
Realization functors in algebraic triangulated categories

This chapter is joint work with Janina Letz, cf. [22].

1. Synopsis

Let T be an algebraic triangulated category and C an extension-closed subcategory with
Hom(C,Σ<0C) = 0. Then C has an exact structure induced from exact triangles in T . Keller and
Vossieck say that there exists a triangle functor Db(C) → T extending the inclusion C ⊆ T .
What is new? We provide the missing details for a complete proof.

2. Introduction

Let T be a triangulated category and C a full additive subcategory with an exact structure. A
realization functor for C is a triangle functor Db(C) → T extending the inclusion. There are various
constructions of a realization functor, all requiring an enhancement and restricting to certain
subcategories C. The first realization functor was constructed in [2] when C is the heart of a
t-structure in a filtered triangulated category; also see [28, Appendix]. A different construction
appears in [24].

In this chapter we work in algebraic triangulated categories; These include all stable module
categories and derived categories. Unlike the works mentioned above we consider exact subcategories
of T , not hearts of t-structures. There exist exact categories whose bounded derived category does
not admit a bounded t-structure; see [25].

The following result appears in [20, 3.2 Théorème]:

Theorem 2.1. Let T be an algebraic triangulated category and C an extension-closed full subcategory
with HomT (C,Σ−nC) = 0 for n ≥ 1. Then C has an exact structure induced from the triangulated
structure on T and there exists a realization functor.

The article [20, 3.2 Théorème] provides a sketch of the proof, referring to a construction later
appearing in [16]. The main goal of this chapter is to provide the missing details for a complete
proof of Theorem 2.1.

The non-negativity condition in Theorem 2.1 for C is necessary for our construction. It also appears
when the realization functor is a triangle equivalence. In fact, whenever the realization functor is
fully faithful, then C has to satisfy the non-negativity condition.

Theorem 2.1 can be considered the standard tool to realize an (algebraic) triangulated as a bounded
derived category of an exact category; we provide conditions for when the realization functor is an
equivalence in Section 3.4. Therefore, Theorem 2.1 is expected to be used in classifications of exact
subcategories of a triangulated category up to (bounded) derived equivalence.

Further, finding a realization functor is an alternative to tilting theory. Tilting subcategories in a
triangulated category were defined by Keller; see for example [19]. A subcategory C of T is tilting, if
C is endowed with the split exact structure, hence Db(C) = Kb(C), and the realization functor
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Kb(C) → T exists and is a triangle equivalence. There exist realization functors that are equivalences
that are not induced by tilting theory; for example the inclusion of a small exact category into its
weak idempotent completion induces a triangle equivalence on their bounded derived categories; see
[23, 1.10].

In general it is not known whether a realization functor of a category C is unique. However, it is
unique with respect to the chosen enhancement. Theorem 2.1 is also central to the search for a
universal property defining the bounded derived category of an exact category; cf. [17] and for
derivators [26].

3. Realization functor

The bounded derived category of an exact category C is the Verdier quotient of the homotopy
category of the underlying additive category by the full subcategory of bounded C-acyclic complexes
Ac(C); see [23] and also [6, Section 10]. We fix a triangulated category T with suspension functor Σ.
A realization functor for an additive subcategory C of T with an exact structure is a triangle functor
Db(C) → T extending the inclusion C → T .

3.1. Admissible exact subcategories. In this work we focus on subcategories C of the
triangulated category T that inherit their exact structure from the triangulated structure of T .

Definition 3.1. A full subcategory C is called non-negative if HomT (C,Σ<0C) = 0; this means
HomT (X,ΣnY ) = 0 for any X,Y ∈ C and n < 0. When C is additionally closed under extensions and
direct summands, we say C is admissible exact.

By [9], any extension-closed, non-negative subcategory C of a triangulated category T inherits an

exact structure from the triangulated structure: The short exact sequences L
f−→ M

g−→ N in C are

precisely those that fit into an exact triangle L
f−→ M

g−→ N
h−→ ΣL.

