
An application of tilting theory to infinite type A quiver
representations

1. Synopsis

Let Q be an infinite quiver, we look at those whose category of finitely presented quiver
representations rep+(Q) over a field K is an hereditary abelian category with enough projectives
which is Hom- and Ext-finite (i.e. these take values in finite-dimensional K-vector spaces). The
easiest class of examples of such infinite quivers are quivers Q which are tree-shaped quivers with
finitely many branching points. The abelian categories rep+(Q) are always one-sided
Auslander-Reiten categories, cf. [1]. The purpose of this chapter is to start studying tilting
subcategories in rep+(Q) for Q an infinite quiver with sufficient finiteness conditions. The obvious
first example are quivers of type A∞.

We prove the following theorem using tilting theory:

Theorem 1.1. (cf. Theorem 4.9) Let Q and Q′ be two quivers of type A∞. Then, there exists a
triangle equivalence

Db(rep+(Q))→ Db(rep+(Q′))

if and only if one of the following three cases holds

(a) Q and Q′ have a left infinite path
(b) Q and Q′ have a right infinite path
(c) Q and Q′ have no infinite path

In each of the cases the derived equivalence is obtained by composing at most two derived
equivalences induced from a tilting subcategory.

The same question can be asked for the other infinite Dynkin types. We give an idea how to answer
this in section 5.

2. Preliminaries

We remark that in our situtation tilting subcategories are maximal self-orthogonal:

Remark 2.1. Let A be an exact category and assume gldimA <∞. Let T be a tilting subcategory
and T ⊆ S with S selforthogonal in A. Then we have T = S, the proof goes as follows:
Since Ext>0(T ,S) = 0 implies S ⊂ T ⊥ and because gldim T ⊥ ≤ gldimA <∞ and T ⊥ wep. given by
T it follows that Ext>0(S, T ⊥) = 0 and therefore S ⊂ P(T ⊥) = T .

Lemma 2.2. Assume that T is a 1-tilting subcategory in an abelian category A. Then the category
of finitely presented functors mod1 T has enough projectives, i.e. equals mod∞ T and is abelian.

Proof. We show first the inclusion mod1 T ⊆ mod∞ T : Let f : T1 → T0 be a morphism in T , we
denote by f ′ : T1 → Im f the induced morphism to the image. We have Im f ∈ gen∞ T (using

pres T = gen T = gen∞ T , using [7], Lem 4.4). So we find an exact sequence T ′
2

g−→ T ′
1

h−→ Im f → 0
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with T ′
i ∈ T such that HomA(T, T

′
2)→ HomA(T, T

′
1)→ HomA(T, Im f)→ 0 for all T in T . Let us

form the pullback of h along f ′ in the abelian category A

ker f ker f

kerh H T1

kerh T ′
1 Im f

i

j h̃

f ′

h

One can observe that the second row is even split exact (but we are not going to use this). Now, we
look at the induced morphism g′ : T ′

2 → Im g = kerh. Using the bicartesian commutative diagram we

conclude f ′h̃jg′ = 0 and so by the universal property of the kernel there is a unique morphism
t : T2 → ker f such that it = h̃jg′. Now we check that it : T ′

2 → T1 is a weak kernel of f . For that it
suffices to see that for every T in T the map Hom(T, T ′

2) ↠ Hom(T, ker f) is surjective. Let T be an
object in T and s : T → ker f a morphism. Using the bicartesian commuting square, we see that

T → ker f → H → T ′
1

h−→ Im f is zero, so it has to factor uniquely over a morphism T → kerh. But
as g′ is a right T -approximation of kerh, it follows that there exists a morphism s′ : T → T ′

2 with
ts′ = s.
As every morphism has a weak kernel, the claim follows, cf. e.g. [4, Lemma 2.1.6].

□

There is also the following other case when we can conclude that mod∞ T is abelian.

Lemma 2.3. If T is a contravariantly finite subcategory of an abelian category A, then T has weak
kernels. In particular mod∞ T = mod1 T is abelian with enough projectives.

Proof. Let f : T → T ′ be a morphism in T . Take Tf → ker f a right T -approximation. Then,
consider the composition g : Tf → ker f → T . It is straightforward to see that g is a weak kernel of
f . □

That a tilting subcategory is contravariantly finite is an extra property. It is equivalent to that we
have a torsion class associated to it:

Definition 2.4. A pair (R,F) of full subcategories in an abelian category A is a torsion pair if:

(TP1) Hom(R,F ) = 0 for all R ∈ R, F ∈ F ,
(TP2) For each Z ∈ A exists a short exact sequence 0→ X → Z → Y → 0 with X ∈ R, Y ∈ F .

We recall the following

Corollary 2.5. (of [2, Prop.1.2]) If R is a torsion class in an abelian category A, then the R is
contravariantly finite in A.

