
Tilting theory in exact categories

1. Synopsis

We define tilting subcategories in arbitrary exact categories to achieve the following. Firstly: Unify
existing definitions of tilting subcategories to arbitrary exact categories. We discuss standard results
for tilting subcategories: Auslander correspondence, Bazzoni description of the perpendicular
category.
Secondly: We treat the question of induced derived equivalences separately - given a tilting
subcategory T , we ask if a functor on the perpendicular category induces a derived equivalence to a
(certain) functor category mod∞ T over T . If this is the case, we call the tilting subcategory ideq
tilting. We prove a generalization of Miyashita’s theorem (which is itself a generalization of a
well-known theorem of Brenner-Butler) and characterize exact categories with enough projectives
allowing ideq tilting subcategories.
In particular, this is always fulfilled if the exact category is abelian with enough projectives.

2. Introduction

Tilting theory (= categories with tilting objects) is originally defined for categories of finitely
generated modules over artin algebras (Brenner-Butler) and tilting modules were still assumed of
pd ≤ 1. Then this was generalized to arbitrary projective dimension by [16], Chapter 3 - here you
also find a detailed account of the beginning of tilting theory (starting with BGP reflection functors).
Afterwards this was generalized in several directions ( [28], [22], [13], [1], [14], [17], [2] Chapter 5,
[24] - referred to (by us) as: infinite or big tilting or tilting in triangulated categories). The different
developments at that time (2007) were captured in the handbook of tilting theory [2]. Since then,
many more generalizations were found, e.g. the later discussed recent works [30], [23], [26].
For exact categories: The first occurrence in [4] is tilting objects in exact substructures of modΛ for
an artin algebra Λ. In [20], Chapter 7, a tilting object in an exact category is defined as a
self-orthogonal object which generates the bounded derived category of the exact category as a thick
subcategory. In [30], the authors define tilting subcategories for extriangulated categories with
enough projectives and enough injectives. The literature on infinite or big tilting in exact categories
will not be considered here (this includes [26]). An alternative definition of tilting in exact categories
can be found in [23] which covers big and small tilting in exact categories (as far as we can see: Here
is an additional axiom (T3) required in loc. cit. which we are not using).

Our motivation is to generalize and unify the following classical and recent definitions and results
(which we only sketch as follows):

(A) Tilting modules over artin algebras induce derived equivalences ([16] Chapter 3, [24]).
(B) Relative tilting modules over artin algebras induce derived equivalences ([4], [11]).
(C) Tilting bundles over projective varieties over a field induce derived equivalences ([8], [10]).
(D) Zhang-Zhu [30] introduce tilting subcategories for extriangulated categories with enough

projectives and enough injectives. They prove a generalization of a result called
Auslander-correspondence.
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To include (C),(D): We must drop the assumption that the exact category has enough projectives
and we have to generalize from tilting modules to tilting subcategories. Our definition can be found
as Definition 5.1. Furthermore, we shortly discuss standard results from tilting theory:
1. Bazzoni’s description of the perpendicular category cf. Corollary 5.5. This gives a description of
the perpendicular category of a tilting subcategory which is practical to find examples (see e.g.
special tilting).
2. Auslander correspondence cf. subsection 5.1.1. This means a characterization of the subcategories
which arise as perpendicular categories of tilting subcategories.
As this topic has so many precursors, we discuss compatibility with other definitions of tilting (this
does not claim completeness due to the amount of literature on the subject) in section 6.
To generalize (A),(B): We need to find a tilting functor which induces in (A) and (B) a triangle
equivalence as claimed.
We introduce in section 7 the notion ideq tilting, which means that the tilting functor induces a
triangle equivalence on the bounded derived categories. We prove, if for a an n-tilting subcategory
T , the category mod∞ T has finite global dimension, then T is ideq tilting (cf. Prop. 7.8)- this
generalizes (C). We prove the following results as generalizations of (A) and (B) respectively:

Theorem 2.1. (cf. Thm 7.14) Let E be an exact category with enough projectives P. Then the
following are equivalent:

(1) E is equivalent as an exact category to a finitely resolving subcategory E of mod∞ P, i.e. E
is resolving and for every F ∈ mod∞ P there is a finite exact sequence
0 → En → · · · → E0 → F → 0 with some Ei ∈ E for some n ≥ 0.

(2) There is an n ∈ N0 and an n-tilting subcategory of E which is ideq n-tilting.
(3) For every n ≥ 0, every n-tilting subcategory of E is ideq n-tilting.

Corollary 2.2. (cf. Cor. 7.34) Let P be an idempotent complete, additive category. Let E be an
exact substructure of mod∞ P, with enough projectives Q. Then for every n ≥ 0, every n-tilting
subcategory of E is ideq n-tilting.

To prove the first theorem, we prove a Miyashita Theorem (generalization of Brenner Butler’s
theorem) cf. Theorem 7.13. This describes the image of the perpendicular category of an ideq tilting
subcategory T under the tilting functor (X → HomE(−, X)|T ).

As standing assumption: We will always assume that the exact category is idempotent complete.
To introduce definitions of subcategories and recall results from the literature, we start in section 2
with preliminaries on subcategories of exact categories and in section 3 we give a quick introduction
to the bounded derived category.
The author is supported by the Humboldt Professorship of William Crawley-Boevey and would like
to thank him for helpful discussions.

3. Some definitions of subcategories

Let A be an idempotent complete category. Let E = (A,S) be throughout this section be an exact
category in the sense of Quillen (it consists of an additive category A together with a class of
kernel-cokernel pairs S, referred to as short exact sequences which satisfy the axioms of [12], Def.
2.1).
For a kernel-cokernel pair (i, d) ∈ S we call i an inflation and d a deflation. We will denote by
P(E) the projective objects in E and by I(E) the injectives. Since this is common practice, we will
also often denote the underlying additive category A again by E - we think the reader can handle
this level of ambiguity.

Definition 3.1. If E = (A,S) is an exact category and X a full subcategory which is closed under
extensions. Then we call X fully exact subcategory if we consider it together with the exact
structure S|X (i.e. the short exact sequences in S where all three terms lie in X ). We will write
P(X ) for the Ext-projectives in X .
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3.1. Subcategories generated by or orthogonal to a subcategory. We call a morphism
f : X → Y in E admissible if it factors as f = d ◦ i for an inflation i and a deflation d. We say

X
f−→ Y

g−→ Z with f, g admissible is exact at Y if Im f = ker g and ker g → Y → Im g is an exact
sequence in E . A sequence of composable morphisms is exact if every morphism is admissible and
the sequence is exact at every intermediate object (for short exact sequences we sometimes leave out
the zeros in the beginning and end). We call a sequence

Xn
fn−→ Xn−1

fn−1−−−→ · · · → X0
f0−→ X−1

f−1−−→ 0

right exact if there is an exact sequence

0 → Z → Xn
fn−→ Xn−1

fn−1−−−→ · · · → X0
f0−→ X−1

f−1−−→ 0

We say a (co- or contravariant) functor F : E → (Ab) into abelian groups is exact on the right exact
sequence if F maps all short exact sequences

ker fi → Xi → Im fi, −1 ≤ i ≤ n

to short exact sequences in abelian groups.
Let X be a full additive subcategory of E and an integer n ≥ 0 and a subset I ⊂ N0, we define the
following full subcategories of E

genn(X ) = {M ∈ E | ∃ right exact Xn → · · · → X0 → M → 0, Xi ∈ X
HomE(X,−) exact on it for every X ∈ X}

presn(X ) = {M ∈ E | ∃ right exact Xn → · · · → X0 → M → 0, Xi ∈ X}
Resn(X ) = {M ∈ E | ∃ exact 0 → Xn → · · · → X0 → M → 0, Xi ∈ X}

X⊥I = {M ∈ E | ExtiE(X,M) = 0 for all i ∈ I,X ∈ X}

We write X⊥≥n := X⊥[n,∞) ,X⊥ := X⊥≥1 . We define gen∞(X ) (resp. pres∞(X )) analogously to
genn(X ) (resp. presn(X )) with infinite resolutions.
We define gen(X ) := gen0(X ), pres(X ) := pres0(X ) and observe gen(X ) = pres(X ) is equivalent to X
is contravariantly finite in pres(X ). Also, we set

Res(X ) :=
⋃
n≥1

Resn(X )

We have obvious inclusions

Resn(X ) ⊂ presn(X ) ⊃ genn(X ), Res(X ) ⊂ pres∞(X ) ⊃ gen∞(X )

We denote the dual notions with cogenn(X ), copresn(X ), n ≤ ∞ and Coresn(X ),Cores(X ), I⊥X
respectively.
Observe that these categories depend on the exact structure S, so if there is the possibility of
confusion, we will endow them with an index E (or S).

Definition 3.2. Let X be an object in E . We say pdE X ≤ n (resp. idE X ≤ n) if Extn+1
E (X,−) = 0

(resp. Extn+1
E (−, X) = 0).

For a subcategory X we define

pdE X := sup{pdE X | X ∈ X} ∈ N0 ∪ {∞}
and analogously idE X . We call P≤n the full subcategory of all objects X with pdE X ≤ n and P<∞

the subcategory of all objects X with pdE X < ∞. The subcategories I≤n, I<∞ are defined dually.

Remark 3.3. We would like to know the common definition of an exact category E with
”E = P<∞” since we use it so frequently.
If the exact category has the Jordan-Hölder property and only finitely many E-simples, then
gldim E = maxS simple pdS. Therefore, in that case E = P<∞ is equivalent to gldim E < ∞.
The finitistic dimension conjecture holds for E if

gldim(P<∞) < ∞.

So, also in this case, E = P<∞ is equivalent to gldim E < ∞.
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(As far, as we know this conjecture is open for E = modΛ where Λ is an artin algebra. But is known
to fail in some other abelian categories.)

We observe the following lemma.

Lemma 3.4. Let E be an exact category and X a full, self-orthogonal subcategory.

(a) Then we have Res(X ) ⊂ X⊥ and Res(X ) is an extension-closed subcategory.
(b) Let n ≥ 1. If pdE X ≤ n, then we have presn−1(X ) ⊂ X⊥ and presm(X ) is extension-closed

for all n− 1 ≤ m ≤ ∞.

