+(E) and D+(E ′) are triangle equivalent.
(D) D(E) and D(E ′) are triangle equivalent.

We are now looking at situations where one holds and another one not.

(a) If E ̸= E ic = E ′ then (D), (D+) and not (Db) holds (cp. [17]).
(b) If E ⊆ E ′ is a coresolving subcategory of E ′, then we have (D+). It is finitely coresolving if

and only if (Db) holds. It is n-coresolving for some n ≥ 0 if and only if (D) holds.
This way, we find an instance where (D+) and not (Db) and also not (D) holds.

Reference [7]. Also: an instance where (Db) and not (D) holds.

This leaves only the following open: Does (Db) imply (D+)? I do not know.

Remark 2.11. When restricting to exact categories with certain similar properties, there are still
interdependences. For module categories of rings (cf. main theorem in [22]). This has been
generalized to functor categories [1]. The best explanation for this is given by Neeman’s theory of
approximable triangulated categories, cf. [19].

3. When is it a category?

In this text, we will work in the framework of ZFCU (Zermelo-Frankel, the axiom of choice and the
axiom of the universe). We fix an infinite universe U .

Let X be a set, we will say that X is: U-small if X ∈ U , U-class if X ⊂ U or U-large set if X ̸⊆ U .
In general, we will drop U from the notation.
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We allow a category to have a class of objects and to have a class as morphisms between any two
objects. We say that a category is locally small if Hom(X,Y ) is a small set for every two objects
X,Y - usually in the literature: locally small categories are called categories.

As usual, we let Set denote the category of small sets with morphisms given by maps between them.

We will need a big version of this category, namely Ŝet, where we allow the objects to be classes as

well as the morphisms between them. We denote Ĝps, Âb . . . denote the ’big’ versions the categories
of groups, abelian groups, etc.

Let E be a (locally small Quillen-) exact category.

Theorem 3.1. The following are equivalent:

(1) ExtnE is set-valued for all n ≥ 0
(2) Db(E) is a locally small.

If E has countable coproducts then they are also equivalent to the following conditions:

(3) D−(E) is locally small
(3’) D+(E) is locally small.
(4) D(E) is locally small.

Remark 3.2. If we can proof that the inclusion of E into its countable envelope Ẽ induces a faithful
functor D(E) → D(Ẽ), then we can drop the assumption that E has to have countable coproducts
because we could just replace E by its countable envelop (cp. subsubsection 2.2.1) .

Let us state a very easy corollary

Corollary 3.3. If E is an exact category. We denote by E ic its idempotent completion. Then: Db(E)
is a locally small if and only if Db(E ic) is locally small.

Proof. As E is homologically exact in E ic (cf. [2]), we conclude that every
ExtnEic((X, e1), (Y, e2)) is a summand of ExtnE(X,Y ). Then use Theorem 3.1. □

Corollary 3.4. For every locally coherent exact category E, the derived categories D∗(E) with
∗ ∈ {b,±, ∅} are locally small.

Proof. Locally coherent exact categories have enough injectives therefore all Extn are
set-valued. They have countable coproducts therefore the theorem directly applies. □

For the proof of Theorem 3.1 we observe the following:

Lemma 3.5. Let G be a triangulated category together with a homological functor F : G → Âb.
Consider the full subcategory C of G on the objects X such that F (ΣnX) ∈ Ab for all n ∈ Z. Then C
is a thick subcategory of G.

Proof. This is an immediate consequence of the fact that Ab is a closed under extensions. □

Then we have this easy corollary:

Corollary 3.6. Let T be a triangulated category, and C ⊆ T be a full locally small subcategory and
assume that C is closed under all shifts. Then ThickT (C) is also locally small.