Remark 3.2. With the notation of ‘admissible exact’ we follow [2, Definition 1.2.5] and
[13, Section 2]; the former only considers ‘admissible abelian’, while the latter dropped ‘exact’. We
use admissible exact to avoid confusion with the notions of left/right admissible in the sense of
[3, §1].

The crucial condition of admissible exactness is the non-negativity. In fact, when C is non-negative,
then the smallest full subcategory closed under extensions and direct summands containing C is an
admissible exact subcategory.

Example 3.3. We equip an extension-closed subcategory C of an exact category E with the induced
exact structure; that is C is a fully exact subcategory of E . Then C is an admissible exact
subcategory of Db(E).

Example 3.4. The heart of any t-structure on a triangulated category is admissible exact. Any
intersection of admissible exact subcategories is admissible exact. Hence the intersection of two
hearts is admissible exact; this applies in particular for hearts that are mutations of each other; see
[7] for HRS tilting and [4] for the heart fan of an abelian category.

3.2. Weak realization functor. Next, we consider triangle functors Kb(C) → T extending the
inclusion for any full subcategory C of T ; such a functor can be considered as a realization functor
for C with the split exact structure. We call such a functor a weak realization functor. Under
reasonable conditions on the exact structure a weak realization functor induces a realization functor.

Lemma 3.5. Let C ⊆ T be a full subcategory with an exact structure. We assume there exists a
weak realization functor F: Kb(C) → T . If any exact sequence L → M → N in C fits into an exact
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triangle L → M → N → ΣL in T , then F induces a realization functor such that the following
diagram commutes

Kb(C) Db(C)

T
In particular, this holds when C is an admissible exact subcategory.

Proof. It is enough to show that F sends acyclic complexes to zero. For this it is enough to
show that complexes of the form

(· · · → 0 → L → M → N → 0 → · · · ) = cone(cone(L → M) → N)

are send to zero when L → M → N is an exact sequence in C. But this holds by assumption. □

Remark 3.6. The above condition on F, that any exact sequence in C fits into an exact triangle in
T , means that C → T is a δ-functor as defined in [17].

In the sequel we construct a weak realization functor. However, we do not know of a general
criterion for the existence of a weak realization functor. Our construction requires some form of
non-negativity. In particular, a weak realization functor may even exist for C = T .

Example 3.7. Let k be a field and T = vect(k), the category of finite-dimensional k-vector spaces
with suspension Σ = id. We can view Kb(T ) as the category of finite-dimensional Z-graded k-vector
spaces vectZ(k) with suspension the shift of the grading. The forgetful functor from graded k-vector
spaces to ungraded k-vector spaces is a weak realization functor for C = T . As Db(T ) = Kb(T ) we
obtain the realization functor

Db(T ) = vectZ(k) → vect(k) = T .

3.3. Existence. A Frobenius category is an exact category with enough projectives and with
enough injectives and the projectives and injectives coincide. Let E be a Frobenius category with P
the full subcategory of projective-injective objects. The ideal quotient q : E → E with respect to the
morphisms factoring through P has a natural triangulated structure by [10, I.2]. A triangulated
category is algebraic, if it is triangle equivalent to E for some Frobenius category; see [18, 3.6].

The key observation for the proof of Theorem 2.1 is the following result, which is stated in [20, 3.2].

Proposition 3.8. Let E be a Frobenius category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let C ⊆ E be a non-negative full subcategory and set
B := q−1(C). Then the functor B → C induces an equivalence of triangulated categories

Kb(B)/Kb(P) → Kb(C) .

Note, that in the equivalence connects the Verdier quotient of the homotopy category and the
homotopy category of an ideal quotient. We postpone the proof to Section 4.

Remark 3.9. In the Proposition we show that the tilting subcategory B in Kb(B) is send to the
tilting subcategory C under the Verdier quotient functor Kb(B) → Kb(B)/Kb(P). In general, Verdier
quotients need not preserve tilting subcategories.