Proof. ad (a) Since X⊥ is inflation-closed it follows Res(X ) ⊂ X⊥. To see that Res(X ) is
extension closed one can use literally proof of the horseshoe lemma (replacing the projectives with
X ), cf. [12], Thm. 12.8.
ad (b) Given an exact sequence 0 → Z → Xn−1 → · · · → X0 → S → 0 with Xi ∈ X , we see by
dimension shift that S ∈ X⊥ using pdE X ≤ n. This proves presn−1(X ) ⊂ X⊥ and therefore

presm(X ) ⊂ X⊥, n− 1 ≤ m ≤ ∞. Again by the horseshoe lemma as in loc. cit it follows that
presm(X ) is extension closed.

□

3.2. Thick subcategories. Recall that a full subcategory L of E is called thick, if it is closed
under summands and for every short exact sequence A → B → C in S the following holds: If any
two objects of A,B,C are in L, then the third is also in L.
We denote by Thick(X ) the smallest thick subcategory of E that contains X . By definition, we have
Res(X ) ⊂ Thick(X ) and Cores(X ) ⊂ Thick(X ).

Example 3.5. The categories P<∞ and I<∞ are thick subcategories of E .
Definition 3.6. Let E be an exact category and X a full subcategory. We call X inflation-closed
if for every inflation i : X → Y with X,Y in X one also has coker i in X . Dually, one defines
deflation-closed.

Proposition 3.7. ([6], Prop. 3.5 and Prop. 3.6, Thm 1.1) Let E be an exact category and X a
fully exact subcategory which has enough projectives P = P(X ).
Assume X is an inflation-closed subcategory. Then we have

(1) Thick(X ) = Cores(X ),
(2) Coresn(P) = Coresn(X ) ∩ ⊥X and therefore also Cores(P) = Cores(X ) ∩ ⊥X ,
(3) X is covariantly finite in Cores(X )

Example 3.8. Let E be an exact category. We denote by P = P(E) the projectives. Then, P fulfills
the dual conditions of Prop. 3.7 and therefore

Thick(P) = Res(P)

are all objects which admit a finite projective resolution. If E has enough projectives, then
P<∞ = Res(P).

3.2.1. Thick subcategories in triangulated categories. Let C be a triangulated category. We call a
full subcategory thick if it is closed under summands and a triangulated subcategory.
Let X be an additive subcategory of C, we write Thick∆(X ) for the smallest thick subcategory of C
containing X .

3.3. Resolving subcategories.

Definition 3.9. Let E be an exact category. Let X be a full subcategory.
We say X is resolving if it is extension closed, deflation-closed and pres(X ) = E .
We say X is coresolving if it is extension closed, inflation-closed and copres(X ) = E .
We say X is
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(*) finitely resolving if it is resolving and Res(X ) = E ,
(*) n−resolving if it is resolving and Resn(X ) = E ,
(*) uniformly finitely resolving if it is n-resolving for some n ≥ 0.

Dually one defines finitely coresolving, n-coresolving and uniformly finitely coresolving.

Example 3.10. Let E be an exact category with enough projectives and X be any additive
subcategory. Then ⊥X is a resolving subcategory. Dually, if E has enough injectives and X is an
additive subcategory, then X⊥ is a coresolving subcategory.

3.4. Functor categories. Let X be an additive category. If X is essentially small we can
define the category ModX of right X -modules as the category of contravariant additive functors on
X to abelian groups (if X is not essentially small the class of all natural transformations between
two X -modules is not necessarily a set). This is an abelian category with enough projectives and
injectives. The projectives are summands of arbitrary direct sums of representable functors
HomX (−, X) for some X ∈ X which we call the finitely generated projectives. Similarly, one can
define the category X Mod := ModX op of left X -modules. We define full subcategories

mod∞X ⊂ modn−X ⊂ ModX , n ∈ N0

via F ∈ modn−X if there is a projective n-presentation (indexed by 0 up to n) by finitely generated
projectives, i.e. there is an exact sequence

HomX (−, Xn) → · · · → HomX (−, X0) → F → 0,

we define mod∞−X analogue with an infinite sequence as above and we call modX := mod0−X the
finitely generated X -modules, mod1X as the finitely presented X -modules. All these are fully exact
subcategories of ModX .

Definition 3.11. Let f : X1 → X0 be a morphism in X , we say that f admits a weak kernel if
there exists a morphism g : X2 → X1 such that

HomX (−, X2)
g◦−→ HomX (−, X1)

f◦−→ HomX (−, X0)

is exact in ModX . We say that X admits weak kernels if every morphism in X admits one.

Theorem 3.12. ([5], Prop. 2.1) The category mod1X equals mod∞X if and only if X admits weak
kernels. In this case mod∞X is abelian.

Remark 3.13. It is common practice to ignore the assumption X essentially small because as soon
as one looks at mod1X the class of all natural transformations between two finitely presented
X -modules is a set.

3.5. Embedding exact categories with enough projectives into a functor category. If
E is an exact category with enough projectives P, then we the Yoneda embedding induces by
composition with the restriction-on-P functor a functor

P : E → mod∞ P, E 7→ HomE(−, E)|P
We write ImP for the essential image. For us, the main observation is the following:

Proposition 3.14. ([15] Prop. 2.2.1, Prop. 2.2.8) The functor P is fully faithful and induces
isomorphisms on all higher extension groups, ImP is extension closed.
If E is idempotent complete, then ImP is a resolving subcategory of mod∞ P.

We observe also the following obvious lemma.

Lemma 3.15. Given two exact categories E and E ′ with enough projectives P and P ′ respectively.
Then the following are equivalent:

(1) E and E ′ are equivalent as exact categories.
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(2) There is an equivalence Ψ: P → P ′ of additive categories with the property: A morphism f
in P is admissible in E if and only if Ψ(f) in P ′ is admissible in E ′.

(3) There is an additive equivalence Φ: E → E ′ with Φ(P) = P ′.

Proof. (2) implies (1): Given Ψ as in (2). We extend Ψ to an equivalence Ψ: E → E ′. For an
(in E) admissible f : P1 → P0 we map coker(f) to cokerΨ(f) (and then check that this is
well-defined and gives an equivalence of categories).
Conversely, if Ψ: E → E ′ is an equivalence of exact categories it maps admissible morphsims to
admissible morphisms, projectives to projectives. Then it restricts to an equivalence as in (2).
(3) implies (1): An additive equivalence preserves kernel-cokernel pairs. Kernel-cokernel pairs are
short exact sequences in E (resp. E ′) if and only if Hom(P,−) are exact on them for all P ∈ P (resp.
P ′). Therefore Φ is an equivalence of exact categories. □

Corollary 3.16. Let E be an exact category with enough projectives P. The following are equivalent:

(a) P : E → mod∞ P is an equivalence.
(b) The E-admissible morphisms in P are precisely those such that kerHomP(−, h)(∈ Mod−P)

lies in mod∞ P.

Proof. Clearly, we have (b) implies (a) and (a) implies (b) by the previous Lemma. □

Lemma 3.17. Let E be an exact category with enough projectives P. Then the following are
equivalent:

(1) ImP is finitely resolving in mod∞ P.
(2) For every morphism f : P1 → P0 in P admitting an infinite sequence of successive weak

kernels in P (i.e. HomP(−, f) is part of a projective resolution by finitely generated
projectives of an object in mod∞ P) there exists a complex in E

0 → Mn → Mn−1 → · · · → M2 → P1
f−→ P0

depending on f such that

0 → P(Mn) → P(Mn−1) → · · · → P(M2) → P(P1) → P(P0)

is exact in mod∞ P.

Proof. (2) implies (1): If M ∈ mod∞ P, we choose f : P1 → P0 admitting a weak kernel such
that M ∼= cokerP(f). Then choose the complex as in (2), to obtain that M ∈ Res(ImP), and
therefore ImP is finitely resolving. Conversely, let f : P0 → P1 be a morphism as in (2). This implies
Z = kerHomP(−, f) ∈ mod∞ P. Assume (1), i.e. Res(ImP) = mod∞ P. This means there exists an
exact sequence

0 → P(Mn) → · · · → P(M2) → Z → 0

in mod∞ P with Mi ∈ E . Since P is fully faithful, the claim follows. □

4. The derived category of an exact category

We recall from Buehler [12], section 9: Let A be an idempotent complete additive category. One can
define the category of chain complexes Ch(A) and the homotopy category K(A), whose objects equal
those if Ch(A) but the morphisms are the quotient group given by chain maps modulo chain maps
homotopic to the zero map. K(A) has the structure of a triangulated category induced by strict
triangles in Ch(A). A chain complex

A = (· · · dn−1

−−−→ An dn−→ An+1 dn+1

−−−→ · · · ) ∈ Ch(A)

is called left bounded if An = 0 for n << 0, right bounded if An = 0 for n >> 0 and bounded if
An = 0 for |n| >> 0. We denote by K+(A),K−(A) and Kb(A) the full subcategories of K(A) whose
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objects are the left bounded, right bounded and bounded chain complexes respectively. By definition
Kb(A) = K+(A) ∩K−(A). The subcategories K∗(A) with ∗ ∈ {+,−, b} are triangulated
subcategories but not closed under isomorphism in K(A) unless A = 0.
Now, let us assume that E = (A,S) is an exact category. A chain complex A = (A•, d•) in Ch(A) is
called acyclic if every differential factors as dn : An → Zn+1A → An+1 such that
ZnA → An → Zn+1A is an exact sequence (i.e. in S).
Neeman proved that the mapping cone of a chain map between acyclic complexes is acyclic. This
implies that the full subcategory Ac(E) = AcS(A) of K(A) given by acyclic complexes is a
triangulated subcategory of K(A). If A is idempotent complete then Ac(E) is closed under
isomorphism, every null-homotopic chain complex is acyclic and Ac(E) is a thick subcategory of
K(A). We define Ac∗(E) := Ac(E) ∩K∗(A) for ∗ ∈ {+,−, b}. If A is weakly idempotent complete
then the categories Ac∗(E) are thick subcategories of K∗(A) for ∗ ∈ {+,−, b}.
Given any triangulated category C and thick subcategory T the Verdier quotient

C/T

is defined via a localization (cf. [20], section 3.2, Prop. 3.2.2). It is again a triangulated category
and the canonical functor C → C/T is an exact functor.
As explained in [12], since A is idempotent complete, Ac∗(E) is a thick subcategory of K∗(A) for
∗ ∈ {±, b, ∅}. The derived category of an exact category E = (A,S) is defined as the Verdier
quotient

D(E) := K(A)/Ac(E)
Similarly, we define the bounded/left bounded derived category as the Verdier quotients

D∗(E) := K∗(A)/Ac∗(E), ∗ ∈ {b,±}

For more details and basic properties we refer to [20], Chapter 4 and [12], section 10.