Proof. Let D be the full subcategory of ThickT (C) on the objects X such that HomT (X,C)
and HomT (C,X) are small sets for any C ∈ C. Note that D is closed under arbitrary shift by the
hypothesis on C. By Lemma 3.5, it follows that D is thick, and since it contains C we deduce that
D = ThickT (C). □
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Proof of Theorem 3.1. (n) implies (1) for n ∈ {2, 3, 3′, 4}: Follows directly since for all X,Y
in E we have ExtnE(X,Y ) ∼= HomDb(E)(X,ΣnY ) for all n ∈ Z where Ext0E(X,Y ) = HomE(X,Y ) and

Ext<0
E (X,Y ) = 0, cp [14, Prop. 4.2.11]. As Db(E) → D∗(E) is fully faithful for ∗ = ±, ∅, the other

implications also follow.
(1) implies (2): Just take T = Db(E) and C = add(E [n], n ∈ Z). Then, by definition C is locally small
if and only if (1) in the Theorem 3.1 is fulfilled. Since ThickDb(E)(C) = Db(E), it follows (2) from the
previous Corollary.
Now assume that E has countable coproducts, let A be the underlying additive category. Then,
every object X in K−(A) fits into a triangle⊕

n≤0

σ≥nX →
⊕
n≤0

σn≥0X → X
+1−−→

where σ≥nX is the (brutal) truncation of a complex X is defined as · · · 0 → Xn → Xn+1 → · · · (see
e.g. [14, Ex. 4.2.2]). By [14, Lemma 1.1.8], the Verdier quotient functor commutes with countable
coproducts and maps this distinguished triangle to a distinguished triangle in D−(E).
(2) implies ((3) and (3’)): This means the extension-closure of Db(E) in D−(E) is the whole
triangulated category and therefore Corollary 3.6 implies the claim. The argument for D+(E) is
analogue using brutal truncation in the other direction.
((3) and (3’)) implies (4): Now, we look at the unbounded homotopy category K(A). Brutal
truncation yields a distinguished triangle

σ≥0X → X → σ<0X
+1−−→

Then passing to the Verdier quotient we can look at the smallest additive subcategory of D(E)
containing D+(E) and D−(E) and call this category C = D−(E) ∨D+(E). If D+(E) and D−(E) are
locally small, then C is also locally small by Lemma 3.7. Clearly C is closed under all shifts. The
previous triangle shows that C is a thick generator for D(E) and therefore D(E) is also a locally small
category.

□

Lemma 3.7. Let E be an exact category with countable coproducts. Assume that D+(E) and D−(E)
are locally small. Then for every X ∈ D−(E), Y ∈ D+(E) we have that HomD(E)(X,Y ) and
HomD(E)(Y,X) are sets.

Proof. For X in D−(E) we find a distinguished triangle (see above):⊕
n≤0

σ≥nX →
⊕
n≤0

σn≥0X → X
+1−−→

Then apply Hom(−, Y ) and apply Hom(Y,−) with Y ∈ D+(E). The rest is obvious (use the five
terms of the long exact sequences with Hom(X,Y ) and resp Hom(Y,X) in the middle,
Hom(

⊕
Xi, Y ) ∼=

∏
iHom(Xi, Y ) and Hom(Y,

⊕
iXi) ∼= Hom(Y,Xi) implies that the other four

terms are small abelian groups). □

Remark 3.8. As far as we know there is no characterization of all higher Ext-functors in an exact
category being set-valued. Nevertheless there is the following list of examples where this is fulfilled.

(a) If E is essentially small. One reference for this [14], Lemma 4.2.17 together with Prop. 4.3.4.
(b) If E has enough projectives or enough injectives (more generally of Kb(E) has enough

K-projectives or enough K-injectives). A reference for this [14], Cor. 4.3.2, p.123.
(c) If E has a small generator or a cogenerator.

We give some examples of categories to see that (1) can not be weakened.

Example 3.9. We will look at representations of quivers where we allow the vertices and arrows to
be a proper classes and representations are to be understood as in vector spaces over some field K
and of finite total dimension. Furthermore, we will always impose the relations that the composition
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of any two composable arrows is zero. These are abelian categories. Let’s construct some examples.
We fix a proper class M (i.e. this is not a set).

(1) We look at Q with two vertices 1 and 2 and arrows am : 1 → 2 for each m in M . Then this
gives an abelian category with Hom-sets but Ext1(S1, S2) is not a set since we find for every
m in M a short exact sequence

0 → S2 → Im → S1 → 0

with Im is the representation with am = idK and an = 0 for all n ̸= m. These are pairwise
non-isomorphic.

