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Forword

This thesis is aiming at a reader already familiar with homological algebra for abelian categories who
is open-minded to widen his perspective to exact categories.
As I have been studying representations of finite-dimensional algebras, they are overrepresented in
examples. I also have to apologize for the (somewhat) unfinished state, in the end the submission
deadline (given by the Wissenschaftszeitvertragsgesetz1) came earlier than I thought it would. Also I
want to thank my husband Bill for his support and our babysitter Nina, without her nothing would
work.

1German law which restricts the time of temporary employment of scientists
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Why exact categories?

April 2, 2025

The heart of homological algebra. Exact categories were introduced by Quillen (1972) in
[157] to define algebraic K-theory of an exact category. He axiomatized properties of
extension-closed subcategories in an abelian category. So, an exact category consists of an additive
category together with a class of kernel-cokernel pairs called short exact sequences (or conflations).
These have to satisfy axioms which ensure that equivalence classes of short exact sequences define an
additive bifunctor Ext1

E called the extension functor. Using longer exact sequences one can define
higher Ext-functors and show that every short exact sequence (observe the different arrows marking
the short exact sequence)

X � Y � Z

gives rise to a long exact sequence in abelian groups

0→ Hom(V,X)→ Hom(V, Y )→ Hom(V,Z)→ Ext1(V,X)→ Ext1(V, Y )→ · · ·
For the author, this is at the heart of everything named homological algebra. Homological
invariants are conditions on Ext-groups (e.g. certain ext-vanishing). Exact categories provide
precisely the minimal set of axioms such that all classical concepts of homological algebra are
defined. Many cohomology groups of interest are instances of Ext-groups in exact categories (sheaf
cohomology, group cohomology, Hochschild cohomology, singular cohomology). Bühler [49] showed
that every well-known diagram lemma generalizes from abelian to exact categories.

Ubiquity. Exact categories are studied in many algebraic contexts, for example

(*) in algebra as subcategories of (graded) module categories over a (graded) ring: as filtered
modules over a filtered ring [145], as torsion modules [63], flat modules, Gorenstein
projective modules and relative exact structures [70], [98], as almost modules [78], for more
specific rings: as Cohen Macaulay modules and lattices over orders [166], [165], as modules
filtered by standard modules over a quasi-hereditary algebra [65], as perpendicular
categories for categories of quiver representations [80], as monomorphism categories, as
semistable modules [125], as modules of finite projective dimension, as Auslander-Solberg
exact structures on finitely generated modules over an artin algebra [15], [13], [14], as
selforthogonal subcategories in finitely generated module categories of artin algebra (in
homological conjectures [74] or in tilting theory [7]),

(*) also as representations of groups, representations of posets, representations of bocses and
differential biquivers [32],

(*) in algebraic geometry as subcategories of quasi-coherent categories of sheaves on a
scheme: as coherent sheaves, vector bundles, torsion sheaves, supported on a closed
subscheme [89], also other categories of sheaves: Sheaves on sites, coherent sheaves on
complex analytic spaces, flabby sheaves on a topological space [113], [115],

(*) in functional analysis as subcategories of locally convex spaces [64]: Banach spaces,
barrelled spaces, Schwartz spaces, Frechet spaces, Montel spaces [149], [164].

Flexibility. Constructive methods for exact categories are very flexible (which admittedly
makes it difficult to be systematic about it), for example:
You can filter with respect to objects, take perpendicular categories (wrt. to Ext- or Hom-functors)
or intersections of exact subcategories. You can pass to exact substructures, e.g. look at an exact
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substructure making a left exact functor exact. You can look at the category of all short exact
sequences in an exact category, or the category of complexes in an exact category. You can look at
(many) functor categories with extra properties. You can Ind-complete your exact category
(completion with respect to arbitrary small filtered colimits). You can look at recollements of exact
categories. And much more.

The main open problem... We know many ways of finding exact categories but then we know
hardly anything about their homological algebra. When you pass to an exact substructure or an
exact subcategory, everything can happen to your homological invariants. One way to prevent this is
to study if the inclusion functor is homologically exact (i.e. induces isomorphisms on Ext-groups) -
this only applies to exact subcategories. For exact substructures new ideas are needed. Or another
open question: when is the global dimension preserved under Ind-completion (cf. [152])?