Without the assumption that the subcategory C is non-negative the Proposition 3.8 is false in
general:

Example 3.10. Let k be a field and A = k[x]/(x2). Then E = mod A is a Frobenius category and
E = mod k is the category of finite-dimensional vector spaces which is a triangulated category with
Σ = id. We show below that Kb(modA)/Kb(projA) is not equivalent to Kb(mod k), that is that the
conclusion of Proposition 3.8 does not hold for C = E , which is not non-negative. Observe first that
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Kb(mod k) = Db(mod k) has no non-trivial thick subcategory. But on the other hand
Kb(modA)/Kb(projA) admits a non-trivial Verdier quotient

Kb(modA)/Kb(projA) → Db(modA)/Kb(projA) ∼= E ;

see [5, Theorem 4.4.1]. In particular, the kernel of this Verdier quotient is a non-trivial thick
subcategory. Therefore they can not be triangle equivalent.

Proposition 3.11. Let E be a Frobenius category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let C ⊆ E be an admissible exact subcategory. Then
there exists a weak realization functor Kb(C) → E.

Proof. Set B := q−1(C). By Proposition 3.8 there exists an equivalence of triangulated
categories

F: Kb(B)/Kb(P) → Kb(C) .
There is also an equivalence

B: E → Db(E)/Kb(P) ;

this has been stated in [20, Example 2.3] with proofs provided in [14, Corollary 2.2] or
[21, Proposition 4.4.18]. Then the following composition involving the quasi-inverses of the above
functors yields the claim

Kb(C) F−1

−−→ Kb(B)/Kb(P) → Kb(E)/Kb(P)
B−1

−−→ E . □

Proof of Theorem 2.1. By Proposition 3.11 there exists a weak realization functor, and it
induces a realization functor by Lemma 3.5. □

From Proposition 3.8 we can also deduce the following corollary.

Corollary 3.12. Let C be an admissible exact subcategory of E. Then B = q−1(C) is extension-closed
in E and the functor q : B → C sends exact sequences to exact triangles. In this case q induces a
triangle equivalence

Db(B)/Kb(P) → Db(C) .

Proof. It is straightforward to check that Kb(P) and AcbB are Hom-orthogonal in Kb(B). Then
AcbB is a full subcategory of Kb(B)/Kb(P) by [15, Proposition 1.6.10]. So it is enough to show that
the equivalence from Proposition 3.8 restricts to an equivalence of the acyclic complexes
AcbB → AcbC.

The fully faithfullness of the restriction holds as AcbB is a full subcategory of Db(B)/Kb(P).
Essentially surjectivity holds as

Ext1B(X,Y ) ∼= HomE(X,ΣY ) ∼= Ext1C(X,Y )

for any X,Y ∈ B. □

3.4. Fully faithfulness and equivalence. Let C be an admissible exact subcategory of a
triangulated category T . In this section we discuss when a realization functor

R: Db(C) → T
is fully faithful and even an equivalence. The realization functor R induces natural group
homomorphisms

Φn(X,Y ) := (ExtnC(X,Y )
∼=−→ HomDb(C)(X,ΣnY )

R−→ HomT (X,ΣnY ))

for X,Y ∈ C and n ∈ Z. Here ExtnC are the groups of Yoneda extensions for n ≥ 0 and we set
ExtnC := 0 for n < 0. For the isomorphism see for example [21, Proposition 4.2.11]. These natural
morphisms have been considered in [8, Lemma 2.11] for hearts of t-structures and in [27, A.8] for
exact subcategories. The morphism Φn(X,Y ) is an isomorphism for n < 0 as C is non-negative, for
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n = 0 as C is full, and for n = 1 by [27, Corollary A.17]. Further, for n = 2 it is a monomorphisms
by [27, Corollary A.17]. The following result appears in [2, Remarque 3.1.17] and [8, Lemma 2.11]
when C is the heart of a bounded t-structure.

Lemma 3.13. Let C be an admissible exact subcategory of T and let R be a realization functor of C.
Then the following are equivalent

(1) R is fully faithful;
(2) Φn(X,Y ) is an isomorphism for all X,Y ∈ C and n ∈ Z;
(3) Φn(X,Y ) is surjective for all X,Y ∈ C and n ∈ Z;
(4) For every X,Y ∈ C, n ≥ 1 and every morphism f : X → ΣnY in T there exists a C-deflation

d : Z → X with f ◦ d = 0 in T ; and
(4op) For every X,Y ∈ C, n ≥ 1 and every morphism f : X → ΣnY in T there exists an

C-inflation i : Y → W such that Σni ◦ f = 0 in T .