(2) Now we look at a quiver with vertices 1, 2 and vm,m ∈ M and arrows
bm : 1 → vm, cm : vm → 2 for every m ∈ M and the relations cmbm = 0 for all m ∈ M . Then
this gives an abelian category with Hom and Ext1 are set-valued. But for every m ∈ M we
have an exact sequence

0 → S2 → Jm → Lm → S1 → 0

with Jm 2-dimensional given by bn = 0 for all n ∈ M and cm = idK , cn = 0 for n ̸= m and
Lm 2-dimensional given by bm = idK, bn = 0 for n ̸= m, cn = 0 for all n ∈ M . Again

these are pairwise non-isomorphic, so Ext2(S1, S2) is not a set.
(3) Fix an integer t ≥ 1. Now look at the quiver with vertices 1, 2 and v1,m, . . . , vt,m for every

m ∈ M and arrows
a1,m : 1 → v1,m, a2,m : v1,m → v2,m, . . . , at,m : vt−1,m → vt,m, at+1,m : vt,m → 2. Again we
impose ai+1,mai,m = 0 for 1 ≤ i ≤ t and m ∈ M . With a similar argument as in the

previous cases one shows that Extt+1(S1, S2) is not a set. But Hom and Exti are set-valued
for 1 ≤ i ≤ t.

4. Keller’s approach to deriving additive functors between exact categories

Or, as much as we could verify of it. We summarize the construction of [12], in a simple language. If
E = (A,S) and F = (B,S ′) we look at the class Sf := {(i, d) ∈ S | (f(i), f(D)) ∈ S ′} which we call
f -exact sequences. If (i, d) ∈ Sf , we call i an f -inflation and d an f -deflation.

Definition 4.1. Let E = (A,S) an exact category. Let X be a class of kernel-cokernel pairs on A.

We call an object X ∈ A right X−acyclic if every X
i−→ Y

d−→ Z with (i, d) ∈ S fulfills (i, d) ∈ X .
We call CX the full subcategory of A of right X -acyclic objects.

Definition 4.2. Let Spb
f be the class of all σ ∈ S such that there exists a commutative diagram

X Y ′ Z ′

X Y Z

=

with σ⊕ (X1
1−→ X1 → 0) in the upper row and an f -exact short exact sequence σf ∈ Sf in lower row.

We define the category of right f-acyclics as the full subcategory C := CSpb
f

of A.

This will later be used to show that this notion is the one mentioned in the literature.

Lemma 4.3. The following are equivalent for X ∈ E = (A,S).

(1) X is right f -acyclic
(2) Every morphism M → X in K+(A) with M an E-acyclic complex factors as M → M ′ → X

with M ′ an E-acyclic and f -exact complex (i.e. the corresponding short exact sequences are
all in Sf ).
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Proof. Assume f : M → X is a chain map with M = (Mn, dn) acyclic and X in degree 0. Then
such a map is given by a morphism h : N = Im d0 → X. Therefore, it always factors over the
push-out of Im d0 ↣ M1 ↠ Im d1 along h. This means we may assume wlog that M is a short exact
sequence σ : X ↣ Y ↠ Z (in degrees 0, 1, 2) and the morphism M → X is the identity on X in
degree 0 and zero in all other degrees.
Assume (2): If this now factors over an f -exact short exact sequence σ : X ′ ↣ Y ′ ↠ Z ′ then we find

that σ′ pulls back to σ ⊕ (X1
1−→ X1 → 0).

Assume (1): If σ ⊕ (X1
1−→ X1 → 0) is a pull back of σf ∈ Sf , then we have that M → X factors over

σ → σ ⊕ (X1
1−→ X1 → 0) → σf =: M ′. □

Remark 4.4. Recall in Chapter 1 we showed: If f is left or right exact or if f is fully faithful with
extension-closed essential image, then Sf is already an exact structure.

