Universität Bielefeld WS 2019/20

GRUPPEN UND SYMMETRIEN 2. ÜBUNGSBLATT

JULIA SAUTER

Abgabe bis Do., den 24.10.19 um 12:00h im Postfach des jeweiligen Tutors im Kopierraum.

Aufgabe 2.1 (Gruppentafel der D₄). Wir betrachten die Diedergruppe

 $D_4 = \{1, r, r^2, r^3, s, rs, r^2s, r^3s\}$ mit den Relationen $r^4 = 1 = s^2$ und $rs = sr^3$. Hier sind $1, r, r^2, r^3$ die Drehungen und s, rs, r^2s, r^3s die Spiegelungen. Schreiben Sie die Gruppentafel von D_4 auf.

Aufgabe 2.2 (Untergruppenverband der D_4). Wir betrachten die Diedergruppe D_4 wie in Aufgabe 2.1

- (a) Zeigen Sie, dass $V_1 = \{1, r^2, s, r^2s\}$ und $V_2 = \{1, r^2, rs, r^3s\}$ Untergruppen von D_4 sind. (Hinweis: Sie können zuerst die Gruppentafeln von V_1 und V_2 zeichnen und dann mit der Gruppentafel argumentieren, warum diese Untergruppen sind.)
- (b) Finden Sie alle zyklischen Untergruppen von D_4 (beachten Sie, dass unterschiedliche Elemente manchmal die gleiche zyklische Gruppe erzeugen) und fügen Sie sie zusammen mit V_1, V_2 und D_4 in einen / den Untergruppenverband der D_4 ein. ¹

Aufgabe 2.3 Schreiben Sie die Gruppentafel von $(\mathbb{Z}/6\mathbb{Z},+)$ auf. Berechnen Sie die dann die Ordnungen aller Elemente in dieser Gruppe und stellen Sie fest, welche Elemente die gleiche zyklische Untergruppe erzeugen.

Aufgabe 2.4 Wir betrachten weiterhin die Gruppe D_4 aus Aufgabe 2.1. In dieser Aufgabe möchten wir die Untergruppen der Ordnung 4 bis auf Isomorphie verstehen.

- (a) Zeigen Sie, dass die Gruppen V_1 und V_2 isomorph zu $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ sind.
- (b) Zeigen Sie, dass die Untergruppe $\langle r \rangle = \{1, r, r^2, r^3\}$ isomorph zu $\mathbb{Z}/4\mathbb{Z}$ ist.
- (c) Zeigen Sie, dass $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ nicht isomorph zu $\mathbb{Z}/4\mathbb{Z}$ ist.

(Hinweis: Falls Sie nicht wissen, wie man diese Aufgabe angeht, zeichnen Sie die Gruppentafeln der involvierten Gruppen und vergleichen Sie diese.)

 $^{^{1}}$ Im Tutorium (bzw. vom Tutor) wird der Vollständigkeitsbeweis erklärt, dafür überlegen Sie sich folgende Schritte für eine Untergruppe U von D_{4}

⁽¹⁾ Falls U nicht zyklisch ist, muss es eine Drehung $\neq 1$ und eine Spiegelung enthalten.

⁽²⁾ Ist $r \in U$ und eine Spiegelung in U, so gilt schon $U = D_4$. Analog: Ist $r^3 = r^{-1} \in U$ und eine Spiegelung in U, so gilt schon $U = D_4$.

⁽³⁾ Ist $r^2 \in U$ und eine Spiegelung in $U, r \notin U, r^3 \notin U$, so ist U entweder V_1 oder V_2 .