Let E be an exact category with enough projectives P. We define Kb,−(P) as the full subcategory of
K−(P) given by all complexes X such that there exists an n ≥ 1 such that dn−1 and d−n are
admissible and the truncated complexes
τ≤(−n)X = (· · · → X(−n)−1 → X(−n) → ker d(−n) → 0 · · · ),
τ≥nX = (· · · 0 → coker dn−1 → Xn+1 → Xn+2 → · · · )
are acyclic, i.e. in Ac(E) ∩K−(P). Observe, that this depend on the ambient exact category E , even
though the notation suggests otherwise.

Lemma 4.1. ([20], Cor. 4.2.9) Let E be an exact category with enough projectives P. Then, there
are triangle equivalences

(1) K−(P) → D−(E)
(2) Kb,−(P) → Db(E)

Definition 4.2. Let E be an exact category and X a fully exact subcategory. We write D∗(X ),
∗ ∈ {b,+,−} for its derived categories. There always exists an exact functor D∗(X ) → D∗(E)
induced by the inclusion X → E (because this is an exact functor).

Theorem 4.3. [18] If E is an exact category and X is a resolving or coresolving subcategory.

(i) If X is resolving, the inclusion X → E induces a triangle equivalence

D−(X ) → D−(E)

if X is coresolving on D+().
(ii) If X is finitely resolving or finitely coresolving, the inclusion induces a triangle equivalence

Db(X ) → Db(E).

(iii) If X is uniformley finitely resolving or uniformly finitely coresolving, it induces a triangle
equivalence

D(X ) → D(E).
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Remark 4.4. If E is an exact category with enough projectives and X a resolving subcategory, then
the exact functor X → E induces a commuting diagram of exact functors

D−(X ) // D−(E)

Db(X ) //

OO

Db(E)

OO

where the vertical arrows are the induced triangle functors by construction. By Lemma 4.1 they are
fully faithful. By Theorem 4.3,(i), the upper horizontal functor is a triangle equivalence. This
implies that the lower horizontal functor is fully faithful, too.

5. Tilting theory in exact categories

We define tilting subcategories and go through the list of results (cf. introduction) that we demand
for tilting theory (i.e. induced derived equivalence, Aulsander correspondence, Bazzoni-like result
and Brenner-Butler theorem).

5.1. Tilting subcategories.

Definition 5.1. Let E = (A,S) be an exact category and T ⊂ E a full subcategory. We call T a
tilting subcategory if

(T1) T is self-orthogonal and T ⊥ has enough projectives which are given by P(T ⊥) = T
(equivalently: T is closed under taking summands in E and T ⊂ T ⊥ ⊂ gen(T ))

(T2) T ⊥ is finitely coresolving, i.e. it is coresolving and Cores(T ⊥) = E .

By Prop. 3.7, if we assume (T1), we can replace (T2) by an equivalent:

(T2’) Thick(T ⊥) = E .

We call T n-tilting if it is tilting with Coresn(T ⊥) = E . We call an object T in E tilting if add(T )
is a tilting subcategory. Assumption (T1) implies T and T ⊥ are closed under summands and we
have a well-defined fully faithful exact functor into infinitely presented T -modules
fT : T ⊥ → mod∞ T , X 7→ HomE(−, X)|T since T = P(T ⊥) and T ⊥ has enough projectives.
Assumption (T2) implies that the inclusion T ⊥ ⊂ E induces a triangle equivalence Db(T ⊥) → Db(E).
Assumption (T1) and (T2) imply that the inclusion T → E gives rise to a triangle equivalence

Kb,−(T ) ∼= Db(T ⊥) → Db(E).

Here is another way to express (T2) but we will need the assumption that the exact category has
enough injectives.

Lemma 5.2. Let T be an additive subcategory in an exact category E. Then: Cores(T ⊥) = E (resp.
Coresn(T ⊥) = E) implies E =

⋃
n≥0 T ⊥≥n+1 (resp. pdE T ≤ n).

If E has enough injectives , then the converse is true.

Proof. Observe that A ∈ Coresn(T ⊥) implies Exti(T,A) = 0, i ≥ n+ 1 for every T ∈ T , i.e.
A ∈ T ⊥≥n+1 . If E has enough injectives and A ∈ T ⊥≥n+1 , then we have by dimension shift
Ω−nA ∈ T ⊥. So, the injective coresolution of A truncated at the n-th cosyzygy shows that
A ∈ Coresn(T ⊥). □

Corollary 5.3. Assume that T is a tilting subcategory of an exact category E and n ≥ 0. Then the
following are equivalent:

(1) T is n-tilting
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(2) pdE T ≤ n

Proof. By Lemma 5.2, we have the implication (1) implies (2). Assume (2), we claim:
Cores(T ⊥) ⊂ Coresn(T ⊥). Let A ∈ Cores(T ⊥), then there exists an exact sequence

0 → A → X0 → · · · → Xs → 0, Xi ∈ T ⊥, 0 ≤ i ≤ s

Wlog. assume that s > n− 1. Let Zi = Im(Xi → Xi+1), Z−1 := A. Applying Hom(T,−), T ∈ T ,

gives by dimension shift ExtjE(T,Zn−1) ∼= Extj+1
E (T,Zn−2) ∼= · · · ∼= Extj+n

E (T,A) = 0 for all j ≥ 1

since pdE T ≤ n. So, Zn−1 ∈ T ⊥. □

Lemma 5.4. Let T be an additive category of an exact category E. If T fulfills (T1) and pdE T ≤ n,
then we have

T ⊥ = genn−1(T ) = presn−1(T ) = gen∞(T ) = pres∞(T ).

Proof. The assumption T ⊥≥n+1 = E together with T self-orthogonal implies by an easy
dimension shift argument that presn−1(T ) ⊂ T ⊥. Now, by assumption (T1) we have T ⊥ ⊂ gen∞(T )

since T = P(T ⊥) and T ⊥ has enough projectives. Since gen∞(T ) ⊂ presn−1(T ) trivially and
genn−1(T ) and pres∞(T ) are intermediate between these two, the claim follows. □

For infinitely generated tilting modules, the perpendicular category of a tilting module of finite
projective dimension has been described in [9], Theorem 3.11. In [29], Theorem 1.1, this description
has been proven for relative tilting modules over artin algebras. Therefore, we call the generalization
to tilting subcategories in exact categories Bazzoni’s description.

Corollary 5.5. (Bazzoni’s description) Let T be an additive category of an exact category E which
is closed under taking summands and assume pdE T ≤ n, then (T1) is equivalent to the following:

(T1’) T ⊂ T ⊥ ⊂ presn(T )

and also to

(T1”) T ⊂ T ⊥ ⊂ add(presn(T ))

where for a full subcategory M of E: add(M) denotes the full subcategory of all summands of finite
direct sums of objects in M.
Furthermore, in this case we have presn−1(T ) = presn(T ) = T ⊥.

Proof. The implication ”(T1) implies (T1’)” is given by Lemma 5.4 using the inclusions
pres∞(T ) ⊂ presn(T ) ⊂ presn−1(T ). Also loc. cit. proves the statement presn−1(T ) = presn(T ).

The implication ”(T1’) implies (T1”)” is trivial since T ⊥ = add(T ⊥).
Assume (T1”), i.e. pdE T ≤ n and T ⊂ T ⊥ ⊂ add(presn(T )). To see (T1), it is enough to prove
T ⊥ ⊂ gen(T ). Observe that presn−1(T ) ⊂ T ⊥ is fulfilled by Lemma 3.4, (b). Let X ∈ T ⊥, then there

exists an L ∈ E such that X ⊕ L ∈ presn(T ) - in particular L ∈ T ⊥ and there is an exact sequence

0 → Xn+1 → Tn
fn−→ · · · f1−→ T0 → X ⊕ L → 0

with Ti ∈ T . Let Xi := Im(fi), X ⊕ L := X0. For every j ≥ 1, T ∈ T we have
Extj(T,Xi) ∼= Extj+1(T,Xi+1). This implies X1 ∈ T ⊥ since Extj(T,X1) ∼= Extn+j(T,Xn+1) = 0 by
assumption. Therefore T0 → X ⊕ L is a deflation in T ⊥. This implies that the composition with the
projection onto the summand T0 → X ⊕ L → X is a deflation in T ⊥ - (since projections onto
summands are deflation in every exact category and the composition of two deflations is a deflation).
Therefore, (T1) is fulfilled. □

Example 5.6. (1) If E is an exact category with enough projectives P, then P is a tilting
subcategory. In fact, this is the only 0-tilting subcategory.

(2) If T is a subcategory of an exact category E which fulfills (T1), then
E ′ = Cores(T ⊥) = Thick(T ⊥) is a thick subcategory and T is a tilting subcategory of E ′.
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(3) A counterexample: Let T be a skelletally small additive category. Let E = modn−T be the
category of n-finitely presented T -modules (i.e. for n = 0 finitely generated, n = 1 finitely
presented, etc.). Assume that E does not have enough projectives. E is a fully exact
category of the abelian category Mod T which contains the finitely generated projectives
PT := {HomT (−, T ) | T ∈ T }. We have P⊥

T = E (so (T2) is fulfilled) but since E does not
contain enough projectives, (T1) is not fulfilled and it is not a tilting subcategory.

So, in our definition if you have a ring R which is not left coherent, i.e. E = Rmod1 is
not abelian, then R is not a tiliting module in E . But R is always a tilting module in
Rmod∞ by example (1).