Proof. The implication (1) =⇒ (2) is clear and the converse is an application of dévissage
using Db(C) = thickDb(C)(C); see for example [21, Lemma 3.1.8].

The implication (2) =⇒ (3) is clear and the converse is shown in [27, Corollary A.17].

A standard construction shows that (2) is equivalent to

(5) Every f : X → ΣnY in T with X,Y ∈ C and n ≥ 1 decomposes as

X = X0 → ΣX1 → Σ2X2 → · · · → ΣnXn = ΣnY

for Xi ∈ C;

see for example [8, Lemma 2.1] for the abelian case. Moreover, by induction over n this is also
equivalent to

(6) Every f : X → ΣnY in T with X,Y ∈ C and n ≥ 1 decomposes as X → ΣU → ΣnY for
some U ∈ C.

So it is enough to show that (4) and (6) are equivalent. For the backward direction it is enough to

observe that any morphism X → ΣU in T with X,U ∈ C induces an exact sequence U → Z
d−→ X in

C. For the forward direction let f : X → ΣnY be a morphism in T with X,Y ∈ C and n ≥ 1. Then
there exists a deflation d : Z → X such that f ◦ d = 0. We complete d to an exact sequence

U → Z
d−→ X in C. Then f factors through the induced morphism X → ΣU . This shows (6).

The equivalence of (2) and (4) holds by an analogous argument. □

Remark 3.14. The previous Lemma can be strengthened to yield an explicit description of the
image of Φn(X,Y ). That is, the subgroup Im(Φn(X,Y )) is the set of all morphisms f : X → ΣnY
with X,Y ∈ C such that there exists a C-deflation d : Z → X such that f ◦ d = 0.

For a subcategory C of a triangulated category T we denote by thickT (C) the smallest thick
subcategory of T that contains C.

Corollary 3.15. Let C be an admissible exact subcategory of T . A realization functor of C is an
equivalence of triangulated categories if and only if it is fully faithful and thickT (C) = T . □

Example 3.16. Let C be a fully exact subcategory of E . Then the induced functor
F: Db(C) → Db(E) is a realization functor for C ⊆ Db(E). The functor F is fully faithful if and only if
the inclusion C ⊆ E induces isomorphism on the Ext-groups. For example, the latter condition is
satisfied by resolving subcategories; see [1, Section 2] and also [11, Definition 5.1].

5



The functor F is an equivalence if additionally E is the smallest additively-closed subcategory closed
under the 2-out-of-three property containing C. For example, this is satisfied by finitely resolving
subcategories; cf. [12, Theorem 3.11(2)].

4. Proof of the main Proposition

For clarity we use different notations for the suspension in the stable category and the homotopy
category. We write Σ for the suspension or shift functor in E where E is a Frobenius exact category.
By construction, we have q(ΩnX) = Σ−nX for any X ∈ E where Ω is the syzygy functor. On the
other hand, for an additive category A we write Ch(A) for the category of chain complexes. In
Ch(A) and the homotopy category K(A), we denote the degree n shift of a complex X by X[n]; this
is the complex given by

X[n]ℓ = Xℓ+n and dX[n] = (−1)ndX .

For a map of complexes f : X → Y we write

∂(f) = dY f − f [−1]dX : X → Y [−1] .

The map f is a chain map if and only if ∂(f) = 0. Note, that a map of complexes need not commute
with the differential, while a chain map does.

Lemma 4.1. Let E be a Frobenius exact category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let C ⊆ E be a non-negative full subcategory and set
B := q−1(C). For any chain map f : q(X) → q(Y ) in Ch(E) with X ∈ Ch+(B) and Y ∈ Ch−(B) there
exist chain maps g : X̂ → Y and s : X̂ → X with X̂ ∈ Ch+(B) and cone(s) ∈ Chb(P) such that
q(g) = f ◦ q(s).