Derived/stable and singular equivalences. Despite of this ubiquity of exact categories, they
are surprisingly rarely studied generally from a homological algebra point of view. The primary
invariant here is of course the bounded derived category of an exact category. There are very few
authors considering them, mostly because of the (sometimes) missing t-structures. Secondly the
singularity category is a homological invariant, it ’annihilates’ all objects of finite projective
dimension in the derived category. Also Auslander’s effaceable functor categories reflect some
homological properties of an exact category (see next paragraph).
Therefore we ask to study derived / singular and stable equivalence for exact categories. Of
course, this means first that we investigate the three associated categories. When it comes to the
desired equivalences, of course, even for finite-dimensional modules over finite-dimensional algebras
we only know in some special situations answers to these questions.

Auslander’s ideas work for exact categories. As a vague approximation to his ideas,
Auslander promotes to study module categories of artin algebras through their categories of finitely
presented functors. The most famous is the category of functors represented by deflations, called
effaceable functors (or Auslander defect category). Together with Idun Reiten he developed the
theory of almost split exact sequences (which correspond to simple effaceable functors). Enomoto
carried these ideas into the generality of exact categories [72].
Auslander correspondence (and Auslander formula) are telling us that the category of all finitely
presented functors (on a small abelian category) can recover the abelian category. The same ideas
work for small exact categories, cf. [90], [68], [83].
Also, in a series of papers [20], [21], [22], [23], [24] Auslander-Reiten started to study stable
equivalence of artin algebras (and more general dualizing varieties). They investigated homological
properties of effaceable functors. The interesting observation is that homological properties of an
exact category are reflected in its effaceable functor category.
We think all of Auslander’s work should be generalized to exact categories because it is useful for an
understanding of homological properties of exact categories.

Tilting and support τ-tilting. Ideas from representation theory of finite dimensional algebras
which are purely based on homological algebra generalize trivially to exact categories. This includes
tilting theory and support tau tilting theory. But to understand induced derived equivalence we first
need to see that we have to replace the ’endomorphism of a tilting module’ with a certain functor
category (functors represented by admissible morphisms - cf. previous paragraph).
Support τ -tilting subcategories were advertised as a mutation-completion of tilting subcategories [2].
For exact categories this is no longer true. The challenge is here: Find a new construction to
mutation-complete support τ -tilting subcategories.

Homological conjectures, tame-wild dichotomy. Once we are restricting the study of exact
categories to Krull-Schmidt categories (and possibly assuming more properties), it becomes also
reasonable to ask if Homological conjectures for modules over artin algebras are true in these classes
of exact categories (for example: Auslander and Solberg [14] showed that the finitistic dimension
conjecture for artin algebras is equivalent to the same conjecture for Auslander-Solberg exact
substructures).
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By the Krull-Schmidt assumption, finite type means only finitely many indecomposable objects. But
how wild can the infinite types look like? In ongoing work, Schlegel defines finitely definable
subcategories in modules categories over an artin algebra and then conjectures a dichotomy of ’finite’
or ’strongly unbounded’ type (generalizing the second Brauer Thrall conjecture).
Enomoto investigated properties of exact categories of finite representation-type in [72].

Why not more general? So, why not directly study any of the following generalizations of
exact categories

(1) one-sided or weak exact categories, e.g. [92], [91] or [29] (leave out some axioms)
Then we have no ext-bifunctor. Proto-exact categories - drop the assumption that the
underlying category is additive. Again the ext-functor is not valued in abelian groups.

(2) extriangulated categories [140] (axiomatizing extension-closed in triangulated)
Then we do not know a sensible definition of a derived category. The axioms are long. We
inherit all known problems with the axioms for triangulated categories (which have lead to
a big number of different enhancements of triangulated categories). Often, the only known
examples are just exact or triangulated categories.

