Universität Bielefeld WS 2019/20

GRUPPEN UND SYMMETRIEN TRAININGSZETTEL I

JULIA SAUTER

Untergruppen und Gruppenhomomorphismen - abstrakte Beweisaufgaben.

Aufgaben zu Untergruppen: Es seien G eine Gruppe mit Einheit e und U und V zwei Untergruppen.

- (1) Zeigen Sie, dass $U \cap V$ ebenfalls eine Untergruppe ist.
- (2) Es sei $q \in G$, wir definieren:

$$gUg^{-1} := \{gug^{-1} \mid u \in U\}$$

Zeigen Sie, dass gUg^{-1} wieder eine Untergruppe ist.

(3) Es sei $C := \{g \in G \mid gx = xg\}$. Zeigen Sie, dass C eine Untergruppe von G ist.

Aufgaben zu Gruppenhomomorphismen: Es seien $f\colon G\to H$ und $g\colon H\to I$ zwei Gruppenhomomorphismen.

- (4) Zeigen Sie, dass die Verknüpfung $g \circ f$ wieder ein Gruppenhomomorphismus ist.
- (5) Wir betrachten die Abbildung $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto 3x$. Beweisen Sie, dass f ein injektiver Gruppenhomomorphismus ist.
- (6) Sei $x \in G$ endlicher Ordnung. Zeigen Sie: $\operatorname{ord}(f(x)) \in \mathbb{N}_{>0}$ und $\operatorname{ord}(f(x))$ ist ein Teiler von $\operatorname{ord}(x)$.

Hinweis: In VL10 wurde behandelt, dass für jede Gruppe $G, x \in G$ und $m \in \mathbb{N}_{>0}$ gilt:

$$x^m = e \Rightarrow \operatorname{ord}_G(x)$$
 teilt m

1