Proof. By [2, Prop. 1.2], the inclusion i : R → A has a right adjoint R : A → R. Then, for
Z ∈ A, the counit ϵZ : iR(Z)→ Z of the adjunction is a right R-approximation. □

Lemma 2.6. Let T be a 1-tilting subcategory in an abelian category. Then the following are
equivalent:

(1) T ⊥ is a torsion-class.
(2) T ⊥ is contravariantly finite in A.
(3) T is contravariantly finite in A.
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Proof. Assume T ⊥ is a torsion class, then T ⊥ is contravariantly finite in A by the previous
lemma. Since T is contravariantly finite in T ⊥ (since T ⊥ has enough projectives given by T ) it
follows that T is contravariantly finite in A. So we have (1) implies (2) implies (3)
Conversely, assume (3), i.e. that T is contravariantly finite in A. Define R = T ⊥ and
F = {F ∈ A | Hom(T, F ) = 0 ∀ T ∈ T }. Let R ∈ R, F ∈ F and f : R→ F be a morphism. By
definition, there exists an epimorphism p : T → R with T ∈ T and f ◦ p = 0. This implies f = 0 and
(TP1).
Now let Z ∈ A be arbitrary. By assumption, there exists a right T -approximation fZ : TZ → Z, in
particular X = Im(fZ) ∈ R. Let Y := coker(fZ). We consider the short exact sequence

0→ X
j−→ Z → Y → 0 and apply Hom(T,−) with T ∈ T . We look at Hom(T,X)→ Hom(T,Z) and

want to see that this map is surjective. So, given g : T → Z, we use that there is an h : T → TZ such

that fZ ◦ h = g. Since fZ : TZ
q−→ X

j−→ Z factors over its image as fZ = j ◦ q, it follows g = j(qh) and
therefore Hom(T,X)→ Hom(T,Z) is surjective. This implies that Y ∈ F and therefore (TP2). □

Definition 2.7. We say that an object X in A is noetherian if it satisfies the ascending chain
(acc) condition, i.e. whenever there is a chain of subobjects of X

X0 ⊆ X1 ⊆ X2 ⊆ · · ·

then it eventually stabilizes.
Let C be a small category, then one says Mod C (also denoted by Rep C) is noetherian if every
finitely generated C-module X fulfills the (acc) for chains of finitely generated submodules.

Lemma 2.8. Let k be a field. Let A be an abelian Hom-finite k-category and T a 1-tilting
subcategory with countably many indecomposables in it. If every object in A is noetherian, then T is
contravariantly finite in A.

Proof. Let X be in A. We choose a numbering of the indecomposables of T , e.g. Tn, n ∈ N. We
define Xn ⊆ X to be

∑
f∈HomA(

⊕n
i=1 Ti,X) Im f . By assumption there is an N ∈ N such that XN = Xn

for all n ≥ N . This means that every morphism T → X, T ∈ T must factor over XN . We observe
XN ∈ pres(T ) = gen(T ) = T ⊥. Since T ⊥ is an exact category with enough projectives given by T
there is a projective cover T → XN , with T ∈ T and this is clearly a right T -approximation. □

3. Representations of strongly locally finite infinite quivers

Here we follow [1]. We fix a strongly locally finite quiver Q, this means every vertex has finitely
many arrows arriving and starting at it and for every two (possibly equal) vertices there are only
finitely many paths from one to the other.
A representation (over an always fixed field K) of Q is an assignment of a K-vector space Vi to every
vertex i ∈ Q0 and a linear map Vi → Vj to every arrow a : i→ j in Q1. This defines the objects in an
abelian category Rep(Q). For every vertex x ∈ Q0 one defines a Q-representation Px with top Sx

(the one-dimensional representation supported at x) and let P := projQ = add{Px : x ∈ Q0} be the
category of finitely generated projectives in Rep(Q). A quiver is called noetherian if every object in
P defined as above satisfies the ascending chain property (definition of [3]). In [5] this is called left
noetherian and it is shown that this implies that Rep(Q) is a locally noetherian abelian category in
loc. cit. Theorem 1.1.

Lemma 3.1. Let Q be an infinite quiver. If the underlying graph is a (possibly infinite) tree with
only finitely many branching points, then the quiver is noetherian.

Proof. Since Q is a strongly locally finite quiver and its underlying graph is a tree with only
finitely many branch points, it follows that the graph of P (Q)v has finitely many branch points for
any v ∈ Q. We get that P (Q)v is barren (in the sense of [3]) and thus Q is notherian by [3, Theorem
3.6]. □
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We define

rep+(Q) := mod1 P
as the finitely presented Q-representations, this is an extension-closed subcategory of Rep(Q).