(3) dg exact categories, model structures or other enhanced situations
(such as A∞, or ∞-categories). This becomes quickly homotopical category theory. Even
though these generalizations may encompass much of the theory of exact categories, we are
loosing the simplicity and flexibility that make exact categories so appealing.

(4) n-exact categories [111] (higher homological algebra) - these make sense to be studied
together with exact categories - they are exclusively occurring as cluster tilting
subcategories ([132]) and then we are back in the realm of representation theoretic ideas.

But why should we leave an easy algebraic theory behind when it is so little studied and so central in
homological algebra? Exact categories have the very tempting balance of impressive potential for
creating abstract theory but still being simplistic enough to provide explicit examples. Even for
seemingly well-studied categories (e.g. take the category of finitely generated abelian groups, do you
know all its exact substructures?).

Quick overview of the project. Every chapter starts with a synopsis explaining its content
and my contribution.

(I) Subcategories and functor categories
This part is on constructive methods. First, we look at the lattices of exact substructures
(Chapter 2) and the much bigger lattice of exact subcategories (Chapter 3).
We study categories of functors represented by (certain) morphisms (Chapter 4) and
faithfully balancedness for (the usually considered) functor categories (Chapter 5).

(II) Derived methods
We start with the definition and existence of the derived category (Chapter 6), then we look
at tilting subcategories in an exact category (Chapter 7) and have a closer look at tilting
subcategories for infinite quivers (Chapter 8). Then we discuss how one can find derived
equivalences more generally (Chapter 9,10).

(III) Singular and stable equivalence
This part is not complete (so far we have not really addressed the title): We introduce the
singularity category and the concept of a non-commutative resolution with exact
substructures in Chapter 11. Then we only start the study of effaceable functors in Chapter
12.

We do not cover the following topics (but may do so in future):
Support τ -tilting, homological conjectures, tame-wild dichotomy, recollements of exact categories (a
more thorough treatment of derived functors of additive functors between exact categories is
required for this).

7



Notation and conventions for exact categories

E = (A,S) being an exact category means A is an additive category and S is a collection of
kernel-cokernel pairs in A satisfying the axioms below. We call elements in S short exact
sequences (in the literature these are usually called conflations)2 Given a short exact sequence

X
i
� Y

p
� Z, we call i : X � Y an inflation and p : Y � Z a deflation. The axioms of an exact

category are:

(E0) all split exact sequences are in S,
(E1) deflations are closed under composition and inflations too,
(E2) Pull backs of deflations along arbitrary morphisms exist and are again deflations. Push outs

of inflations along arbitrary morphisms exist and are again inflations.

An admissible morphism f is one that factors as f = j ◦ p with p a deflation and j an inflation.
Given a(n integer interval indexed) sequence of composable morphisms fn, n ∈ I (for an interval
I ⊆ Z with at least two elements)

· · · → Xn
fn−→ Xn+1

fn+1−−−→ Xn+2 → · · ·

we call it exact (or acyclic) at Xn+1 if the morphisms factor as fn = jnpn with jn and inflation and
pn a deflation (i.e. are admissible) and (jn, pn+1) is a short exact sequence. If we call such a sequence
exact, it means exact at every inner object (here: ’inner’ means not at the boundary of the interval).

Ext1
E(X,Y ) is the class of all short exact sequences Y � Z � X up to isomorphism of short exact

sequences fixing the end terms.
For n > 1: ExtnE(X,Y ) is the class of all exact sequences Y � Z1 → · · · → Zn � X up to the
equivalence relation generated by morphisms of n-exact sequences fixing the end terms.
P(E) (resp. I(E)) are the full subcategories of projectives (resp. injectives)
pdE X ≤ n means Extn+1

E (X,−) = 0

P≤n(E) (resp. I≤n(E)) denotes the subcategory of objects of projective (resp. injective) dimension
at most n
Pn(A) := P≤n(mod∞A) is a special case of the former, see below for the functor category mod∞A
P<∞(E) =

⋃
n P≤n(E) (resp. I<∞(E) =

⋃
n I≤n(E))

Most common properties of subcategories: Given a short exact sequence X � Y � Z in an
exact category

(*) extension-closed: if X,Z are inside the subcategory then Y too
(*) inflation-closed: if X,Y are inside the subcategory then Z too
(*) deflation-closed: if Y, Z are inside the subcategory then X too

thick subcategory3 means all 2-out-of-3-properties (see above) and closed under summands.
Serre subcategory means extension-closed and if a middle term is contained then both outer
terms are as well.
A subcategory G is a generator in an exact category if for every object X, there exists a deflation
d : G� X with G in G.
Resolving means extension-closed, deflation-closed, summand-closed and a generator.

