Universität Bielefeld WS 2019/20

GRUPPEN UND SYMMETRIEN 11. ÜBUNGSBLATT

JULIA SAUTER

Abgabe bis Do, 9.1.20, 12:00h in den Postfächern Ihrer Tutoren im Kopierraum.

Aufgabe 11.1

- (a) Es sei G eine Gruppe, die auf zwei disjunkten Mengen X und Y operiert. Zeigen Sie, dass G auf der Vereinigung $Z = X \cup Y$ ebenfalls operiert und es gilt $G \setminus Z = G \setminus X \cup G \setminus Y$ und $|G \setminus Z| = |G \setminus X| + |G \setminus Y|$.
- (b) Sei $X = \{1, 2, 3, 4\}$ die Menge der Ecken des regelmäßigen Vierecks mit 1 an Position (1, 0), und die anderen gegen den Uhrzeigersinn ansteigend.
 - Sei $Y = \{5, 6, 7, 8\}$ die Kanten des gleichen Vierecks, mit 5 verbindet 1 und 2, 6 verbindet 2 und 3, 7 verbindet 3 und 4, 8 verbindet 4 und 1.
 - Wir betrachten die übliche D_4 -Operation auf $Z = X \cup Y$. Für jedes $g \in D_4$ schreiben Sie die Menge $\langle g \rangle \backslash Z$ auf.

Aufgabe 11.2 Gegeben ist eine Perlenkette mit drei Perlen. Sie färben jede Perle in einer von drei Farben a, b oder c. Sei $k \in \{0, 1, 2, 3\}$.

Auf wieviele Arten können Sie die Kette einfärben mit k-mal Farbe a, wenn sie zwei Färbungen, die durch eine Drehung der Kette ineinander übergehen miteinander identifizieren? Beantworten Sie diese Frage mit Polyas Abzählsatz.

Aufgabe 11.3 Sie haben einen Weihnachtsstern, der in ein regelmäßiges 5-Eck eingeschrieben ist. Dies induziert eine Fünftelung in gleich große Teile von der Mitte zu den Zacken des Sterns. Nun färben Sie jedes Fünftel auf der Vorder- und gleichzeitig auf der Rückseite in einer von zwei Farben a und b. Sei $k \in \{0, 1, 2, 3, 4, 5\}$.

Wie viele Färbungen mit k-mal Farbe a finden Sie, wenn Sie die Rotationen um Vielfache von $\frac{360}{5} = 72$ Grad erlauben und das Umdrehen des Sternes an einer Symmetrieachse ?

Beantworten Sie diese Frage mit Polyas Abzählsatz. Sie dürfen benutzen, dass der relevante Zyklenzeiger $Z_{D_5}(\underline{s}) = \frac{1}{10}(s_1^5 + 5s_1s_2^2 + 4s_5)$ ist.

Aufgabe 11.4 In der Situation von Aufgabe 11.1, betrachten wir die Färbungen von der Menge der Ecken und Kanten des regelmäßigen Vierecks mit drei Farben.

- (a) Wie viele Färbungen bis auf Operation der D_4 gibt es?
- (b) Wie viele Färbungen bis auf Rotation (d.h. bis auf Operation der Gruppe $C_4 = \langle r \rangle$) gibt es?

Hinweis: Benutzen Sie das Lemma von Burnside und einen Taschenrechner.