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1 Chapter 1: Schemes and Varieties

Summary: We explain affine schemes, projective schemes and how naive varieties can
be understood as those.

Let R be a commutative ring. We define
Spec R := {p C R | p prime ideal }

(an ideal p is a prime ideal if ab € p implies a € p or b € p. ). This set has a topology,
called Zariski topology, defined through

A C Spec R closed < there is an ideal I C R such that
A=V():={peSpecR|ICp}

Observe, that we have a natural identification

V(I) — Spec R/1
p—=p+1

Lemma 1. A basis for the Zariski topology is given by the principal open sets
D(r):={peSpecR|r¢p}

for all r € R. Observe, that we have a natural identification D(r) = Spec R[2].

proof: D(r) = Spec R\ V((r)) is closed. If I = ((r¢)ier) C R is an ideal, then we can
write the open

Spec R\ V(I) = Spec R\ ({1 V((xe))) = [ J D(x).

teT teT
Clearly, it holds D(r) N D(s) = D(rs).
Remark. (1) A point p € Spec R is closed if and only if p is a maximal ideal.
(2) (0) ={0} € Spec R if and only if R has no zero divisors.
The closed sets V' (I) have the following properties
(1) V(INJ)=V(I)UV(J)
@) V(Sier 1) = N, V(I
(3) V(R) =0,V ((0)) = Spec R (the trivial closed sets)



Example. (1) If Ris alocal ring with maximal ideal which is a principal ideal m = (p),
then Spec R = {(0), m} consists of a closed and an open point.

(2) Spec Z = {(p) | p € N prime number} U {(0)} and the nontrivial closed sets are of
the form

{(p1),--.,(pr) | pi prime numbers} =V ((py---py))

Except (0) all prime ideals are maximal.

(3) Spec C[X] ={(X —c¢) | ce C}U{0} and the nontrivial closed sets are of the form

(X = et (X =) [ € CY = V(X — 1)+ (X — )

(4) If K is a field, we have
Spec K = {(0)}

but we also have Spec K[X]/(X") = {(X)} consists only of a point for every n € N.

Definition 1. Let I C R be an ideal, we call VT := {r € R | 3In > 0: r™ € I} the
radical ideal.

Let us summarize some properties.

(1) V(I) c V(J) if and only if J C v/T and in particular
V(1) =V(VI).

(2) R has no nontrivial nilpotent elements if and only if \/(0) = {0}, in that case
we call R reduced. We set R,.q := R/+/(0), then clearly Spec R = V({0}) =

V(v/0) = Spec Ryeq. In other words, we can not see reducedness at ring spectra.
But we can see the following property.

Definition 2. We call a topological space X irreducible if any two open subsets have
a nontrivial intersection.

Remark. Spec R is irreducible if and only if R,.q has no nontrivial zero divisors. For
example, if ab = 0, then
) = D(0) = D(a) N D(b)

In that case, {0} is the unique minimal prime ideal (= the fattest point) in Spec Ryeq. In
general there are a couple of minimal prime ideals, the closures of these minimal prime
ideals are called irreducible components and they are the maximal irreducible subsets
of Spec R. The minimal prime ideals are called the generic points.

If R is noetherian, then Spec R has only finitely many irreducible components.

Example. R = K[X,Y, Z]/(X?Y3(Y? — Z)®) with K a field. Then Spec R = V((X)) U

V((Y)) U V((?2 — 7)) is the decomposition into irreducible components. The minimal
prime ideals of R,..q = K[X,Y, Z]/(XY (Y% — Z)) are (X), (Y), (?2 — 7).



Now given a ring homomorphism f: R — S this induces a map
Spec f: Spec S — Spec R
q f(q).
This map is continous because
(Spec £)7H(V(I)) = {g € Spec S [ L £71(q)} = {q € Spec S| f(I) C q} = V((f(1))
where (f(I)) is the ideal generated by f(I). This means, we have a contravariant functor
Spec : (commutative rings)°? — (topological spaces), R + Spec R.

Next: We want extra data to make this an equivalence of categories. This will be the
structure sheaf.

1.1 Sheaves

Let X be a topological space. We define a category Top(X) with objects the open subset
s of X and with morphisms the inclusion of the subsets, i.e. for U,V open in X we have
the homsets have either one point or are empty

{i:UcCV}, fUCV

HomTop(X) (Uv V) = {® olse

Definition 3. A (set-valued) presheaf is a functor

O: Top(X)P? — (sets)
U~ O)
UcCVspl:OU) = OW).

here: You should think of functions on U and the pg are the maps restricting the function
from the bigger set to the smaller.