Lemma 5.7. Let E be an exact category and T an n-tilting subcategory. Then, all objects in
T ⊂ P<∞ (i.e. all objects in T have finite projective dimension) and the following are equivalent:

(1) E = P<∞

(2) T ⊥ ⊂ P<∞

(3) T ⊥ = Res(T )
(4) Kb(T ) = Db(T ⊥)
(5) E = Thick(T )
(6) Kb(T ) = Db(E)

Proof. Since pdE T ≤ n for all T ∈ T , T consists of ojects with finite projective dimension.
This implies Thick(T ) ⊂ P<∞. Therefore (5) implies (1) trivially. Now assume (1). Then it follows
T ⊥ = Res(T ) = ThickT ⊥(T ). This implies by (T2’) that

E = Thick(T ⊥) = Thick(ThickT ⊥(T )) ⊂ Thick(T ).

This means (1) and (5) are equivalent. The equivalences of (5) and (6) and the one of (3) and (4)
follow from [20], Lemma 7.1.2 . The equivalence of (4) and (6) follows from the definition of a tilting
subcategory. The implications (1) implies (2), (2) implies (3) are clear. □

Out of curiosity, we also prove the following more general statement:

Lemma 5.8. If E is an exact category and T is an n-tilting subcategory, then

Thick(T ) = P<∞

In particular, T is also an n-tilting subcategory of P<∞.

Proof. Since T is n-tilting, we have T ⊂ P<∞. Since P<∞ is a thick subcategory of E , it
follows that Thick(T ) ⊂ P<∞.
Now, let X ∈ P<∞. There exists an exact sequence

0 → X → X0 → · → Xn → 0

with Xi ∈ T ⊥ by the axiom (T2). By Lemma 5.4 we have T ⊥ = pres∞(T ), so we can apply Lemma
6.5 to find a short exact sequence 0 → Z → L → X → 0 with Z ∈ T ⊥ and L ∈ Cores(T ). This
implies L ∈ Thick(T ) ⊂ P<∞ and Z ∈ P<∞. Now clearly, T ⊥ ∩ P<∞ = P<∞(T ⊥) ⊂ Thick(T ) since
T ⊥ has enough projectives given by T . This implies Z ∈ Thick(T ) and therefore also X ∈ Thick(T ).
Since T ⊥ ∩ P<∞ has still enough projectives given by T we have (T1) trivially true. Secondly, since
ThickE(T ) = P<∞, we have ThickP<∞(T ) = P<∞ and therefore (T2)’ holds. □

Open question 5.9. Using the later theorem 6.3 we can conclude that for exact categories with
enough projectives n-tilting subcategories in E are precisely n-tilting subcategories in P<∞.
Is this true for all exact categories?
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5.1.1. The Auslander correspondence. Our definition has this trivial version of the Auslander
correspondence as a consequence:

Theorem 5.10. (trivial Auslander correspondence) Let E be an exact category. The assignments
T 7→ T ⊥ and X 7→ P(X ) are inverse bijections between

(1) the class of T (n-)tilting subcategory of E
(2) the class of X finitely coresolving subcategory (with Coresn(X ) = E) which have enough

projectives P = P(X ) and which are of the form X = P⊥

Nevertheless, condition (2) can be reformulated in a more elegant way once we assume extra
conditions on the exact category. This are the occurrences in the literature:

(*) [7], Theorem 5.5, original version for tilting modules in modΛ for an Artin algebra Λ.
(*) [20], Theorem 7.2.18 in the case of a strongly homologically finite exact category E with

enough projectives which are of the form P = add(P ) for one object P .
(*) [30], Theorem 4.15, for an extriangulated category with enough projectives and enough

injectives.

Here, we use that the different definitions of tilting are special cases of our definition (cf. section 5:
Definitions of tilting). For example, the latest version of the Auslander correspondence is the
following:

Theorem 5.11. (Auslander correspondence) ([30], Theorem 4.15) Let E be an exact category with
enough projectives and enough injectives. The assignments T 7→ T ⊥ and X 7→ ⊥X ∩ X are inverse
bijections between

(1) the class of T (n-)tilting subcategory of E
(2) the class of X finitely coresolving subcategory (with Coresn(X ) = E) which are covariantly

finite and closed under summands.

Open question 5.12. Can the previous result be proven only with the assumption that the exact
category has enough projectives?

6. Definitions of tilting

In this section we look at our definition in exact categories with extra assumptions and compare this
to existing definitions of tilting. Also, we discuss the relationship to tilting in triangulated
subcategories in subsection 6.1.

Proposition 6.1. If E is an exact category with enough injectives and T a full subcategory then T
is n-tilting if and only if it fulfills the following two conditions:

(i) pdE T ≤ n
(ii) T ⊂ T ⊥ ⊂ presn(T )

Furthermore, in this case we have P(E) ⊂ Coresn(T ).

Proof. Follows from Lem. 5.5, Lem. 5.2 and from Prop. 3.7. □

Remark 6.2. This recovers the definition of n-tilting subcategories given in [30] (for exact
categories with enough projectives and injectives).

Theorem 6.3. (and definition) Let E be an exact category with enough projectives and let T be a full
additive subcategory. We define:

(t1) T is self-orthogonal and closed under summands.
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(t2) pdE T ≤ n
(t3) P(E) ⊂ Coresn(T )

Then: T is n-tilting if and only if T fulfills (t1), (t2), (t3).

Proof. Assume T is n-tilting. (T1) implies (t1), (t2) follows from Lemma 5.2, (2), (a) and (t3)
from Prop. 3.7, (2) with X = T ⊥.
Conversely, assume T fulfills (t1), (t2), (t3). It is straight forward to see that
presn(T ) ⊂ presn−1(T ) ⊂ T ⊥ by dimension shift using (t1) and (t2).
We claim: For every X ∈ E there is an exact sequence X → L → Z in E such that L ∈ presn(T ) and
Z ∈ Cores(T ). This short exact sequence implies X ∈ Cores(T ⊥). Using dimension shift and
pdE T ≤ n one can see X ∈ Coresn(T ), so (T2) follows.
The claim follows using the beginning of a projective resolution of X

Pn → · · · → P0 → X → 0

with Pi ∈ P. Recall by (t3) we have Pi ∈ Cores(T ), this implies that we can use Lemma 6.4 below to
obtain the short exact sequence.
Now, assume X ∈ T ⊥ and consider again the short exact sequence X → L → Z with L ∈ presn(T )
and Z ∈ Cores(T ). Since T ⊥ is inflation-closed we have Z ∈ T ⊥. Now, it is easy to see that
T ⊥ ∩ Cores(T ) = T , so Z ∈ T . Therefore we have Ext1E(Z,X) = 0 which implies that the sequence
splits and we conclude that X ∈ add(presn(T )). Thus we proved T ⊥ ⊂ add(presn(T )). By Corollary
5.5 we conclude that (T1) is fulfilled. □

Lemma 6.4. Let E be an exact category and T a full additive subcategory which is self-orthogonal
and n ≥ 1. Assume that we have an exact sequence

Xn−1
fn−1−−−→ Xn−2 → · · · → X0

f0−→ X → 0

with Xi ∈ Cores(T ). Then, there exists an exact sequence

Tn−1
gn−1−−−→ Tn−2 → · · · → T0

g0−→ L → 0

with Ti in T and an exact sequence X → L → Z with Z ∈ Cores(T ).

The main ingredient to prove this is the following: The push out of an admissible morphism along an
inflation is again admissible with the same kernel and cokernel as the admissible map that we pushed
out ([12], Prop. 2.15)

Proof. We choose a short exact sequence Xn−1 → Tn−1 → Zn−1 with
Tn−1 ∈ T , Zn−1 ∈ Cores(T ). Then take the push out

Xn−1
fn−1 //

��

Xn−2

��
Tn−1

hn−1 // Yn−2

since Cores(T ) is closed under extensions (by Lem 3.4 (a)) we have Yn−2 ∈ Cores(T ) since
coker(Xn−2 → Yn−2) = Zn−1. By construction hn−1 admissible in E with kernel and cokernel of hn−1

coincide with those of fn−1. This means we constructed an exact sequence

Tn−1 → Yn−2 → Xn−3 → · · · → X0 → X → 0

Now, we pick a short exact sequence Yn−2 → Tn−2 → Zn−2 with Tn−2 ∈ T , Zn−2 ∈ Cores(T ). Then
we push out the admissible morphism Yn−2 → Xn−3 along the inflation Yn−2 → Tn−2 and proceed
with the same method as before. Once Y0 is constructed, choose the exact sequence Y0 → T0 → Z0

with T0 ∈ T , Z0 ∈ Cores(T ) and take the push out of the deflation Y0 → X along the inflation
Y0 → T0. This gives another deflation T0 → L such that Im(T1 → Y0) = ker(T0 → L) and an
inflation X → L with coker(X → L) = Z0 ∈ Cores(T ). □
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For an earlier lemma, we need the following modification of the previous lemma: Firstly, observe
that we can replace Cores(T ) by copres∞(T ) as long as we know that copres∞(T ) is
extension-closed. Secondly, if in the proof fn−1 is an inflation, then we construct in the proof an
exact sequence with gn−1 an inflation. Thirdly, by passing to the opposite exact category, we have
the following dual statement:

Lemma 6.5. Let E be an exact category and T a full additive subcategory which is self-orthogonal,
pdE T < ∞ and n ≥ 1. Assume that we have an exact sequence

0 → X → X0 → · · · → Xn−1 → 0

with Xi ∈ pres∞(T ). Then, there exists an exact sequence

0 → L → T0 → · · · → Tn−1 → 0

with Ti in T and an exact sequence Z → L → X with Z ∈ pres∞(T ).

Observe that in the previous Lemma: The condition pdE T < ∞ is needed to assure pres∞(T ) is
extension-closed - cf. Lem. 3.4.

Remark 6.6. In particular, this generalizes the usual definition of tilting modules of finite projective
dimensions over an artin algebra (cf. Happel [16]). Furthermore, it includes the generalization of
Auslander and Solberg (cf. [4]) to so-called relative tilting modules (i.e. tilting objects in a different
exact structure on the category of finitely presented modules over an artin algebra.

Inclusion of perpendicular categories defines a partial order on all tilting subcategories on an exact
category. The previous theorem has the following application to this partial order. Here, given a
fully exact subcategory X ⊂ E we write ResX ,m(−) (resp. CoresX ,m(−)) for the category Resm(−)
(resp. Coresm(−)) inside the fully exact category X .