Lemma 4.5. Assume that Ef = (A,Sf ) is an exact substructure of E. Then an object X in A is
right f -acyclic if and only if the natural morphism

Ext1Ef (Y,X) → Ext1E(Y,X)

is an isomorphism for all Y ∈ A. In particular, C is extension- and inflation-closed in E.
Furthermore, Given an E-short exact sequence X

i−→ Y
d−→ Z with X,Y, Z in C then it is f -exact (i.e

(i, d) ∈ Sf )

Proof. This is easy to see. □

Definition 4.6. If Ef = (A,Sf ) is an exact substructure of E , we say f has enough right f -acyclics
if C is cogenerating in E (i.e. every object X ∈ E there exists an inflation X → C with C ∈ C). Then
it is a coresolving subcategory and i : D+(C) → D+(E) is a triangle equivalence and we have a
triangle functor

rf : D+(E) i−1

−−→ D+(C) f−→ D+(F)

In general, we do not see why C should be extension-closed in E nor why it should satisfy condition
(C2) from [12] (this is claimed in [12, Lemma 15.3]). As this is not proven in loc. cit. one should
treat it as a conjecture.
There are two strategies how one can pass to an extension-closed subcategory C2 ⊆ C1 ⊆ C i = 1, 2.
Either X ∈ C1 are all objects such that every E-short exact sequence X ↣ Y ↠ Z is also f -exact, or
one looks at the maximal exact substructure Ef,max ≤ E making the functor f exact and then
X ∈ C2 are all objects such that all E-short exact sequences X ↣ Y ↠ Z are already Ef,max-short
exact sequences. The advantage of C2 is that we can generalize the previous Lemma imediately and
conclude that C2 is extension- and inflation-closed.

Example 4.7. Observe that the full subcategory on E-injectives I = I(E) is contained in C2. So if E
has enough injectives then it also has enough right f -acyclics (using the subcategory C2).

4.1. rf = Rf . We explain now why this notion of right f -acyclic coincides with the one defined
in [12] and then conclude rf is the right derived functor Rf of f .
Generally, given a triangle functor F : T → T ′ and a fixed Verdier quotient Q : T → T /M =: D (we

think of this as a derived category). We will choose F : K+(A)
K+(f)−−−−→ K+(B) → D+(F) and

Q : K+(A) → D+(E). Keller constructs (following roughly Deligne) a (possibly zero) triangulated
subcategory U of T such that U/(U ∩M) is a triangulated subcategory of T /M such that F |U
factors over a triangle functor U/U ∩M → T ′ (and this triangle functor is isomorphic to the
restriction of Deligne’s Rf):

Definition 4.8. A triangulated subcategory U of T is called right cofinal (wrt M) if every
morphism M → X with M ∈ M, X ∈ U factors as M → M ′ → X with M ′ ∈ U ∩M.
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In this case, the induced triangle functor U/(U ∩M) → D is fully faithful (cf. [12, 10.3]).
Now let kerF be the thick subcategory of T with objects T ∈ T such that F (T ) ∼= 0.
This definition differs from [12, Lem. 14.1], explanation see below:

Definition 4.9. We say X ∈ T is F -split if every morphism M → X in T with M ∈ M factors as
M → M ′ → X with M ′ ∈ M∩ kerF .
We call U be the full subcategory of T with F -split objects.

Remark 4.10. The characterization of F-split objects in [12, 14.1, (iii)] does not seem to give a
triangulated subcategory. We use Lipman’s stronger definition ([16], Def. (2.2.5), Ex. 2.2.8(D)) as
in that case the F-split objects are shown to be a triangulated subcategory.

Lemma 4.11. (cf. [16, Lemma 2.2.5.1]) U is a triangulated subcategory of T .

Observe, that M∩ kerF ⊆ M∩ U because given X ∈ M∩ kerF and M → X a morphism with

M ∈ M we can consider the factorization over M ′ = X
1X−−→ X, to see that X ∈ U . In particular, U

is right cofinal in T .
But also by definition X ∈ U ∩M ⊆ kerF because now we can take 1X : X → X and it has to factor
over M ′ ∈ kerF ∩M as X ∈ U . This means 1F (X) = F (1X) ∼= 0 and therefore F (X) ∼= 0. By the
universal property of the Verdier quotient, F factors over a triangle functor U/(U ∩M) → T ′.

Then we just cite the following result as we do not remind the reader of Deligne’s definition of the
derived functor.

Lemma 4.12. ([12, section 14]) The triangle functor U/U ∩M → T ′ coincides with Deligne’s
RF |U/M∩U .

We call CDel := U ∩ A ⊆ K+(A) the category of right F-acyclics (i.e. these are the F-split stalk
complexes in the homotopy category). Then:

Corollary 4.13. (of Lemma 4.3) CDel = C
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