But functions have the extra property: For every open covering, a function on the
whole space corresponds to a family of functions on the open sets of the covering which
coincide on the intersections. This property is the precisely the sheaf property, or is
sometimes called local-to-global property.

Also since () is an initial object in Top(X), we want it to be a terminal object in Sets,
i.e. the set with a single point. Formally, the definition says.

Definition 4. A presheaf O: Top(X)°P? — (sets) is called a sheaf if

(1) O(0) = {pt} and



(2) for every (not nec. finite) union of opens U = Jgc; U; we have that

T1

OU) —=[L;ic; O(U:) . i jyerxr OWi N Uj)

T2

where
r(s) = (g, (s)ier,

U;

r1((si)ier) = (pUimUj(Sz‘))i,jeIxI;
U,

r2((si)ier) = (pUZmUj (Sj))i,jele,

is exact (for set-valued presheaves this says: r is injective and the image of r is
precisely the set of elements a where r1(a) = r2(a), for sheaves of abelian groups
this means that the sequence with r; — ry is exact.)

The elements in O(U) are called sections over U and O(X) is called the set of
global sections, also the following notation is common for it I'(X, O) := O(X).

Example. (1) Let X be a topological space and O(U) = {f: U — R: f continous}.
(2) Let X be a complex manifold and O(U) := {f: U — C: f differentiable}.

Let X be a topological space. We write Sh(X) for the category of (set-valued/abelian
group/ring valued) sheaves on X, here morphisms of sheaves are just all natural trans-
formations of the functors.

stalks. Let x € X and O a presheaf on X. We consider Nbh(z) = the open subsets
containing z. This is a partially ordered set with respect to anti-inclusion (V' < U iff
U C V). For every V < U in Nbh(x) we have the restriction maps

Py O(V) = O(U),
then, the stalk of O at z is defined as
O, := colimyenph(x)O(U).

This means that for every U € Nbh(x) there is a map pY: O(U) = O,, s — s, such that
for every V < U the following diagram commutes

o) —"ow

XX y
O,

and (O, (pY)pe Nobh(z) 18 unwersal with that property, which means whenever you have
an object T and maps ty: O(U) — T (in the category in which your presheaf takes




values) such that pg oty =ty forall V < U,

then there is a unique map c: O, — T such that t;; = pY o ¢ for every U € Nbh(z).
The elements of O, can be realized as equivalence classes [(s,U)] of pairs (s,U) with
U € Nbh(z),s € O(U) and

[(5,0)] = [(L,V)] < 3W € Nbh(a), W C U NV pli(s) = ply (0.
One main property of stalks is the following:

Proposition 1. A morphism ¢: O — P of sheaves on a topological space X is an
isomorphism if and only if for every point x € X the maps at the stalks p,: Op — Py is
an isomorphism.

1.1.1 The structure sheaf

Let R be a commutative ring and X := Spec R. We define the structure sheaf Ox as
the following ring-valued sheaf

Ox: Top(X)? — (com. rings including zero)

1
O(D(r)) =R [r] .
here R [1] := R[X]/(rX — 1) is the zero ring if and only if r is nilpotent.
Localization. Let S C R be a subset. We say, that S is multiplicative if 1 € S
and a,b € S implies ab € S. Let R[S™!] (or ST!R) be the ring with elements given by
equivalence classes [2],a € R, s € S with

[%]:[§]®3u65:u(at—bs):0

and £g: R — R[S™!],7 > [%], this map is called the localization with respect to S.
It is the universal ringhomomorphism f: R — T with f(S) invertible, i.e. any of those
has to factor uniquely over fg.

One of its main properties is that it is flat, which means that the functor — @z R[S™!]
from R-modules to R[S~!]-modules is exact.

We already met the localization R[%] which is the localization with respect to S =
{1,7,72,...}.

Lemma 2. Let X = Spec R and x € X a point. Then, the stalk of the structure sheaf
at x is the local ring

OX,:E = RZ;

where Ry is the localization with respect to the multiplicative set S = R\ x. In particular,
this is a local ring.



proof: Let x =p C R a prime ideal.
1
OX@::cdnmggq;]zqu*ﬂ

with S = R\ p and this is R,.