Proposition 6.7. (and definition) Let E be an exact category and T an n-tilting subcategory. Let T̃
be another full subcategory which is self-orthogonal and closed under summands. Then the following
are equivalent:

(a) T̃ is a m-tilting subcategory for some m ≥ 0 of E and T̃ ⊥ ⊂ T ⊥.

(b) T̃ is a m-tilting subcategory for some m ≥ 0 of E and T̃ ⊂ T ⊥.

(c) T̃ is a m-tilting subcategory for some m ≥ 0 of T ⊥.

(d) There is an m ≥ 0 such that T̃ ⊂ ResT ⊥,m(T )(⊂ T ⊥) and T ⊂ CoresT ⊥,m(T̃ ).

In this case, we write T̃ ≤ T .

Before, we give the proof. Let us note the following easy corollary:

Corollary 6.8. Let E be an exact category and let T be an n-tilting subcategory and T̃ be an

m-tilting subcategory for some m ≥ 0, n ≥ 0. If T̃ ⊆ T , then T̃ = T .

Proof. (of Cor. 6.8) The inclusion implies Ext>0(T , T̃ ) = 0 = Ext>0(T̃ , T ), therefore

T̃ ≤ T ≤ T̃ and since ≤ is a partial order, they are equal. □

Proof. We are going to show the equivalences of 1. (c) and (d), 2. (a) and (b) and then 3. (b)
and (c).
1. The equivalence is a direct consequence of Theorem 6.3 since T ⊥ is an exact category with
enough projectives.
2. Clearly (a) implies (b). So let us assume (b) and let X ∈ T̃ ⊥ and T ∈ T . Since T̃ ⊥ has enough

projectives given by T̃ , we find short exact sequences (in E) setting X := X0

0 → Xi → T̃i → Xi−1 → 0
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with T̃i ∈ T̃ and Xi ∈ T̃ ⊥ for all i ≥ 1. Then we have ExtjE(T,Xi−1) ∼= Extj+1(T,Xi) for all

j ≥ 1, i ≥ 1 implying ExtjE(T,X0) ∼= Extj+n
E (T,Xn) = 0 since pdE T ≤ n.

3. Assume (b). Since (b) is equivalent to (a), we have T̃ ⊥ ⊂ T ⊥. This implies that the perpendicular

category of T̃ inside T ⊥ coincides with the perpendicular category T̃ ⊥ inside E . This implies (T1).

It is straight forward to see that CoresT ⊥,m(T̃ ⊥) = Coresm(T̃ ⊥) ∩ T ⊥ holds and therefore (T2).

Assume (c). Since the equivalence to (d) implies T ⊂ Coresm(T̃ ) one can deduce T̃ ⊥ ⊂ T ⊥ (take an

exact sequence 0 → T → T̃0 → · · · → T̃s → 0, T ∈ T , T̃i ∈ T̃ , take X ∈ T̃ ⊥ and apply HomE(−, X) to

the sequence to conclude Ext>0
E (T,X) = 0). This implies that the perpendicular category of T̃ in T ⊥

and in E coincide, therefore (T1) is fulfilled. To show (T2), observe that T̃ ⊂ Resm(T ) implies (since

pdE T ≤ n) that there is a t ≥ 0 such that pdE(T̃ ) ≤ t. Furthermore since T ⊥ is coresolving and

T ⊥ ⊂ Coresm(T̃ ) we conclude that T̃ ⊥ is coresolving. This already implies that E = Corest(T̃ ⊥), to
see this: Let X0 ∈ E , then there are short exact sequences 0 → Xi → Zi → Xi+1 → 0 in E with

Zi ∈ T̃ ⊥, i ≥ 0. Let T̃ ∈ T̃ , then one has by dimension shift ExtjE(T̃ ,Xt) ∼= Extj+t(T̃ ,X0) = 0 for all

j ≥ 1 since pd T̃ ≤ t. □

Of course one has the dual result for cotilting subcategories (passing to opposite categories gives a
poset isomorphism between m-tilting subcategories for some m in E and m-cotilting subcategories
for some m in Eop).

Remark 6.9. The previous proposition can be used to obtain the following (one-sided) mutation:

Given an n-tilting subcategory T = M∨X with X ⊂ gen(M), define Y = Ω−
MX and T̃ = M∨Y. If

T̃ is self-orthogonal (or equivalently: Y ⊂ cogen(M),X = ΩMY), then T̃ is m-tilting for some m

and T̃ ≤ T .
Just observe: T̃ ⊂ ResT ⊥,1(T ) ⊂ T ⊥ and T ⊂ CoresT ⊥,1(T̃ ). Therefore (d) in the previous
Proposition applies.

Let E be an exact category and n ≥ 0. Let n− tilt(E) be the class of n-tilting subcategories.

Corollary 6.10. (of Thm. 6.3) Let E be an exact category with enough projectives P and X a
resolving subcategory of E. Then one has

n− tilt(X ) = {T ∈ n− tilt(E) | T ⊂ X}.

In particular, we also have n− tilt(E) ∼= {T ⊂ n− tilt(mod∞ P) | T ⊂ ImP}, T ′ 7→ P(T ′) where
P : E → mod∞−P, X 7→ HomE(−, X)|P .

Proof. This is clear from the Theorem 6.3. The second statement follows since P is fully
faithful, exact and ImP is a resolving subcategory of mod∞ P. □

One of the obvious questions is when can one restrict to tilting objects and when is it necessary to
study more general tilting subcategories? In short, at least if you have enough projectives and a
Krull-Schmidt category then the category of projectives should tell you the answer. More detailed,
we have:

Theorem 6.11. If E is a Krull-Schmidt, Hom-finite, exact category with enough projectives.

(1) If there is a tilting object T , then we have |P(E)| = |T | < ∞.
(2) If |P(E)| < ∞ and there is a tilting category T , then we have |T | = |P(E)| < ∞.

Proof. (of Thm 6.11) Let Γ := EndE(T ). Since P = P(E) ⊂ cogen1E(T ), we have by [27],
Lemma 2.1 that HomE(−, T ) : P → Γ−Mod is full and faithful. For every P, P ′ ∈ P we have
0 = ExtiE(P

′, P ) ∼= ExtiΓ(HomE(P, T ),HomE(P
′, T )) by [27], Lemma 3.3. Let Q be the direct sum of

all indecomposable projectives appearing in a minimal projective resolution of T . When we apply
HomE(−, T ) to the projective resolution of T and the exact sequence in (3), we conclude that
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HomE(Q,T ) is a tilting Γ-module. Since tilting modules are maximal rigid, we have
add(HomE(Q,T )) = add(HomE(P, T )). This implies |P| = |Q| = |Γ| = |T |. □

6.1. Tilting in triangulated categories. In this subsection we compare our definition of a
tilting subcategory with the definition of a tilting subcategory in the bounded homotopy category of
projectives and in the bounded derived category.

Definition 6.12. In a triangulated category C one defines T ∈ C to be tilting if Hom(T,ΣiT ) = 0
for i ̸= 0 and the smallest thick subcategory that contains T is C. Similarly we call a full additive
subcategory T of C tilting if

(Tr1) Hom(T,ΣiT ′) = 0 for i ̸= 0 for all T, T ′ in T and
(Tr2) Thick∆(T ) = C

We recall the following Lemma which we want to use:

Lemma 6.13. ([20], Lemma 7.1.2) Let X be a self-orthogonal subcategory in an exact category E.
We consider E ⊂ Db(E) as stalk complexes in degree zero. Then the following are equivalent for an
object X ∈ E:

(1) X ∈ Thick(X )
(2) X ∈ Thick∆(X )

In particular, we have Thick(X ) = E if and only if Thick∆(X ) = Db(E).

Lemma 6.14. If E is an exact category and T a full additive subcategory. Then the following are
equivalent:

(1) T ⊂ E ⊂ Db(E) already lies in Kb(P(E)) and gives rise to a tilting subcategory in Kb(P(E)).
(2) T is self-orthogonal and Thick(P(E)) = Thick(T ) ⊂ E
(2’) T is self-orthogonal and P(E) ⊂ Cores(T ), T ⊂ Res(P(E))

Of course, in the situation that E has enough projectives and T = add(T ) contravariantly finite then
(2’) is equivalent to T being n-tilting (for some n).

Proof. We have for a self-orthogonal subcategory T ⊂ E : T ⊂ Kb(P(E)) if and only if
T ⊂ Thick(P(E)) = Res(P(E)) by Lem. 6.13 ([20], Lem 7.1.2). In this case, we have T
self-orthogonal in E if and only if T fulfills (Tr1) in Kb(P(E)). Furthermore, we also have by loc.cit.:
Thick(T ) = Thick(P(E)) ⊂ E if and only if Kb(P(E)) = Thick∆(P(E)) = Thick∆(T ) ⊂ Db(E).
We now observe that for a self-orthogonal category T we have P(E) ⊂ Thick(T ) implies
P(E) ⊂ Cores(T ) by [20], Lem. 7.1.6. , this finishes the proof. □

Lemma 6.15. If E is an exact category and T a full subcategory. Then, the following are equivalent

(1) T is a tilting subcategory in E and Thick(T ) = E.
(2) T is self-orthogonal and Thick(T ) = E
(2’) T is a tilting subcategory in Db(E)

Proof. Clearly, (1) implies (2). Assume (2), then T ⊥ = Res(T ) by [20], Prop. 7.10. This
implies that T = P(T ⊥) and that T ⊥ has enough projectives, so (T1). Also Thick(T ) = E implies
Cores(T ⊥) = Thick(T ⊥) = E , so (T2) and T is tilting. The equivalence of (2) and (2’) follows from
Lem. 6.13. □

Remark 6.16. Lemma 6.15, (2) recovers the definition of tilting from [20], Chapter 7 as a special
case of our definition.

15



7. Induced triangle equivalences

Definition 7.1. Let T be a tilting subcategory in an exact category E . From now on, we call the
functor

fT : T ⊥ → mod∞ T , X 7→ HomE(−, X)|T
the tilting functor of T . Furthermore, since T ⊥ is finitely coresolving in E and Im fT is resolving
in mod∞ T , we have an exact functor

FT : Db(E)
∼=−→ Db(T ⊥)

∼=−→ Db(Im fT ) → Db(mod∞ T )

which we call the derived tilting functor of T .