Lemma 3.2. ([1, Lem 1.14]) Let K be a field. Then rep+(Q) is hereditary abelian and is a
Hom-finite K-category with finite-dimensional Ext1-groups.

Corollary 3.3. In particular P has weak kernels and rep+(Q) = mod∞ P has enough projectives
which are given by P.

Following [1, Cor 2.2] an abelian Krull-Schmidt category C is a right Auslander-Reiten category
if every indecomposable non-projective is ending term of an almost split sequence and all
indecomposable projectives have a simple top. It is called a left Auslander-Reiten category if its
opposite is a right Auslander-Reiten category.
We call a quiver of the form • → • → · · · a right infinite path and its opposite a left infinite
path. We call a quiver · · · → • → • → · · · a double infinite path.

Theorem 3.4. ([1], Thm 3.7, Cor. 3.8) Let Q be a strongly locally finite quiver. Then

(1) rep+(Q) is left Auslander-Reiten if and only if Q has no right infinite path.
(2) rep+(Q) is right Auslander-Reiten if and only if Q has no left infinite path or else Q is a

left infinite path or double infinite path.
(3) rep+(Q) is Auslander-Reiten if and only if Q has no infinite path or Q is a left infinite path.

Observe that: Q having no right infinite path is equivalent to rep+(Q) coinciding with the category
of finite dimensional Q-representation (i.e. Q-representations V such that dimK

⊕
i∈Q0

Vi <∞).

We will also use the following definition.

Definition 3.5. Let A be a left (and/or right) abelian Auslander-Reiten category. A weak slice in
A is an additively closed subcategory X such that the indecomposables in X fulfill the following:

(1) The indecomposables in X are all in the same component of the Auslander-Reiten quiver
and they are a full representing system of the τ±-orbits.

(2) The full subquiver of the Auslander-Reiten quiver defined by the indecomposables of X is
path-closed (i.e. if there is a path given by a sequence of arrows X1 → X2 → · · · → Xn in
the Auslander-Reiten quiver with X1, Xn in X , then all Xi are in X ).

(3) Given an almost split sequence M ↣ L ↠ N with one summand of L in X , then either M
or N are in X .

We say a weak slice is a slice if it defines a 1-tilting subcategory of A.

Ringel showed in [6], section 4.2: If A is also hereditary exact and X is a slice then the subcategory
X is selforthogonal (i.e. there are no non-split n-extensions between any two objects in X for all
n ≥ 1).

3.1. Reflection at a set of sinks. Let Q be a strongly locally finite quiver and a ⊂ Q0 a
subset consisting of sinks (this can be a single vertex or it may also be an infinite set). We write
µa(Q) for the quiver (Q′

0, Q
′
1) with Q′

0 = Q0 and
Q′

1 = {α : i→ j | j /∈ a} ∪ {α∗ : a→ i | α : i→ a, a ∈ a}.
To distinguish the finitely generated projective µa(Q)-representations from those for Q, we denote
them by P x, x ∈ (µa(Q))0 = Q0.
We define the reflection functor

Sa : Rep(Q)→ Rep(µa(Q))
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as follows, for a Q representation M and every a ∈ a we have a linear map Mα : Mi →Ma for every
α : i→ a. This induces a linear map from the direct sum

0→ Na →
⊕

α∈Q1 : α : i→a

Mi →Ma

where we call Na the kernel of this map. We define (Sa(M))x = Mx for x /∈ a and (Sa(M))a = Na for
every a ∈ a. On all arrows α in Q′

1 not ending at an a ∈ a, we define (Sa(M))α = Mα. An arrow
α∗ : a→ i in Q′

1 with a ∈ a, corresponds by definition to an arrow α : i→ a in Q1, therefore we we

can define Sa(M)α∗ : Na →
⊕

β : j→aMj
prα−−→Mi.

It is clear that this functor restricts to finite-dimensional quiver representations. It is not
immediately clear that Sa would restrict to the subcategory of finitely represented quiver
representations.
We look at the special tilting subcategory in rep+(Q) with respect toM = add{Px | x /∈ a}. For
a ∈ a, the following is theM-approximation of Pa

0→ Pa →
⊕

α∈Q1 : α : i→a

Pi.

Let Ra be the cokernel, Ta =M∨ add{Ra | a ∈ a}. Observe that:

Lemma 3.6. The reflection functor restricts to an equivalence of categories

Ta → P(rep+(µa(Q)))

mapping Px 7→ P x for x /∈ a and Ra 7→ P a for a ∈ a.
We have the following commutative diagram

Rep(Q)

Φ

''NN
NNN

NNN
NNN

Sa // Rep(µa(Q))

Mod Ta

∼=

OO

with Φ(M) = HomRep(Q)(−,M)|Ta.