1.1.2 Pushforward of sheaves
Given a continous map f: X — Y, we have a natural transformation
fe: Sh(X) = Sh(Y), O~ f.O

with for U C Y open, we define f,O(U) := O(f~}(U). Given a morphism of sheaves
v: O — P on X. We define f.p: f.O — f.P on an open subset U C Y as f.p(U) :=

e(f1U)).
Definition 5. We define the category of locally ringed spaces [rTop as a category
with

(1) objects are pairs (X, Ox) with X a topological space and Ox a ring-valued sheaf
on X with all stalks Ox , are local rings.

(2) morphisms (X, Ox) — (Y, Oy) are given by pairs (f, f#) with f: X — Y continous
and

f#: Oy — f*OX

a morphism of sheaves with the extra condition: the ring homomorphisms at
the stalks ff : Oy f(z) = Oxy, defined as follows, we have a map of partially
ordered sets

Nbh(f(x)) — Nbh(z), U — f~H(U)

which induces a map of directed systems

oy (v) — LY oy (v))
|t |y
oy (1) —L" D o (171 (1))

and that induces a map on the colimits ff : Oy fz) = Oxz. We require that it
fulfills

(1) (my) = M ()

(i.e. is a local ring homomorphisms).

Definition 6. We define the category of affine schemes (affine schemes) as the full
subcategory of lrT'op with objects isomorphic to pairs

(Spec R, Ospec r); R commutative ring .



In our interpretation of O as functions on X: The map of sheaves f7#: Oy — f.Ox
is given by precomposing functions with the map f: X — Y. The stalks are equiva-
lence classes of functions on a neighborhood of x € X called germs, the maximal ideal
m, C Ox, is the germs vanishing in the point . The last statement, should be under-
stood as: If you have a germ which is vanishing on x and you precompose with f, then
you get a function which vanishes in f(z).

But a warning: The condition that the stalks are local rings is for most sheaves not
fulfilled. For example sheaves of continous functions do not have always stalks which are
local rings.

Theorem 1.1. There is an equivalence of categories

Spec : (commutative rings)°® — (affine schemes),
R — (Spec R, Ospec R)
h: R — S (f = Spec h,f#): (Spec S, Ospec 5) — (Spec R, Ospec R)

where f#: Ospec R = f+Ospec s s given on D(r) C Spec R as the from h induced map

ol 58

proof: O
The most notorious example of an affine scheme, we give the name affine (n-)space
(over a field K), it is defined as

A" = (Spec K[le cee 7Xn]a OSpec K[xl,...,xn})

Definition 7. (1st definition of schemes) A scheme is a locally ringed space (X, Ox)
such that for every point z € X there is an open z € U C X such that (U, Ox|y) is an
affine scheme.

The big plus that looking at schemes gives us, it that we can glue affine schemes to
not affine schemes. Let us have an examples of a scheme which are not affine.

Example. The projective n-space. Let R = K|x1,...,Zp+1] be the polynomial ring
over a field K, we consider this with the standard grading giving the x; degree 1. An
ideal is called homogeneous, if it is generated by homogeneous elements. We call m :=
(x1,...,2y,), (this will be the ideal corresponding to the zero point in K™, so we better
avoid it). Let

P" :=Proj R := {p C R | p homogeneous prime ideal } \ {m}
this becomes a topological space by defining the closed subsets as precisely the sets

Vi(I):={p€ProjR|IC p},



for I C R a homogeneous ideal. Alternatively on can define it as the topology with basis
given by the sets

Di(r)=={peProjR|r¢p}

where r € R is a homogeneous element. Now, we define the structure sheaf through

O (D) = H)O

T

where ()° refers to taking the subring of elements of degree zero. We claim that, this is
in fact a scheme with Dy (z;)i=1,. » being an open cover of affine schemes, in fact they
are all affine n-spaces. It holds

~ X1 Xn+1
(D+(xz)7OX|D+(wZ)) = (Spec K |:Xi’ sy X—: :| ’OSPBCK[% xnil})

L .
Xi

Here, we have to mention the following result about the category of schemes.
Theorem 1.2. The category of schemes has pullbacks. This means given a diagram of
morphisms of schemes

Y X<z

there is scheme Y Xx Z together with morphisms p,q making the following diagram
commutative

Yxy 22 =7

Jo ’
f

Y X

such that any commutative diagram

t
e

7
: lg

Jox

N

B —

~

factors over it, i.e. there is a unique f: T —Y Xx Z withpo f =t,qo f = s.
For affine schemes Spec (R < S — T) it holds
Spec R xgpec s Spec T = Spec (R ®g T).

It is most useful if we consider S-algebras R (as open affines in our scheme) and want
to change to T-algebras. Then, this is just given by tensoring the rings, i.e. this gives a
change of the base ring. We will later look at K-algebras (schemes over a field K), and
just consider passing to a field extensions to assume that our base field is algebraically
closed.



