Universität Bielefeld WS 2019/20

GRUPPEN UND SYMMETRIEN 9. ÜBUNGSBLATT

JULIA SAUTER

Abgabe bis Do, 12.12.19, 12:00h in den Postfächern Ihrer Tutoren im Kopierraum.

Aufgabe 9.1 Zeichnen Sie den Cayley-Graphen der Gruppe S_3 bezüglich der Erzeuger $s_1 := (1, 2)$ und $s_2 = (2, 3)$.

Aufgabe 9.2 Sei G die Untergruppe der S_8 , die von $(1,2,3) \circ (4,5)$ und (7,8) erzeugt wird (diese Gruppe G ist ein Produkt $\langle (1,2,3) \circ (4,5) \rangle \times \langle (7,8) \rangle$, sie ist isomorph zu $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$). Da G eine Untergruppe von S_8 ist, operiert sie durch die Einschränkung der kanonischen Operation auf $X = \{1,2,\ldots,8\}$.

- (a) Finden Sie alle Bahnen $G * x, x \in X$ der Operation von G auf X.
- (b) Finden Sie alle Stabilisatoren G_x an allen Punkten $x \in X$.

Aufgabe 9.3 Gegeben Sei eine Gruppe G, die auf zwei Mengen X und Y operiert (beide Operationen werden mit * bezeichnet).

(a) Zeigen Sie, dass

$$G \times (X \times Y) \to X \times Y, \quad q * (x, y) := (q * x, q * y)$$

eine Operation von G auf $X \times Y$ definiert. Sie wird diagonale Operation auf dem Produkt genannt.

(b) Beweisen Sie dann, dass die Stabilisatoren bezüglich der diagonalen Operation die folgende Gleichung erfüllen:

$$G_{(x,y)} = G_x \cap G_y$$

(c) Sei nun $X=\{1,2,3\}$ und S_3 operiere auf X kanonisch. Wir betrachten die diagonale Operation von S_3 auf $X\times X$. Berechnen Sie die Stabilisatoren aller Punkte $(x,y)\in X\times X$. Berechnen Sie dann die Bahnen aller Punkte $(x,y)\in X\times X$. (Hinweis: Bahnenformel zur Berechnung der Anzahl Elemente in den Bahnen.)

Aufgabe 9.4 Wir betrachten die Gruppe $G=D_5$ erzeugt von einer Drehung r der Ordnung s und einer Spiegelung s. Wir betrachten die Operation von G auf G durch Konjugation $G \times G \to G$, $g * x = gxg^{-1}$. Finden Sie alle Bahnen und Stabilisatoren dieser Operation.