Proof. First we construct an injective resolution I of X in the category of complexes. By
[16, 4.1, Lemma, b)], there exists a left bounded complex I0 of projective-injective objects and a
chain map j0 : X → I0 that is an inflation in each degree. We denote the cokernel of j0 by
q0 : I0 → Ω−1X. Continuing this process, we obtain a sequence of chain maps

Ω−1X Ω−2X Ω−3X

X I0 I1 I2 · · ·

j1 j2

h−1=j0

h0

q0

h1

q1 q2

We set h−1 := j0 and hℓ := jℓ+1qℓ. As X is left bounded we may assume that there exists an integer
s such that (Iℓ)

≤s = 0 for all ℓ; that is s is a universal lower bound. Since the maps jℓ are degreewise
inflations, every map from Ω−ℓX to a complex of projective-injective objects factors through jℓ.

We take a lift of f to a map of complexes f̂ : X → Y in Ch(E). This map need not commute with

the differential. However, as it is the lift of a chain map in E the map ∂(f̂) factors through a

complex of projective-injective objects. So there exists a map g0 : I0 → Y [−1] such that ∂(f̂) = g0j0.

For convenience we set q−1 := idX and g−1 := f̂ . We now inductively construct maps
gℓ : Iℓ → Y [−ℓ− 1] with ∂(gℓ−1) = gℓjℓqℓ−1.

We assume that we have constructed the maps for any integer ≤ ℓ for some ℓ ≥ 0. Then
0 = ∂(gℓ)jℓqℓ−1 as jℓ and qℓ−1 are chain maps. As qℓ−1 consists of deflations in each degree, we get
0 = ∂(gℓ)jℓ. Hence ∂(gℓ) factors through qℓ and we obtain the commutative diagram

Ω−ℓX Iℓ Ω−ℓ−1X

Y [−ℓ− 2] Iℓ+1

jℓ

0

qℓ

∂(gℓ) jℓ+1

gℓ+1

By the non-negativity of C, we have

HomCh(E)(q(Ω
−ℓ−1X), q(Y [−ℓ− 2])) = HomCh(E)(Σ

ℓ+1q(X), q(Y [−ℓ− 2])) = 0 .
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Hence the map Ω−ℓ−1X → Y [−ℓ− 2] factors through jℓ+1. Note, that gℓ+1 need not be a chain map.
We continue this process until the map gℓ+1 is a chain map. As Y is right bounded and the Iℓ’s have
a universal upper bound, this will happen eventually.

Let t be an integer such that Y ≥t = 0. We replace Iℓ by the truncation (Iℓ)
⩾t−ℓ−1. This does not

effect the properties of the gℓ’s, as they are zero in the other degrees. To summarize, we have a
sequence of maps

X I0 I1 · · · In−1 In

Y Y [−1] Y [−2] · · · Y [−n] Y [−n− 1]

h−1

f̂=g−1

h0

g0 g1

hn−1

gn−1 gn

where each Iℓ is a bounded complex of projective-injective objects, gn is a chain map and
∂(gℓ−1) = gℓhℓ−1 and hℓhℓ−1 = 0 for 0 ≤ ℓ ≤ n.

We take the total complex J of I0 → · · · → In. This means as graded module J =
⊕

Ii[i] with
differential

dJ |Ii[i] = dIi[i] + (−1)ihi[i] .

For convenience we use a nonstandard sign convention. We set

v :=
∑
i

gi[i] : J → Y [−1] .

This is a chain map, as

(vdJ)|Ii[i] = gi[i− 1]dIi[1] + (−1)igi+1[i]hi[i]

= (−1)i(gi[−1]dIi + gi+1hi)[i]

= (−1)i(dY [−i−1]gi)[−i] = dY [−1]gi[i] = (dY [−1]v)
∣∣
Ii[i]

.

One can similarly check that the composition u := (X → I0 → J) is a chain map. By construction

we have ∂(f̂) = vu. Then X̂ = Σ−1cone(u) and g = (−v, f̂) and the natural map s : X̂ → X satisfy
the desired properties. □

Lemma 4.2. Let E be a Frobenius exact category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let X ∈ Kb(E). If q(X) = 0 in Kb(E), then X ∈ Kb(P).