2Be aware, e.g. in [167], short exact sequence is a synonym for kernel cokernel pair in an additive category.
3we often add: ’in the exact category’- do not confuse this with thick in the triangulated sense.
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Functor categories. Let A be a small additive category, (Ab) the category of abelian groups. For
A in A, we define PA : Aob → (Ab), PA(X) := HomA(X,A) and

ModA = category of all additive functors Aop → (Ab)

modA = {F ∈ ModA | ∃ PA � A}
mod1A = {F ∈ ModA | ∃ exact seq. PA1 → PA0 � F}
modnA = {F ∈ ModA | ∃ exact seq. PAn → · · · → PA0 � F}

mod∞A = {F ∈ ModA | ∃ exact seq. · · · → PAn → · · · → PA0 � F}
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Part 1

Subcategories and functor categories





CHAPTER 1

Homologically exact functors

1. Synopsis

Homologically exact functors are exact functors between (Quillen-) exact categories which induce
isomorphisms on higher extension groups. To understand and find these functors is of course of core
interest for a homological study of exact categories. There is no good characterization of this
property known. We also look at exact structures making an additive functor exact. These
constructions are applied to some adjoint functors appearing in recollements and we study when
these functors become homologically exact.
What is new? Some Lemmata and the study of exact structures making an additive functor exact
are not often considered. It does not seem to be known that a result of Rump shows that there is
always a unique maximal one.

This chapter should be seen as a gentle introduction to homologically exact functors - but we aim at
an audience which has seen homological algebra for abelian categories. We give the following
warning: For an understanding of this notion we already mention the derived category which we
thoroughly study in a much later chapter - if you are unfamiliar with this, ignore it for the moment
and come back to it later.

2. Homologically exact functors

Definition 2.1. Given a subcategory X in an exact subcategory, we say it is fully exact if X is
extension-closed and we see it as already equipped with the exact structure restricted from the
ambient one.

Definition 2.2. Given an exact functor f : E → F between exact categories, we consider
Hom = Ext0 as an extension group. Let n ∈ N0. We call f n-homologically exact (resp.
n-homologically faithful) if the natural maps on all n-th extension groups are isomorphisms (resp.
injective). We call f homologically exact/homologically faithful if it is n-homologically
exact/n-homologically faithful for all n ≥ 0. It is called fully homologically exact if it induces a
triangle equivalence on the bounded derived categories.
If E is a fully exact category of F , we call E homologically exact (resp. n-homologcally exact, resp.
homologically faithful etc.) in F if the inclusion E ⊆ F fulfills this property.

Lemma 2.3. Every exact functor which is n-homologically exact for some n ≥ 0 is also
(n+ 1)-homologically faithful.

Proof. For n = 0, we consider an exact fully faithful functor f . Observe that f(p) split
epimorphism implies p split epimorphism. This translates into a monomorphism on Ext1-groups.
Let f : E → F be n-homologically exact, n ≥ 1.
We take an (n+ 1)-extension σ such that [f(σ)] = 0 ∈ Extn+1

F (f(X), f(Y )) and we want to see

[σ] = 0 ∈ Extn+1
E (X,Y ). As (n+ 1) ≥ 2 we can find σ is a concatenation of a short exact sequence

σ1 : Y � A� Z with another exact sequence σ2. Now, we look at the long exact sequence obtained
from applying Hom(X,−). The connecting morphism ExtnE(X,Z)→ Extn+1

E (X,Y ) is ”concatenation
with” σ1 ([126, Cor. 4.2.12]), so we have [σ2] 7→ [σ] under it. Now, we look at the induced
commutative diagram
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ExtnE(X,A) ExtnE(X,Z) Extn+1
E (X,Y )

ExtnF (f(X), f(A)) ExtnF (f(X), f(Z)) Extn+1
F (f(X), f(Y ))

By assumption the first two maps are isomorphisms. We just discussed [σ] lies in the image of the
connecting morphism. Now, an easy diagram chase shows that [σ] = 0. �

Corollary 2.4. Every inclusion of an exact substructure is 0-homologically exact and therefore
1-homologically faithful.