In particular, we can restrict Sa to T ⊥
a = gen Ta ⊆ rep+(Q), i.e. to a functor

Sa : T ⊥
a → mod∞−Ta ∼= rep+(µa(Q))

But every indecomposable not in gen Ta is a simple Sa, a ∈ a and Sa(Sa) = 0 which is finitely
presented. Therefore, we have a well-defined reflection functor

Sa : rep+(Q)→ rep+(µa(Q))

which can be identified with the tilting functor of the tilting category Ta.

Proof. By definition we have that Sa(Px) = P x for x /∈ a, and Sa(Ra) = P a for a ∈ a.
As both categories are Krull-Schmidt categories, it is enough to show that Sa induces isomorphisms
on Hom-spaces of indecomposables. For M in Ta, x /∈ a we have natural isomorphisms

Homrep+(Q)(Px,M) ∼= Mx
∼= Homrep+(µa(Q))(Sa(Px), Sa(M))

For x = a ∈ a, we apply Homrep+(Q)(−,M) to the short exact sequence
0→ Pa →

⊕
α : i→a Pi → Ra → 0

0→ Hom(Ra,M)→
⊕

α : i→a

Hom(Pi,M)→ Hom(Pa,M)

Now, by the first natural isomorphism this left exact sequence identifies naturally with

0→ Na →
⊕

α : i→a

Mi →Ma

In particular HomQ(Ra,M) ∼= Na
∼= Homµa(Q)(P a, Sa(M)). □
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Corollary 3.7. In particular, the reflection functor induces a triangle equivalence on the bounded
derived categories

S+
a : Db(rep+(Q))→ Db(rep+(µa(Q)).

We write S−
a for the quasi-inverse of S+

a .

Here S−
a can be constructed dually using the special cotilting subcategory associated to the set of

sources.

4. Representations of infinite quivers of type A-infinity

We call orientations of the following graph

1 2 3 · · ·

quivers of type A∞. For every such quiver, a ≤ b in N, we define the interval module Ea,b as the
indecomposable module with dimension vector (dimEa,b)i = 1 if a ≤ i ≤ b and zero else.

4.1. A-infinity.

4.1.1. Left infinite path. We first look at the following infinite quiver Q

1← 2← 3← · · ·

Let A = rep+(Q) be the category of finite-dimensional Q-representations. All indecomposables are
finite-dimensional interval modules, with projectives

Pn = E1,n, n ∈ N, set P := P(A) = add{Pn | n ∈ N}.

In this case, we have an Auslander-Reiten category with Auslander-Reiten quiver

E1,5 · · ·

E1,4

;;wwww

##G
GG

G

E1,3

;;wwww

##G
GG

G
E2,4

τoo · · ·

E1,2

;;wwww

##G
GG

G
E2,3

τoo

;;wwww

##G
GG

G

E1,1

;;wwww
E2,2

;;wwww
τoo E3,3

τoo · · ·

Let I = [a, b] with a ≤ b be an intervall in N. We define CI to be the full additive subcategory given
by objects whose composition factors are simples Si, a ≤ i ≤ b. Alternatively,
CI = add{Eij | a ≤ i ≤ j ≤ b}. This is a fully exact subcategory of A which is deflation-closed and
inflation-closed and even a Serre subcategory. Furthermore, it is an abelian subcategory with enough
injectives (indeomposable injectives: Ei,b, a ≤ i ≤ b), with enough projectives (indecomposable
projectives: Ea,j , a ≤ j ≤ b) and unique indecomposble projective injective Ea,b. It is obvious that CI
is equivalent to the quiver representations of the full subquiver (of Q) with vertices I. This is a
linear oriented quiver of type A.
Furthermore, every tilting subcategory fulfills T ⊥ = P<∞(T ⊥) since A = P<∞(A) by [7, Lemma
5.7].

Proposition 4.1. Let A be the exact category described before. Let T be full additive subcategory in
A closed under summands. The following are equivalent:

(1) T is a 1-tilting subcategory.
(2) |T ∩ P| =∞ and for every indecomposable E1,n ∈ T we have that T ∩ C[1,n] is a tilting

subcategory of C[1,n].
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(2’) |T ∩ P| =∞ and for every indecomposable Ea,b ∈ T we have that T ∩ C[a,b] is a tilting
subcategory of C[a,b].

