Universität Bielefeld WS 2019/20

GRUPPEN UND SYMMETRIEN 5. ÜBUNGSBLATT

JULIA SAUTER

Abgabe bis Do, 14.11.19, 12:00h in den Postfächern Ihrer Tutoren im Kopierraum.

Aufgabe 5.1 (Potenzieren von Restklassen)

- (a) Berechnen Sie jeweils $r \in \{0, 1, \dots, n-1\}$, so dass die Potenz gleich $\overline{r} \in \mathbb{Z}/n\mathbb{Z}$ ist.

 - 1. $\overline{3}^{1003}$ in $\mathbb{Z}/10\mathbb{Z}$, 2. $\overline{7}^{115}$ in $\mathbb{Z}/22\mathbb{Z}$.
- (b) Die multiplikative Gruppe $(\mathbb{Z}/11\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{(-5)}, \overline{(-4)}, \overline{(-2)}, \overline{(-2)}, \overline{(-1)}\}$ ist zyklisch und hat vier Erzeuger. Berechnen Sie die Ordnungen aller Elemente in dieser Gruppe und finden Sie dadurch die vier Erzeuger.

Aufgabe 5.2 (Aufgabe zu Fermatzahlen) Eine Fermatzahl ist eine Zahl der Form $2^{2^n} + 1$ mit $n \ge 0$. Die ersten fünf Fermatzahlen sind 3, 5, 17, 257 und 65537. Fermat vermutete, dass alle solchen Zahlen Primzahlen sind. Euler widerlegte die Vermutung, indem er zeigte, dass $2^{32} + 1$ durch 641 teilbar ist. In dieser Aufgabe möchten wir Eulers Gegenbeispiel gruppentheoretisch nachvollziehen.

- (a) Berechne iterativ $\overline{2}^1, \overline{2}^2, \overline{2}^4, \overline{2}^8, \overline{2}^{16}$ und $\overline{2}^{32} \in (\mathbb{Z}/641\mathbb{Z})^{\times}$ durch Quadrieren des vorangegangenen Ergebnisses. Gib alle Ergebnisse in der Form \overline{r} mit $0 \le r \le 640$ an.
- (b) Folgere, dass $641|2^{32} + 1$ gilt.
- (c) Bestimme die Ordnung von $\overline{2}$ in $(\mathbb{Z}/641\mathbb{Z})^{\times}$.

Aufgabe 5.3 (RSA) Es wird der öffentliche Schlüssel N=22 und e=7 vorgegeben. Die verschüsselte Nachricht lautet

Um die entschlüsselte Nachricht zu verstehen, identifiziert man die ersten 21 Buchstaben des Alphabets A, B, C, \dots, U entsprechend mit $1, 2, 3, \dots, 21$. Entschlüsseln Sie die Nachricht.

Aufgabe 5.4

- (a) Berechnen Sie $\varphi(15), \varphi(5), \varphi(3)$ und finden Sie alle Elemente in $(\mathbb{Z}/15\mathbb{Z})^{\times}, (\mathbb{Z}/5\mathbb{Z})^{\times}$ und $(\mathbb{Z}/3\mathbb{Z})^{\times}$.
- (b) Schreiben Sie die Bilder der Elemente unter dem Isomorphismus des chinesischen Restsatzes in einer Tabelle auf:

$$(\mathbb{Z}/15\mathbb{Z})^{\times} \to (\mathbb{Z}/5\mathbb{Z})^{\times} \times (\mathbb{Z}/3\mathbb{Z})^{\times}$$

 $k + 15\mathbb{Z} \mapsto (k + 5\mathbb{Z}, k + 3\mathbb{Z})$

- (c) Zeigen Sie, dass $(\mathbb{Z}/5\mathbb{Z})^{\times}$ und $(\mathbb{Z}/3\mathbb{Z})^{\times}$ zyklische Gruppen sind.
- (d) Folgern Sie, dass $(\mathbb{Z}/15\mathbb{Z})^{\times}$ isomorph zu $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ist und zeigen Sie, dass die Gruppe nicht zyklisch ist.