1.1.3 Open and closed subschemes

Definition 8. (1) Let (X, Ox) be ascheme and U C X an open subset, then (U, Oy :=

Ox|v) is a scheme again and there is a natural morphism of schemes (U, Oy) —
(X,0x), we call (U,Op) an open subscheme and the morphism an open em-
bedding.

Let (X,Ox) be a scheme. A subsheaf Z C Ox on X is called an ideal sheaf, if for
every U C X we have that Z(U) C Ox(U) is an ideal in the ring Ox(U). Then,
we define a topological space (with the induced topology)

V(I)={z e X |1, # Ox,}

and a sheaf of rings on V(Z) as follows, for every open affine U = Spec R C X we
have Z(U) =: I C R is an ideal and Spec R/T = V(I) = V(Z) N U is an open affine
in V(Z), we define

OV(I) V(1)) = OSpeC R/I»

then it is easy to see that this defines a scheme (V' (Z), Oy (7)) and we have a natural
scheme morphism

(i,i%): (V(Z), Ov(z)) = (X, 0x)

where i is the inclusion and i#: Ox — Oy (7) is given on the open U = Spec R C
X by the canonical morphism

OU) = R— R/I = Oypy(i"'(U)).

It is easy to see that the closed subschemes of Spec R and the closed immersions are
of the form

V(I) = Spec (R/I) Seee (pr), Spec R

where p;: R — R/I is the canonical map. Open subschemes of affine schemes are not so
easy to describe. Open subschemes of affine schemes do not need to be affine again. See
example (3) below.

Example. (1) If X = (X,0Ox) is a scheme, then there is an ideal sheaf N' C Ox

(2)

(3)

defined by N (U) = /(0) ¢ O(U) for U C X open. The corresponding closed
subscheme, is called the underlying reduced subscheme X,..; and has the same
topological space as X, but its affine charts are of the form Spec R/+/0 for all affine
charts Spec R of X.

The D4 (r) give open subschemes of P". Every closed subscheme of P" is of the
form V4 (I) for a homogeneous ideal I C Klz1,...,Zp+1]-

Look at the open subscheme X = Spec K[x] \ {{(x)} U Spec K[x] \ {(x — 1)} =
D(x) UD(x — 1) C A', we claim that this is not an affine scheme...



1.2 Projective schemes

Definition 9. A projective scheme (of finite type over K) is a scheme isomorphic to
a closed subscheme of a projective space (over K), i.e. to a

Vi(I)cPp®

for an homogeneous ideal I C Klz1,...,Zp4t1].
A quasi-projective scheme is a an open subscheme of a projective scheme.

1.3 Naive varieties

Let now K = K be an algebraically closed field for the rest of this section. When
you are only interested in reduced schemes of finite type over K (i.e. schemes where the
coordinate rings are finitely generated K-algebras with no nontrivial nilpotent elements),
then it is enough to study naive varieties.

To understand the brigde between the two notions, let us start with the functorial point
of view. We can idenity a scheme with its functor of points (by the lemma of Nakayama)

X : (schemes)®” — (sets)
T X(T) = Hom(schemes) (T7 X)

We call X (T') the T-valued points of X and if 7" = Spec A, we say A-valued points of
X. In fact, since schemes are glued from affine schemes, the functor of points is already
uniquely determined by the restriction to affine schemes, i.e. to commutative rings. For
example, if X = Spec R with R is a K-algebra, we look at the functor

X : (K-algebras) — (sets)
A X(A) :=Hompg_q4(R, A).
Here, the naive question: Given a scheme over K (i.e. the coordinate rings are K-

algebras), when is X already determined by its K-valued points X (K)?
For the schemes V(1) C A™ and Vi (I) C P", we give a positive answers below.

Remark. Now, one can define a scheme as a functor
X : (commutative rings) — (sets)

which has certain extra properties (being locally of the form Hom(R, —) ). This approach
can be for example found in a book of Demazure.