Derived tilting functors are exact and fully faithful by remark 4.4

Definition 7.2. Let T be a (n-)tilting subcategory in an exact category E . We say that T is ideq
(n-)-tilting if FT is a triangle equivalence (i.e. essentially surjective). We call T m-ideq (n-)tilting if
Im fT is m-resolving.

Remark 7.3. If Im fT is finitely resolving in mod∞ T then FT is a triangle equivalence. By Lemma
3.17, Im fT is finitely resolving iff for every morphism f : T1 → T0 in T which admits a sequence of
successive weak kernels in T we find a complex in T ⊥

0 → Mm → Mm−1 → · · · → M2 → T1 → T0

such that the induced sequence of restrictions of representable functors
0 → Hom(−,Mm)|T → · · · → Hom(−,M0)|T → HomT (−, T1) → HomT (−, T0) in mod∞ T is exact.

Remark 7.4. If T is m-ideq n-tilting for some n,m ≥ 0, then we have induced triangle equivalences
also on the unbounded derived category

FT : D(E) ∼= D(T ⊥)
fT−−→ D(Im fT ) ∼= D(mod∞ T )

Example 7.5. Assume that T is a tilting subcategory such that every map f : T1 → T0 in T admits
a kernel in T ⊥ (the monomorphism on ker f does not have to be an inflation), then T is 2-ideq
tilting (just use the kernel of the map).
An instance of this is the following: Assume that T is 1-tilting with T contravariantly finite in E
(then: T ⊥ = gen(T ) = pres(T )) and assume every morphism in T factors over a deflation in E (for
example if E is abelian). Then every morphism in T has a kernel in T ⊥.

7.1. Ideq tilting from equality with P<∞. Let us first observe the obvious:

Lemma 7.6. Let E be an exact category with enough projectives P and m ≥ 0. Then, the following
are equivalent:

(1) E = P<∞ (resp. gldim E ≤ m < ∞)
(2) Every resolving subcategory is finitely resolving (resp. is m-resolving ).

Proof. (2) implies (1): P is a resolving subcategory, it is finitely resolving, i.e. Res(P) = E ,
(resp. m-resolving, i.e. Resm(P) = E) if and only if P<∞ = E (resp. gldim E ≤ m < ∞).
(1) implies (2): If X is resolving then P ⊂ X . Therefore Res(P) ⊂ Res(X ), Resm(P) ⊂ Resm(X ). □

Which brings us to this naive question:

Open question 7.7. Is the previous lemma still true if we drop the assumption that E has enough
projectives?

Proposition 7.8. Let E be an exact category and T a tilting subcategory. If mod∞ T = P<∞ (resp.
gldim(mod∞ T ) ≤ m < ∞), then T is ideq tilting (resp. m-ideq tilting) .
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Another common triangle equivalence considered uses perfect complexes:

Definition 7.9. For an exact category E with enough projectives P, we call
Db

perf (E) := Kb(P) = Thick∆(P) ⊂ Db(E) the triangulated subcategory of perfect complexes.

Observe, that Db
perf (E) = Db(E) is equivalent to E = P<∞ by Lemma 5.7 since P is a 0-tilting

subcategory.

Lemma 7.10. If E is an exact category with E = P<∞, and T tilting subcategory then we have an
induced triangle equivalence

Db(E) → Db
perf (mod∞ T )

Proof. Since E = P<∞ implies T ⊥ = P<∞ and since we have the additive equivalence
P(T ⊥) → P(mod∞ T ), T 7→ HomT (−, T ) we obtain induced triangle equivalences

Db(E) ∼= Db(T ⊥) ∼= Kb(P(T ⊥)) → Kb(P(mod∞ T )) ∼= Db
perf (mod∞ T )

□

We also have the following:

Proposition 7.11. Let E be an exact category and T an m-ideq n-tilting subcategory. Then we have:

gldim E ≤ gldim(mod∞ T ) + n, gldim(mod∞ T ) ≤ gldim E +m

The proof follows directly from the following Lemma (and its dual statement).

Lemma 7.12. Let E be an exact category and X be a fully exact category. If we have Resn(X ) = E
for some n ∈ N, then we have

gldimX ≤ gldim E ≤ gldimX + n

Proof. The first inequality is clear since ExtiX = (ExtiE)|X . For the second, wlog.

gldimX = s ≤ ∞, let E,L ∈ E , we claim Ext
>(s+n)
E (L,E) = 0. By assumption, exists an exact

sequence 0 → Xn → · · · → X0 → E → 0 with Xi ∈ X , 0 ≤ i ≤ n. We apply Hom(X,−) with X ∈ X
and obtain Ext>s

E (X,E) = 0. Now, we take the exact sequence 0 → Yn → · · · → Y0 → L → 0 with

Yi ∈ X , 0 ≤ i ≤ n, and apply Hom(−, E) and obtain Ext
>(s+n)
E (L,E) = 0. □

7.2. Ideq tilting in exact categories with enough projectives. The following is the most
important result for this question (it is a generaliztion of Miyashita’s theorem [22], Thm 1.16):

Theorem 7.13. (Generalized Miyashita-Thm) Let E be an exact category with enough projectives P
and let T be an n-tilting subcategory which is essentially small. We consider the contravariant
functor

ΨT : E → T Mod, X 7→ HomE(X,−)|T
and the covariant functor

ΦT : E → Mod−T , X 7→ HomE(−, X)|T .

Let T̃ := ΨT (P) and T := ΦP(T ). Then we have:

(1) T̃ is an n-tilting subcategory of T mod∞ and T is an n-tilting subcategory of mod∞ P.

(2) ΨT restricts to an equivalence P ∼= T̃ op and ΦP to one T ∼= T .

(3) The category ⊥T̃ := {M ∈ mod∞ T | TorT>0(M, T̃ ) = 0} is a resolving subcategory of

mod∞ T with Resn(⊥T̃ ) = mod∞ T .
(4) The functor Φ = ΦT : ModP → Mod T , X 7→ HomModP(ΦP(−), X)|T has a left adjoint

Φ′ : Mod T → ModP, X 7→ (P 7→ X ⊗T ΨT (P )). They restrict to inverse equivalences
between
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(i) {M ∈ ModP | Ext>0
ModP(T ,M) = 0} and {N ∈ Mod T | TorT>0(N, T̃ ) = 0}

(ii) T ⊥
(⊂ mod∞ P) and ⊥T̃ (⊂ mod∞ T ).

(5) We have a commutative triangle of exact functors (restricted to these subcategories)

T ⊥

ΦP

~~||
||
||
|| ΦT

  B
BB

BB
BB

B

T ⊥
Φ

// ⊥T̃

In particular, T is n-ideq n-tilting and we have an induced triangle equivalence
Db(mod∞ P) → Db(mod∞ T ).

Before we prove the previous theorem, let us state this Theorem as a corollary.

Theorem 7.14. Let E be an exact category with enough projectives P. Then the following are
equivalent:

(1) E is equivalent as an exact category to a finitely resolving subcategory of mod∞ P
(2) There is an n ∈ N0 and an n-tilting subcategory of E which is ideq n-tilting.
(3) For every n ≥ 0, every n-tilting subcategory of E is ideq n-tilting.

Proof. It is straight-forward to see that (1) is equivalent to P is ideq 0-tilting. To prove the
equivalences we show for a given n-tilting subcategory T , we have: T is ideq n-tilting if and only if
P is ideq 0-tilting. For this it is enough to show (using Theorem 7.14) that we have a commutative
diagram of triangle functors

Db(E)

&&MM
MMM

MMM
MM

xxqqq
qqq

qqq
q

Db(mod∞ P) // Db(mod∞ T )

where Db(E) → Db(mod∞ P) is the derived functor of ΦP and Db(E) ∼= Db(T ⊥) → Db(mod∞ T ) is
the derived functor of ΦT |T ⊥ and Db(mod∞ P) → Db(mod∞ T ) is the triangle equivalence induced

by the equivalence T ⊥ → ⊥T̃ . But this follows immediately from loc. cit. (5). □

We can prove the even stronger corollary of Theorem 7.14.

Definition 7.15. We define Tilt(E) :=
⊕

n≥0 n− tilt(E). The relation ≤ from Lemma .. defines a
poset structure on this set.
Let E be an exact category. We say E is tilting connected if in the poset Tilt(E) is non-empty and
for every two element T and T ′ there is a finite sequence T0 = T , T1, . . . , Tr = T ′ with Ti ≤ Ti+1 or
Ti ≥ Ti+1, 0 ≤ i ≤ r − 1.

Example 7.16. If E has enough projectives P then E is tilting connected since P is a globales
maximum.
If the injectives I in E happen to be an n-tilting subcategory then E is tilting connected since I has
to be a global minimum.

Open question 7.17. Are exact categories are always tilting connected?

Corollary 7.18. Let E be an exact category and T an n-tilting subcategory. Then the following are
equivalent:

(1) T is ideq n-tilting
(2) Every m-tilting subcategory L with L ≤ T or T ≤ L (i.e. L comparable to T ) is ideq

m-tilting.
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In particular, every connected component in Tilt(E) is either ideq tilting (i.e. every n-tilting
subcategory in it is ideq n-tilting) or it is not ideq tilting.

The proof of the main result uses an auxiliary preprint of the author [27] in which some technical
results are explained.

Proof. (of Theorem 7.13)

(1) We want to see that T̃ satisfies (t1),(t2) and (t3): Since T is an n-tilting subcategory of E
we have by (t2) for every T ∈ T an exact sequence

0 → Pn → · · · → P0 → T → 0

with Pi ∈ P. We apply ΨT to it and obtain a complex

0 → ΨT (T ) → ΨT (P0) → · · · → ΨT (Pn) → 0

Since T fulfills (t1), it follows that this is exact, so T̃ fulfills (t3).
Now, by (t3) for T we have for every P ∈ P an exact sequence

0 → P → T0 → · · · → Tn → 0,

we apply again ΨT and again by (t1) for T we get an exact sequence

0 → ΨT (Tn) → · · · → ΨT (T0) → ΨT (P ) → 0

which shows that T̃ fulfills (t2). Furthermore, P ⊂ cogen∞E (T ) implies by [27], Lemma 3.3.

that Exti(ΨT (P ),ΨT (P
′)) = 0 for P, P ′ ∈ P and 0 < i < ∞, so (t1) holds for T̃ .