Proof. (1) implies (2): Assume that T is 1-tilting (i.e. selforthogonal and P ⊂ Cores1(T )).
Since P ⊂ copres(T ), it follows that T contains infinitely many indecomposable projectives. First we
look at projectives E1,n ∈ T . Clearly T ∩ C[1,n] is selforthogonal in C[1,n]. The inclusion
P ⊂ Cores1(T ) implies for P = E1,m with m ≤ n that there is an exact sequence P ↣ T0 ↠ T1 in A
with Ti ∈ T . It is easy to see that HomA(−, T ) is exact on it for every T ∈ T . This means, we can
choose a minimal left T -approximation f : P → T ′

0. Let m < m′ ≤ n be minimal with
E1,m′ ∈ T ∩ C[1,n], then clearly E1,m′ ∈ add(T ′

0) and every other morphism P → T with T ∈ T
indecomposable, T /∈ C[1,n], must factor over P → E1,m′ . This implies that T ′

0 ∈ C[1,n]. Let
L := coker f , then we have an induced monomorphism L→ T1, this means
L ∈ pres(T ) ∩ copres(T ) = T ⊥ ∩ ⊥T = T since T ⊥ = P<∞ (so: being left perpendicular on the
projectives in T ⊥ implies being projective). Since C[1,n] is closed under quotients, L ∈ T ∩ C[1,n].
(2) implies (2’): For general Ea,b ∈ T the claim follows since one can find a projective E1,n ∈ T with
Ca,b ⊂ C1,n and since this is well-known for tilting modules over linear oriented An quivers (since
restrictions of binary trees to a full subtree starting at branching point are binary trees).
(2’) implies (1): For any two indecomposable summands X,Y in T there exists a projective Ea,n ∈ T
such that X,Y ∈ C[1,n]. By assumption and since C[1,n] is extension-closed, it follows that
Ext1A(X,Y ) = 0. Furthermore, for every projective P = E1,m /∈ T there is a projective E1,n ∈ T with
E1,j /∈ T for m < j < n. Since T ∩ C[1,n] is tilting in C[1,n] we have an exact sequence P ↣ T0 ↠ T1

for a Ti ∈ C[1,n] ∩ T . □

Remark 4.2. From the previous result it follows that weak slices only give tilting subcategories if
they contain infinitely many indecomposable projectives. (As in the representation finite case, they
are precisely the tilting subcategories with gldimmod∞ T = 1, the remaining ones fulfill
gldimmod∞ T = 2.)

4.1.2. Right infinite path. Let Q be the following quiver

1→ 2→ 3→ · · ·
Its Auslander-Reiten quiver has two components: the preprojective consisting only of the (infinite
dimensional) projectives

· · · → P3 → P2 → P1

and another component consisiting of all finite-dimensional modules.

· · · E1,5

E1,4

· · · E2,4 E1,3

E2,3 E1,2

· · · E3,3 E2,2 E1,1

τ

τ

τ τ

Lemma 4.3. Let T be a tilting subcategory. Then:

(0) P1 ∈ T
(1) For every Eij ∈ T we have that T ∩ C[i,j] is tilting in C[i,j].
(2) For Pn ∈ T we have T ∩ C≥n is tilting in C≥n.
(3) If gen(Pi) ∩ T contains infinitely many indecomposables, then Pi ∈ T and Pℓ /∈ T for all

ℓ > i.
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(4) Let Eij ∈ T . If Pi /∈ T then there is an Eaj, a < i or an Eib, b > j in T .

Proof. (0) As T is tilting there has to exist an exact sequence P1 ↣ T0 ↠ T1 with Ti ∈ T .
Then we find an inflation P1 ↣ T ′

1 where T ′
1 ∈ add(T1) is the summand with top supported

at S1 = E1,1. As P1 is infinite-dimensional, at least one summand of T ′
1 has to be P1 itself.

(1) Clearly add(T ) := T ∩ C[i,j] is still selforthogonal. The indecomposable projectives in C[i,j]
are Eit, t ≤ j and by assumption, the projective-injective Eij ∈ add(T ). We only show that
Eit ∈ Cores1(T ) for every t < j. There exist only finitely many indecomposables modules
Ea,b with Hom(Eit, Eab) ̸= 0. Let Z := add{Eab | Hom(Eit, Eab) ̸= 0}, then TZ := T ∩ Z
contains only finitely many indecomposables, so there is a minimal left TZ -approximation
f : Eit → T0 with T0 ∈ TZ . Since we have a monomorphism Eit → Eij and Eij ∈ TZ , it
follows that T0 ∈ C[i,j] and f is a monomorphism. Let R := coker f , since C[ij] is a wide
subcategory it follows that R ∈ C[ij]. Then we have for every T ∈ TZ an exact sequence

Hom(R, T ) ↣ Hom(T0, T ) ↠ Hom(Eit, T )

If we have an indecomposable T ∈ T , T /∈ TZ , then it holds Hom(Eit, T ) = 0. It follows that
R ∈ ⊥T and also that R ∈ T ⊥ (the last inclusion can be seen by applying Hom(T,−) to the
short exact sequence Eit ↣ T0 ↠ R). Now, T ⊥ is a full exact subcategory with enough
projectives given by T itself. So, for every Y ∈ T ⊥ there is an exact sequence

T 1 ↣ T 0 ↠ Y

with T i ∈ T , by applying Hom(R,−) one concludes Ext1(R, Y ) = 0 and therefore
R ∈ P(T ⊥) = T .