The usual definition of a group scheme is for example, that it is a scheme with the functor
of points is factoring over the forgetful functor ( groups) — (sets). For example Gl,, a
group scheme with functor of points

Gl,(R) :=={¢: R" — R" | ¢ R — linear and bijective}

10



1.3.1 Naive affine varieties

We define
A"(K) := Homg _qg(K[z1, ..., 2], K),

then, since K is algebraically closed we have that every maximal ideal in KJz1,...,Z,)
is of the form (z1 — ai,...,2, — ay) with ai,...,a, € K. Therefore,

K" 2 Homg (K|[z1,...,2,], K) = {m € Spec K[x, ..., xy] | m maximal},

i.e. A"(K) = K" consists precisely of the closed points of Spec K[x1, ...,xy]. The Zariski
topology on K™ can be described as: The closed subsets are precisely the zero sets of
polynomials

Z(fry. - fr) ={(a1,...,an) € K" fila1,...,a,) =0, 1 <i < r},

for f1,..., fr € K[z1,...,2,]. Observe, Z(f1,..., fr) = Z((f1,-., fr)). These sets (with
the induced Zariski topology) will be called an algebraic set or a naive affine varieties.

Now, given a Zariski-closed subset X C K", we define
I(X):={feKlx1,...,z5] | fla)=0]a € X}
this is an ideal. In fact, it is a radical ideal. We have to mention the following old result
which might have inspired Grothendieck for his scheme theory.

Theorem 1.3. (Hilbert’s Nullstellensatz) Let K = K be algebraically closed and J C
Klxy,...,zn] = R, then
1(Z(J)) = VJ.

and we have a bijection
I': (naive affine varieties C A"(K)) <> (radical ideals in R): Z

Morphisms (defined using regular functions). A regular function K" — K is a
function, given by evaluating a polynomial (ay,...,a,) — f(ai,...,a,). So, the ring of

regular functions on A™(K) is given by definition by K|z1, ..., z,] = Opn(Spec K[x1,...,Xy)).

Now, let U be an open subset of a naive affine variety in A"(K). A function f: U — K
is called regular at a point a € U if there is an open neighborhood (in the naive variety)
a € V C U and polynomials P,Q € K[x1,...,z,] with Q(v) # 0 for all v € V such that
flv = (g)h/: V — K. We say f is regular on U, if it is regular in all points (of U).

Now, we can define morphisms of naive affine varieties as a map ¢: X — Y such that for

every regular function f on a open subset U of Y, it holds o~ 1(U) U i) K is regular
again. Let V be the category of naive affine varieties.

Now, we can formulate this as an equivalence of categories.

Theorem 1.4. Let ( reduced affine schemes) be the full subcategory of the category of
schemes with objects reduced affine schemes. Then, there is an equivalence of categories

t: V — ( reduced affine schemes)

11



1.3.2 Naive projective varieties

Again, P"(K) is the set of K-valued points which can be identified since K is algebraically
closed with the set

{L ¢ K™ | L is one dimensional subvector space} = (K" \ {0})/(x = \z).

Again, this can be identified with the closed points of the underlying topological space of
P™. The induced Zariski topology can be described as: The closed subsets are precisely
the sets

Z+(f17"'7fT) = {[a1: B an+1] EP”(K) | fi(ala"'7an+l) =0,1<:< T}a

for f1,..., fr € K[z1,...,2n41] homogeneous polynomials. These sets (with the induced
Zariski topology) will be called naive projective varieties.

Now, given a Zariski-closed subset X C P"(K), we define
I.(X):={f € K|xy,...,2p+1] | f homogeneous and f(a) =0, Ya € X}
this is a homogeneous ideal. In fact, it is also a radical ideal.

Theorem 1.5. (projective Hilbert’s Nullstellensatz) Let K = K be algebraically closed
and J C K[x1,...,2n41] =t R, be a homogeneous ideal J # (x1,...,Tny1) = m, then

1(Z:(7) = V7.
and we have a bijection
I : (naive projective varieties C P"(K)) <> (radical homogeneous ideals in R)\{m}: Z,

Morphisms (defined using regular functions). Let U be an open subset of projective
naive projective variety in P"(K). A function f: U — K is regular at a € U if there
is an open neighborhood (in the naive projective variety) a € V' C V and homogeneous
polynomials P,Q € KJz1,...,xn1] of the same degree with Q(v) # 0 for all v € V' such
that

P
f’V = §|V3 V - K.

It is called regular, if it is regular in every point of U.

Now, we can define morphisms of naive projective varieties as a map ¢: X — Y such

that for every regular function f on a open subset U of Y, it holds =1 (U) 25U i> K

is regular again. Let P be the category of naive projective varieties.

Now, we can formulate this as an equivalence of categories.

Theorem 1.6. Let ( reduced projective schemes) be the full subcategory of the category
of schemes with objects reduced projective schemes. Then, there is an equivalence of
categories

t: P — ( reduced projective schemes)

12
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