The second claim follows since ΦP is exact, fully faithful and preserves extension groups
and maps projectives to projectives.

(2) Since P ⊂ cogen1E(T ) it follows that ΨT restricted to P is fully faithful by [27], Lemma 2.1.
Since ΦP is fully faithful, the second claim is clear.

(3) By the properties of Tor the category ⊥T̃ contains the projectives, is extension closed and
deflation-closed, so it is resolving.

The last statement follows when we consider the first n terms of a projective resolution
of X ∈ mod∞ T

0 → Ωn → Tn−1 → · · · → T0 → X → 0

with Ti ∈ P(mod∞ T ). We claim that TorT>0(Ω
n, T̃ ) = 0. By dimension shift

TorTi (Ω
n, T̃ ) = TorTi+n(X, T̃ ) = 0 since pd T̃ ≤ n.

(4) It is standard to see that these functors form an adjoint pair (it should be seen as a
Hom-Tensor adjunction), cf. [27], Lemma 3.7.

(i) This is a straight forward generalization of the orginal result [22], Thm 1.16. We just
mention it for completeness.

(ii) We want to see that both functors restrict to functors as claimed and that they are
both fully faithful.

By Lemma 5.5 and [27], Lem. 3.13, Rem. 3.14 we have

T ⊥
= genmod∞ P

∞ (T ) = presmod∞ P
∞ (T )

= {X ∈ mod∞ P | φX isom,Φ(X) ∈ mod∞−T ,TorT>0(Φ(X), T̃ ) = 0}

therefore, the functor Φ restricts as claimed and is fully faithful since gen∞(T ) ⊂ gen1(T )
(again using [27], Lemma 1.1.)

We are going to proof the following claim:
(*) presmod∞ P

∞ (T ) = presModP
∞ (T )
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proof of (*): Given an exact sequence · · · → Tm → · · · → T0 → X → 0 in ModP with Ti ∈ T , we
claim X ∈ mod∞ P. Now, we see this as a quasi-isomorphism of complexes (with terms
in ModP)

T∗ : · · · // Tm

��

// · · · // T1
//

��

T0
//

��

0

X : · · · // 0 // · · · // 0 // X // 0

Since T∗ is a complex in mod∞ P, we find by [12], Thm 12.7, a quasi-isomorphism
P∗ → T∗ with P∗ is a complex · · · → Pm → Pm−1 → · · · → P0 → 0, P−n = 0 for all
n > 0 with terms in P, here a quasi-isomorphism means that the mapping cone of
P∗ → T∗ is acyclic. Since composition of quasi-isomorphisms are quasi-isomorphsims,
we have a quasi-isomorphism P∗ → X which means that the mapping cone which is a
complex · · · → P1 → P0 → X → 0 is exact and therefore X ∈ mod∞ P.

Let Y ∈ ⊥T̃ . Since Y ∈ mod∞ T , e.g. there exists an exact sequence

· · · → Φ(Tm) → · · · → Φ(T0) → Y → 0

with Φ(Ti) ∈ P(mod∞ T ) = Φ(T ). Applying Φ′ and using that Φ′Φ(T ) ∼= T for all T ∈ T
yields a complex

· · · → Tm → · · · → T0 → Φ′(Y ) → 0

with Ti ∈ T . Since TorT>0(Y, T̃ ) = 0 and Φ′ is right exact, this complex is exact. This

implies by (a) that Φ′(Y ) ∈ T ⊥
= genmod∞ P

∞ (T ). Therefore, Φ′ restricts as claimed. To see
that it is fully faithful, we also have the consequence that applying Φ is again exact on this
complex

· · · → Φ(Tm) → · · · → Φ(T0) → Φ(Φ′(Y )) → 0

By the triangle identity of the adjunction, this implies that the unit Y → ΦΦ′(Y ) is an
isomorphism.

Now, an adjunction with unit and counit isomorphisms (i.e. fully faithful left and right
adjoint) is an equivalence of categories.

(5) It follows from the definition that Φ ◦ ΦP = ΦT . Since ΦP preserves all extension groups, it
is clear that ΦP restricts to a functor as claimed, for Φ this has been proven in (4).

□

Example 7.19. If E is an abelian category with enough projectives, then every n-tilting
subcategory is ideq n-tilting. For example, let P be essentially small, then E = ModP is an abelian
category with enough projectives given by summands of arbitrary direct sums of P, i.e.
P(ModP) = Add(P). It implies that the functor P : E → mod∞(Add(P)) is an exact equivalence.

Example 7.20. Let E := P(mod∞ P) ⊂ mod∞ P. We consider E as a fully exact subcategory of
mod∞ P, then it is a resolving subcategory. Since the category E is semi-simple, it has a unique
tilting subcategory T = P(E) = E which is a 0-tilting subcategory. Now, it follows from Thm. 7.14
that gldim(mod∞ P) = m < ∞ (resp. mod∞ P = P<∞) if and only if Resm(E) = mod∞ P (resp.
Res(E) = mod∞ P) if and only if E is m-ideq 0-tilting subcategory (resp. ideq 0-tilting) of itself.

7.3. Conjectural generalizations to ideq tilting in arbitrary exact categories. Here, we
come accross the following unresolved question:

Open question: Is there an analogue of Rickard’s Morita theory for functor categories as follows:

Conjecture 7.21. (Strong Rickard conjecture) Let X ,Y be two essentially small idempotent
complete additive categories. Then the following equivalent:

(0) D(Mod−X ) and D(Mod−Y) are triangle equivalent.
(1) D−(ModX ) and D−(ModY) are triangle equivalent.
(2) D−(mod∞X ) and D−(mod∞ Y) are triangle equivalent.
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(3) Db(mod∞X ) and Db(mod∞ Y) are triangle equivalent.
(4) Kb(X ) and Kb(Y) are triangle equivalent.
(5) There is a tilting subcategory T of Kb(X ) such that T ∼= Y as additive categories.

If we do not assume X and Y to be small, then (2),(3),(4), (5) are still equivalent. Furthermore,
every triangle equivalence in (0)-(3) restricts to a triangle equivalence as in (4).

For X and Y of finite type and idempotent complete, part of the conjecture is Rickard’s Morita
theorem for derived categories of rings (cf. [24], Thm 6.4, Prop. 8.1 - for example (3) implies (4) is
proven in loc. cit only for right coherent rings - yet (4) implies (3) is proven for arbitrary rings). An
alternative proof can be found in [20]. For more general small additive categories partial answers are
given by Keller [19], Corollary in 9.2 and Asadollahi-Hafezi-Vaheed [3], Thm 3.21.
For our purpose, we need the following weaker statement:

Conjecture 7.22. (Rickard-Lemma) Let X , Y be small idempotent complete additive categories. If
Kb(X ) and Kb(Y) are triangle equivalent, then there exists a triangle equivalence
Db(mod∞X ) → Db(mod∞ Y) which restricts to a triangle equivalence Kb(X ) → Kb(Y).

For addΛ with Λ an arbitrary ring, the existence is proven in [24] after Prop 8.1. One proof of the
Rickard-Lemma should be as follows:
Let T ⊂ Kb(Y) be the image of X under the assumed triangle equivalence. We define
Add(Y) := P(ModY). Then one shows that T ⊂ K(Add(Y)) fulfills (P1),(P2),(P3) in [3] and the
acyclic complexes in K(Add(Y)) coincide with the T -acyclic complexes in loc. cit (since Thick∆(T )
in Kb(Y) equals Kb(Y))). Therefore, [3], Thm 3.21 can be applied to obtain a triangle equivalence
K−(Add(X )) ∼= K−(Add(T )) → K−(Add(Y)) which restricts to a triangle equivalence
Kb(X ) → Kb(Y). Then, arguments of [24] should generalize to intrinsic characterizations of the
subcategory inclusions Kb,−(X ) ⊂ K−(X ) ⊂ K−(Add(X )) - these imply the claimed restricted
triangle equivalence Db(mod∞X ) → Db(mod∞ Y). Unfortunately, these results are not easy to
puzzle together, so we leave this as a conjecture.

Corollary 7.23. (of Rickard-Lemma) Assume that the Conjecture 7.22 holds. Let E be an exact
category. Then for every n-tilting and m-tilting subcategories T and T ′ which are small there exists
a triangle equivalence Db(mod∞ T ) → Db(mod∞ T ′)

Proof. We have the two derived tilting functors

Db(mod∞ T ) Db(E) //oo Db(mod∞ T ′)

Now, the thick subcategory of Db(E) that T and T ′ generate is equal to

Thick∆(T ) = Thick∆(P<∞) = Thick∆(T ′)

by Lemma 5.8. This implies that derived tilting functors restrict to triangle equivalences

Kb(T ) Thick∆(P<∞) //oo Kb(T ′)

Then the claim follows from the conjecture 7.22. □

Remark 7.24. If we could prove the stronger statement that every triangle equivalence
Kb(T ) → Kb(T ′) can be extended to a triangle equivalence as in the previous corollary, then we
would obtain that the existence of one ideq n-tilting subcategory is equivalent to that all m-tilting
are ideq m-tilting for all m ≥ 0. This extension property for arbitrary triangle equivalences
Kb(X ) → Kb(Y) would imply the following conjecture.

Conjecture 7.25. (Generalization of Thm. 7.14) Let E be an exact category and assume that there
exists an n ≥ 0 such that there is at least one n-tilting subcategory. Then the following are equivalent:

(a) There is an n ≥ 0 and an n-tilting subcategory which is ideq n-tilting
(b) For every m ≥ 0 every m-tilting subcategory is ideq m-tilting.

21



(c) There is a triangle equivalence Db(E) → Db(mod∞ S) for some idempotent complete additive
category S which restricts to a triangle equivalence Thick∆(P<∞) → Kb(S).

Remark 7.26. If every triangle equivalence Db(E) → Db(mod∞ S) for some idempotent complete
additive category S restricts to a triangle equivalence Thick∆(P<∞) → Kb(S), then the previous
conjecture says for an exact category with at least one n-tilting subcategory: n-tilting = ideq
n-tilting for every n ≥ 0 is equivalent to E is bounded derived equivalent to a category mod∞ S.