(2) For m > n we have an exact sequence 0→ Pm → T0 → T1 → 0 with Ti ∈ T .
Every non-zero homomorphism Pm → Eij or Pm → Pi with i < n factors through

Pm → Pn. By leaving out the summands we find a left T -approximation
0→ Pm → T ′

0 → R→ 0. As in (1) we conclude that R ∈ T .
(3) Assume that Pi /∈ T , then i > 1. There exists a short exact sequence Pi ↣ T0 ↠ T1 with

Ti ∈ T . As Pi is infinite dimensional there exists an j < i such that Pj ∈ add(T0) and we
also assume that there is a summand Ejk ∈ add(T1). By assumption there exists Eis ∈ T
with s > k. Then Eis ↣ Eik ⊕ Ejs ↠ Ejk is a non-split short exact sequence contradicting
T being selforthogonal. This shows Pi ∈ T . Assume Pℓ ∈ T with ℓ > i, there exists Eis ∈ T
with s ≥ ℓ but then Ext1(Eis, Pℓ) ̸= 0 contradicting T being selforthogonal.

(4) Observe that for Eab, Ecd ∈ T we have two binary trees, one in C[a,b] and one in C[c,d] then
these intervals [a, b] and [c, d] have to be either one contained in the other or they have to
be disjoint and if a ≤ b < c ≤ d, then c− b > 1. In all other cases we find a non-split
extension between Eab and Ecd.

Take Eij ∈ T and assume that Eab /∈ T for all [i, j] ⊆ [a, b] (this means that C[i,j] ∩ T is
a not a proper subtree of a C[a,b] ∩ T ). Then we want to see that Pi ∈ T . As T is maximal

selforthogonal, it is enough to see that Ext1(T , Pi) = 0. For that we look at the
indecomposables Ets with t < i ≤ s and we need to see that Ets /∈ T . But as we remarked
before, the next of these binary trees on the right has at least one distance from this one,
this implies the claim.

□

Definition 4.4. Let Γ0 = Γp
0 ∪ Γf

0 be the set of vertices of the Auslander-Reiten quiver where Γp
0

denotes the vertices corresponding to the projectives and Γf
0 the vertices corresponding to the

finite-dimensional modules.
A binary tree on Γ0 consists of T ∪ P with T ⊂ Γf

0 ,P ⊂ Γp
0 such that:

(i) P1 ∈ P.
(ii) If there are infinitely many Eijn ∈ T, n ∈ N then Pi ∈ P and Pℓ /∈ P for all ℓ > i.
(iii) For every Eij ∈ T is Cij ∩ T a binary tree on the Auslander-Reiten quiver of Cij in the sense

of Hille and
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either Pi ∈ P, or
there is an Eaj , a < i or an Eib, b > j in T.

If also Ets ∈ T, then
either Eab ∈ T with a = min(t, i), b = max(s, j), or
[t, s] ∩ [i, j] = ∅ and |t− j| ≥ 2.

(iv) Given ℓ ∈ N assume there is no t < ℓ ≤ s with Ets ∈ T then Pℓ ∈ P.

Remark 4.5. Given the set T fulfilling (iii), there is always a unique set P defined by the properties
(i)-(iv), such that the union is a binary tree.

Remark 4.6. As an indexing set we take always N ⊆ N with N = ∅ or N = [1, n] or N = N. We
have a two types of binary trees:

(a) If P is infinite, then we have an indexing set N and sequence of pairwise disjoint intervals
in ≤ jn, n ∈ N with jn < in+1 − 1 such that Cinjn ∩ T is a binary tree and every T is the
union of these.

(b) If P is finite with i = max{a | Pa ∈ P}, then there is a finite indexing set N and a sequence
in ≤ jn < i− 1, jn < in+1 − 1, n ∈ N such that Cin.jn ∩ T are binary trees and there is an
infinite nested sequence Ci,ts ⊂ Ci,ts+1 such that Ci,ts ∩ T is a binary tree. Again T has to be
the union of this finite sequence and the nested sequence of binary trees.

Theorem 4.7. Let T be a subcategory, then it is tilting if and only if the vertices give a binary tree
on the vertices of the Auslander-Reiten quiver as defined before.