Proof. It is enough to show the claim for a complex of the form

X = (· · · → 0 → X0 d0−→ X1 d1−→ X2 → · · · → Xn−1 dn−1

−−−→ Xn → 0 → · · · )
for any n ≥ 0. We use induction on n.

For n = 0, the assumption q(X) = 0 implies q(X0) = 0. Hence X0 ∈ P.

Let n ≥ 1. As q(X) = 0, the morphism q(d0) is a split monomorphism in E and there exists a

morphism s : X1 → X0 such that sd0 − idX0 = ba for some morphisms X0 a−→ P
b−→ X0 with P ∈ P.

We view P as a complex concentrated in degree zero and set

X ′ := cone(Σ−1a) = (· · · → 0 → X0

(
d0
a

)
−−−→ X1 ⊕ P

( d1 0 )−−−−→ X2 d2−→ X3 → · · · ) .
Since ( s −b ) ◦

(
d0
a

)
= idX0 , the zero differential of X ′ is a split monomorphism in E . Therefore, in

Kb(E), the complex X ′ is isomorphic to a complex Y concentrated between degrees 1 and n. In
Kb(E) we have q(Y ) ∼= q(X ′) ∼= q(X) = 0. By induction hypothesis we have X ′ ∼= Y ∈ Kb(P). By
construction there is an exact triangle X ′ → P → X → ΣX ′, and as X ′, P ∈ Kb(P), so is X. □

Proof of Proposition 3.8. As q(Kb(P)) = 0 in Kb(E), the functor q : Kb(B) → Kb(C) induces
a triangle functor

q : Kb(B)/Kb(P) → Kb(C) .
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We claim that q is an equivalence of triangulated categories. For this we need to show that q is full,
faithful and essentially surjective.

The functor q is full by Lemma 4.1. By Lemma 4.2, whenever q(X) = 0 then X = 0. As we already
know that q is full, this implies that q is faithful by [29, p. 446]; also see [30, 4.3, 4.4].

It remains to show that q is essentially surjective. The essential image of q is a thick subcategory
containing the complexes concentrated in degree zero. As these complexes generate Kb(C), the
functor q is essentially surjective. □
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[29] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR1002456
[30] C. M. Ringel and P. Zhang, Objective triangle functors, Sci. China Math. 58 (2015), no. 2, 221–232.

9

http://www.ams.org/mathscinet-getitem?mr=1097029
http://www.ams.org/mathscinet-getitem?mr=751966
http://www.ams.org/mathscinet-getitem?mr=4390795
http://www.ams.org/mathscinet-getitem?mr=2606234
http://www.ams.org/mathscinet-getitem?mr=2557163
http://www.ams.org/mathscinet-getitem?mr=3989131
http://www.ams.org/mathscinet-getitem?mr=935124
http://www.ams.org/mathscinet-getitem?mr=4392222
http://www.ams.org/mathscinet-getitem?mr=4150654
http://www.ams.org/mathscinet-getitem?mr=1074006
http://www.ams.org/mathscinet-getitem?mr=1052551
http://www.ams.org/mathscinet-getitem?mr=1102982
http://www.ams.org/mathscinet-getitem?mr=2275593
http://www.ams.org/mathscinet-getitem?mr=4149855
http://www.ams.org/mathscinet-getitem?mr=907948
http://www.ams.org/mathscinet-getitem?mr=4327095
http://www.ams.org/mathscinet-getitem?mr=1080854
http://www.ams.org/mathscinet-getitem?mr=1106349
http://www.ams.org/mathscinet-getitem?mr=4786507
http://www.ams.org/mathscinet-getitem?mr=2859239
http://www.ams.org/mathscinet-getitem?mr=3778987
http://www.ams.org/mathscinet-getitem?mr=1002456

	Realization functors in algebraic triangulated categories
	1. Synopsis
	2. Introduction
	3. Realization functor
	4. Proof of the main Proposition

	Bibliography