7.4. When is the image of the tilting functor the perpendicular of a cotilting
subcategory? Enomoto characterized in [15], Thm 2.4.11 when an exact category E is equivalent
to the perpendicular category ⊥C of an m-cotilting subcategory C inside a functor category mod∞ P
(Clearly a perpendicular category of a cotilting subcategory is a finitely resolving subcategory).
Observe that a necessary condition is that such an E has enough projectives and enough injectives.
Here Enomoto’s notion of higher kernels in an additive category plays a crucial role.

Definition 7.27. (cf. [15], Def. 2.4.5) Let C be an additive category and n ≥ 1, then we say that C
has n-kernels if for every f : C1 → C0 in C there is a complex 0 → Cn+1 → · · · → C2 → C1

f−→ C0 in
C such that

0 → HomC(−, Cn+1) → · · · → HomC(−, C0)

is exact in mod∞ C.
If C is additionally an exact category, we say that C has 0-kernels if every morphism f in C can be
factored as f = id for a deflation d and a monomorphism i. We say C has (−1)-kernels if it is
abelian.

Example 7.28. If T is (n-)tilting and has m-kernels for some m ≥ 1, then T is (m− 1)-ideq
(n-)tilting (check the definitions).

Proposition 7.29. ([15], Pro. 2.4.6) Let C be essentially small additive category with weak kernels
and n ≥ 1. Then: mod∞ C = P≤n+1 if and only if C has n-kernels.

Theorem 7.30. (Enomoto’s Theorem, [15], Thm 2.4.11) Let E be an idempotent complete, exact
category and T a tilting subcategory and m ≥ 0. We write fT : T ⊥ → mod∞ T for the tilting functor
X 7→ HomE(−, X)|T . The following are equivalent:

(1) T has weak kernels and is (m− 1)-ideq tilting and T ⊥ has enough injectives
(2) There is an m-cotilting subcategory C in mod∞ T with ⊥C = Im fT
(3) T ⊥ has enough injectives and (m− 1)-kernels
(4) T ⊥ has enough injectives and there is a category T ⊂ M ⊂ T ⊥ which has (m− 1)-kernels

In this case, Im fT = ⊥C with C = fT (I(T ⊥)) is m-cotilting.

All examples that I know of this situation follow from Auslander’s notion of a dualizing R-variety.

Definition 7.31. (and Lemma) Let R be a commutative ring such that there is a duality D on finite
length R-modules (e.g. if R is a field). Let A be an additive R-category such that HomA(X,Y ) is a
finite length R-module for all X,Y in A. Then, D: Mod-A → AMod, F 7→ F ◦D is a duality (if A is
essentially small). A is called a dualizing R-variety if the F 7→ F ◦D defines a duality between
finitely presented left and right A-modules, i.e. a contravariant equivalence
D: mod1A → Amod1 : D.
In this case, mod1A = mod∞A is an abelian category with enough injectives and projectives and
Aop is also a dualizing R-variety.

Corollary 7.32. (of Miyashita’s and Enomoto’s Theorem) Let E be an exact category with enough
projectives P. Let T be an n-tilting subcategory of E and assume that there is a duality (i.e.

contravariant equivalence) D: mod∞ T → T mod∞ : D. Let T̃ = ΨT (P) ⊂ T mod∞ be the n-tilting

subcategory of Thm. 7.13, then C := D T̃ ⊂ mod∞ T is an n-cotilting subcategory and we have

⊥T̃ = ⊥C
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7.5. Ideq tilting in relative homological algebra. We look at exact substructures with
enough projectives on exact catgeories of the form mod∞ P with P essentially small. Recall, if
E = (A,S) is an exact category with underlying additive category A and class of short exact
sequences S, then an exact substructure is an exact category E ′ = (A,S ′) with S ′ ⊂ S.

We prove the following:

Theorem 7.33. Let P be an idempotent complete, additive category. Let E be an exact substructure
of mod∞ P, with enough projectives Q := P(E). Then, Q is 2-ideq 0-tilting subcategory of E.

As a trivial corollary of Theorem 7.14 and the previous Theorem, we obtain:

Corollary 7.34. Let P be an idempotent complete, additive category. Let E be an exact substructure
of mod∞ P, with enough projectives Q := P(E). Then for every n ≥ 0, every n-tilting subcategory of
E is ideq n-tilting.

We prove two lemmata for the proof.

Lemma 7.35. In the previous situation. The functor P : mod∞ P → mod∞Q, X 7→ Hom(−, X)|Q
has a left adjoint functor Φ′ : mod∞Q → mod∞ P given by the restriction functor Φ′(X) = X|P .
Furthermore, Φ′ is exact.

Proof. We consider Q ⊂ mod∞ P ⊂ ModP. Then there is an adjoint pair of functors
Φ: ModP → ModQ : Φ′ with Φ(X) = HomModP(−, X)|Q (cf. [27]). By loc. cit. Cor.3.15, we have
for X ∈ genmod∞ P

∞ (Q) = mod∞ P (by assumption) we have P(X) = Φ(X) ∈ mod∞Q and
Φ′(X)(P ) = X(P ). Therefore, the restriction functor is the left adjoint if it is well-defined. We
claim: If X ∈ mod∞Q, then X|P∈ mod∞ P.
We apply the restriction functor to a projective resolution of X. This gives a right bounded complex
Q∗ in mod∞ P with terms in Q which is quasi-isomorphic to the restricted stalk complex of X. Now,
by [12], Thm 12.7, there exists a quasi-isomorphism P∗ → Q∗ with P∗ a right bounded complex of
projectives in mod∞ P. Since compositions of quasi-isomorphisms are quasi-isomorphisms, the
quasi-isomorphism P∗ to the stalk complex X|P gives a projective resolution. □

Lemma 7.36. Let E be an idempotent complete exact category with enough projectives given by Q.
If the functor P : E → mod∞Q, X 7→ Hom(−, X)|Q has an exact left adjoint, then we have
Res2(ImP) = mod∞Q.

Proof. Let X ∈ mod∞Q. We choose a projective presentation

HomQ(−, Q1)
Hom(−,f)−−−−−−→ HomQ(−, Q0) → X → 0 and denote Ω2 = ker(Hom(−, f)). We claim that

the unit Ω2 → PΦ′(Ω2) is an isomorphism (then Ω2 ∈ Im(P) and since the projectives are in ImP,
the claim follows).
First of all, we observe that any object Z ∈ Im(P) fulfills that the unit is an isomorphism on Z - this
follows from the triangle identity of the adjunction.
In particular, this holds for the projectives which lie in Im(P). Since P ◦Φ′ preserves kernels (since P
preserves kernels and Φ′ is exact) we can deduce from the commutative diagram

0 // Ω2 //

��

HomQ(−, Q1) //

��

HomQ(−, Q0)

��
0 // P ◦ Φ′(Ω2) // P ◦ Φ′(HomQ(−, Q1)) // P ◦ Φ′(HomQ(−, Q0))

that the unit Ω2 → P ◦ Φ′(Ω2) is an isomorphism. □

Example 7.37. In the special case, A = Λ-mod for an artin algebra Λ, then the definition of a
relative tilting object has been given in [4], the derived equivalence had been proven in [11]. The
proof in loc. cit. claims, we have an equivalence of additive categories and therefore, we have an
equivalence on Kb,−(−) of those - but this triangulated category depends not just on the additive
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category but on the ambient exact category and therefore a further explanation for the triangle
equivalence (as given here, is helpful for the understanding).

8. Examples

We plan to write an extended separate article on this topic. Therefore, we restrict to very view
examples. This is my favourite construction of tilting subcategories:

Example 8.1. (special tilting)

Lemma 8.2. Let E be an exact category with enough projectives P. Let n ≥ 1 and M be full
self-orthogonal subcategory, closed under summands with pdE M ≤ 1 and assume that

P ⊂ cogenn−1(M).

Let Ω−n
MP denote the full subcategory of E consisting of objects X such that there exists an exact

sequence
0 → P → M0 → · · · → Mn−1 → X → 0

with Mi ∈ M, P ∈ P and HomE(−,M) exact on it. We define Tn := M∨ add(Ω−n
MP). Then Tn is

an n-tilting subcategory and
T ⊥
n = genn−1(M)

Proof. The proof of the dual of Lem. 8.3 in [21] also carries through to show (t1), (t2) and (t3)
(of Thm 6.3). □

Definition 8.3. Let E ,M be as in the previous lemma. If M ⊂ P, then we call
Tn = M∨ add(Ω−n

MP) the M-special tilting subcategory.

Example 8.4. (Tilting modules for infinitely presented modules over rings) Let R be an
associative unital ring. We set RMod := Mod−(proj− R),Rmod∞ := mod∞−(proj− R) where
proj− R denotes the category of finitely generated projective left R-modules. This notation is
justified by the observation that the category of all left R-modules is equivalent to Mod−(proj− R),
just consider the following functor

RMod −→ Mod−(proj− R)

M 7→
(
P 7→ HomR(P,M)

)
It is an equivalence with quasi-inverse given by F 7→ F (R). Let now E := Rmod∞. This is an exact
category with enough projectives. Let T be an object in E and Γ = EndE(T )

op. We have add(T ) has
weak kernels if and only if Γ is left coherent but we do not need to assume this here.
Then T is n-tilting in E if and only if it satisfies (t1),(t2) and (t3) (cf. Theorem 6.3). By Thm 7.14
we have an induced equivalence on bounded derived categories Db(Rmod∞) → Db(Γmod∞). This is
also implied by Rickard’s Morita theory for derived categories ([25], Thm 6.4 and Prop. 8.1).

On endomorphism rings of generators one can always find a special 1-tilt:

Let R be a ring and M be a left R-module and Q be a projective left R-module such that there is an
epimorphism Qn → M for some n ≥ 1. Let E = M ⊕Q and Γ = EndR(E)op. Then,
P = HomR(Q,E) is a projective right Γ-module.
Take the short exact sequence

0 → K = ker(f) → Qn+1 → E → 0

and apply the functor HomR(−, E)

0 → Γ
F−→ Pn+1 → T1 := coker(F ) → 0.

We set T = P ⊕ T1. Then, it is straight forward to see:

Corollary 8.5. T ∈ mod∞ Γ is a the special 1-tilting module for M = add(P ). In particular,
gen(T ) = gen(P ).
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