We first remark the following

Proof. Let T be a tilting subcategory. By lemma 4.3, we have (i),(ii) and (iii) are fulfilled.
Properties (iv) follows since a tilting subcategory is maximal selforthogonal (see remark 2.1).
Conversely, consider T = add{X | X ∈ T ∪ P} with T,P fulfilling the properties (i)-(iv). Then we
have T is selforthogonal- this follows from the easy observation:

Ext1(Eij , Pℓ) ̸= 0⇔ i < ℓ ≤ j

We need to see that P ⊂ copres1(T ). If Pℓ /∈ T , then ℓ ≥ 2 and there exists a Ets ∈ T with t < ℓ ≤ s
such that Ets is the root of one of the binary trees in T with also Pt ∈ P. In case that Eℓs ∈ T , we
have Pℓ ↣ Eℓs ⊕ Pt ↠ Ets shows that claim. Else, as C[t,s] ∩ T is tilting in C[t,s], we have an exact
sequence Eℓs ↣ Est ⊕ T0 ↠ T1 with Ti ∈ C[t,s] ∩ T . Then, we look at the inflation Pℓ ↣ Pt ⊕ T0, the
push out along Pℓ → Eℓs is just the inflation Eℓs ↣ Est ⊕ T0, and both inflation have the same
cokernel in T . □

Remark 4.8. In this case, the notion of a slice is empty as all non-projective tilting subcategories
have indecomposables from both connected components of the Auslander-Reiten quiver. Assume
that we have Q′ another orientation differing in an interval [1, n]. Now for the interval [1, n] we can
realize any orientation of a type An quiver as a binary tree T in C[1,n], then define
P = {P1} ∪ {Pn+1, Pn+2, · · · }. Then take the corresponding tilting subcategory T and mod∞ T is
rep+(Q′).

4.1.3. Derived equivalences between different orientations.

Theorem 4.9. Let Q and Q′ be two quivers of type A∞. Then, there exists a triangle equivalence

Db(rep+(Q))→ Db(rep+(Q′))

if and only if one of the following three cases holds:

(a) Q and Q′ have a left infinite path.
(b) Q and Q′ have a right infinite path.
(c) Q and Q′ have no infinite path.

9



One implication is an immediate corollary of the following result

Theorem 4.10. ([1], Thm 7.11) Let Q be a strongly locally finite infinite quiver, then Db(rep+(Q))
has (left/right) almost split triangles if and only if rep+(Q) has no (right/left) infinite path.

Therefore, it is enough to prove that if Q and Q′ in the previous conjecture both fulfill (a) (resp. (b)
, resp. (c)), then there exists a triangle equivalence as stated.

Proof. We show that in each of the cases (a), (b) and (c) a derived equivalence between
categories of finitely represented quiver representations of two different orientations can be obtained
by two tilting derived equivalences.

(a) Let Q′′ be the orientation given by one left infinite path and A = rep+(Q′′). Then we find
two slices for both orientations Q,Q′ and the corresponding tilting categories induce then
derived equivalence.

Db(rep+(Q))← Db(rep+(Q′′))→ Db(rep+(Q′))

(b) Let Q′′ be the orientation given by one left infinite path and A = rep+(Q′′). We do not find
slices in this case but we can find tilting subcategories which fulfill the same task, cf.
remark 4.8. Take the two tilting subcategories corresponding to the two different
orientations, their tilting functors give derived equivalences

Db(rep+(Q))← Db(rep+(Q′′))→ Db(rep+(Q′))

(c) Here we take A to be the one described below. We will look at another abelian category A
(see below) and find two tilting subcategories inducing derived equivalences

Db(rep+(Q))← Db(A)→ Db(rep+(Q′))

□

Let from now on A denote the category repb(∆) where ∆ is the quiver (of type A∞
∞)

· · · ← (−3)← (−2)← (−1)← 0← 1← 2← 3 · · ·

and repb denotes the subcategory of all quiver representations of total finite dimension.
Observe that A is a hereditary abelian Auslander-Reiten category without non-zero projectives or
non-zero injectives. Its Auslander-Reiten quiver can be pictured as follows...

...
...

...
...

E−3,0 E−2,1 E−1,2 E0,3

· · · E−3,−1 E−2,0 E−1,1 E0,2 E1,3 · · ·

E−2,−1 E−1,0 E0,1 E1,2

· · · E−2,−2 E−1,−1 E0,0 E1,1 E2,2 · · ·

A slice has an associated quiver by just taking the full subquiver of the Auslander-Reiten quiver
with the vertices given by the slice. We say a slice does not contain a left (resp. right) infinite path if
the associated quiver does not contain a right (resp. left) infinite path.
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Lemma 4.11. Weak slices in the Auslander-Reiten quiver of A give tilting subcategories if and only
if the slice does not contain a left or right infinite path.

Proof. Let T be a the full additively closed subcategory of A with indecomposables given by
the vertices of a slice in the Auslander-Reiten category. Let us first see that a slice with an infinite
path can not be a tilting subcategory. If the slice does contain a left infinite path, we look at an
indecomposable in this path and apply τ−1 to it, call this X. Then X is not in pres(T ) and it is not
a subobject of an object in pres(T ), therefore (T2) is not fulfilled.
If the slice does not contain a left infinite path, we see pres(T ) as the additive closure of all
indecomposables of the slice and of all indecomposables on the right (i.e. after applying τ−n, n ≥ 1)
of it (as going-down arrows in the Auslander-Reiten quiver are all epimorphisms). Assume that the
slice contains a right infinite path, and let Y be τ of an indecomposable corresponding to a vertex of
the right infinite path. Then Y is not a subobject of an object in pres(T ).
From now on assume that the slice does not contain an infinite path. The description of pres(T ) as
above implies pres(T ) = T ⊥. As T is contravariantly finite, we want to see that the kernel of a right
T approximation of an object in pres(T ) is in T ⊥ (this implies (T1)). But this follows directly from
applying Hom(T,−) with T ∈ T to the short exact sequence.
Now, take any indecomposable object A in A, we want to see that A ∈ Cores1(T ⊥). Wlog. A is in a
τ -orbit of an indecomposable in T . We look at the right infinite arrow going-up (i.e. of
monomorphisms) starting at A in the Auslander-Reiten quiver. As the slice does not contain a right
infinite path, the right infinite path going-up starting at A will eventually meet a vertex in the slice.
This gives a monomorphism A→ T0 with T0 ∈ T . We look at the short exact sequence A ↣ T0 ↠ B
and as B ∈ pres(T ), (T2) follows. □

5. Other Dynkin types?

The same question as in Theorem 4.9 can be probably answered for the other infinite Dynkin types
only using sink/source reflections and results from [1]. Let us first pose the following question: An
infinite quiver is called strongly locally bounded (cf. [1]) if at every vertex there are only finitely many
arrows ending and starting and between any given two vertices there are only finitely many paths.

Open question 5.1. Let Q,Q′ be two orientations of a graph, both strongly locally bounded
infinite quiver without an infinite path. Is there a finite sequence of sink/source mutations passing
from one to the other?

For the rest assume that the question has a positive answer for quivers of Dynkin type.

Theorem 5.2. (assuming: Yes in 5.1) Let Q and Q′ be two quivers of type D∞. Then we find the
same three triangle equivalence classes as in Theorem 4.9.

Proof. We sketch the argument as follows: Here, again that we have at least these three
equivalence classes follows from [1], combine Thm 5.22, Prop. 7.9, Thm 7.10. Inside (a) and (b) we
have that (single) sink/source reflection operate transitively, so they are all triangle equivalent.
Inside (c), we would need potentially infinite sequences of single sink/source reflections to pass
between two orientations (and that is not a valid argument). But by introducing mutation of
possibly infinite sets of sources/sinks (cf. subsection 2.1) we can overcome this problem and see that
all orientations without an infinite path will induce a triangle equivalence as in the theorem. □

Now, for an infinite quiver Q of type A∞
∞ we define some numbers:

ℓ := number of maximal left infinite paths in Q,
r := number of maximal right infinite paths in Q
So 0 ≤ r, ℓ ≤ 2, r + ℓ ≤ 2 and r = ℓ = 0 means either Q is a double infinite quiver or has no infinite
paths.
In case r = ℓ = 1, there is a finite number c of arrows in one direction and infinitely in the other.
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Theorem 5.3. (assuming: Yes in 5.1) Let Q and Q′ be two quiver of type A∞
∞. Then, there exists a

triangle equivalence
Db(rep+(Q))→ Db(rep+(Q′))

if and only if one of the following three cases holds

(a) Q and Q′ are both double infinite paths.
(b) Q and Q′ have the same numbers ℓ, r and (ℓ, r) ̸= (1, 1) and are not a double infinite path.
(c) Q and Q′ have the same numbers (ℓ, r) = (1, 1) and c.

As before, we sketch the proof. To see that these orientations are pairwise non-derived equivalent:
Look at the description of the Auslander Reiten quiver components of Db(rep+(Q)) for all quivers of
type A∞

∞ in [1, Thm. 5.17, Thm 7.9]. Here, in case (c), the number c appears as the number of
τ -orbits in the finite wing (cf, Thm 5.17, (4)) and therefore for different c they are pairwise
non-derived equivalent.
To see that in each case (a), (b), (c) we have the claimed triangle equivalences: First, observe that
the underlying graph automorphism σ which maps the vertices as σ(x) = (−x) induces an
isomorphism of categories rep+(Q) ∼= rep(σQ) and this induces a derived equivalence. Observe that
the numbers ℓ, r and also in case (c) the number c are preserved. This shows e.g. that the two
double infinite paths in (a) are derived equivalent.
Once we take these isomorphims into account, one can see that in case (c) reflection functors at sinks
and sources operate transitively. In case (b) also, but we need reflection functors at infinitely many
sinks and sources.
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