In particular, every hereditary exact substructure (i.e. gldim ≤ 1) is homologically faithful.

Definition 2.5. Let f : E → F be an functor between exact categories. Then, f is called an exact
equivalence if it is an exact functor, an equivalence of categories such that its quasi-inverse is an
exact functor as well.

Remark 2.6. Here a warning to readers used to abelian categories: An additive equivalence (even if
it is an exact functor) between exact categories is in general not homologically exact nor does it have
an exact quasi-inverse.

Lemma 2.7. Let i : E → F be the inclusion of an exact substructure. Then the following are
equivalent

(1) i is an exact equivalence (i.e. E = F))
(2) i is homologically exact
(3) i is 1-homologically exact

Proof. To see (3) ⇒ (1): Consider an F-exact sequence σ and since Ext1
E(Y,X)→ Ext1

F (Y,X)
is surjective, there exists an E-exact sequence equivalent to σ. But this means it is even isomorphic
to σ and therefore σ is F-exact. �

Proposition 2.8. Let f : E → F be an exact functor. Assume f is an equivalence of categories with
quasi-inverse g. The following are equivalent:

(1) f is 1-homologically exact.
(2) f is homologically exact.
(3) g is homologically exact.
(4) g is exact.

Proof. By passing to the essential image of f with the from E transferred exact structure, we
can assume without loss of generality that E is the inclusion of an exact substructure, in particular
Ext1

E ⊆ Ext1
F is a subfunctor and f = id, g = id. Then the statement of the Proposition is a

consequence of Lemma 2.7. �

The next corollary says that homological exact functors always compose as an exact equivalence
followed by an inclusion of an homologically exact subcategory.

Corollary 2.9. Let f : E → F be an exact functor between exact categories. Then we factor the
functor over its essential image

f : E f ′−→ Im f
i−→ F

The following are equivalent

(1) f is homologically exact
(2) Im f is an homologically exact subcategory of F and f ′ is an exact equivalence.
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Proof. Obviously, (2) implies (1). So assume (1). First observe that Im f has to be
extension-closed and f ′ an equivalence of categories (because homologically exact functors are fully
faithful). The extension-closedness is straight-forward using the isomorphism induced by f on Ext1’s.
Now we look at this factorization f = if ′. As i is inclusion of a a fully exact subcategory, it is
1-homologically exact. But as f is also 1-homologically exact, it follows that f ′ is 1-homologically
exact. By Prop. 2.8 it follows that f ′ is homologically exact. Again f and f ′ homologically exact
imply i is homologically exact and therefore (2) holds. �

Considering the same factorization and same reasons as in the previous Corollary one sees:

Corollary 2.10. Every fully faithful 1-homologically exact functor factors as i ◦ ϕ with ϕ an exact
equivalence and i an inclusion of a fully exact subcategory.

Conversely, every inclusion of a fully exact subcategory is 1-homologically exact and 2-homologically
faithful.

In particular, every fully exact subcategory of gldim ≤ 2 is homologically faithful.

Let E be exact category. We say an object X has projective dimension ≤ n if Extn+1
E (X,−) = 0,

then we write pdE X ≤ n. We define P<∞(E) to be the full subcategory of all objects of finite
projective dimension. We say E is regular if E = P<∞(E).

Remark 2.11. Assume f : E → F is homologically faithful exact functor between exact categories.
Then it is faithful and f−1(P<∞(F)) ⊆ P<∞(E). If F is regular, then E is also regular and
gldim(E) ≤ gldim(F).
If f is homologically exact then it restricts to an exact functor P<∞(E)→ P<∞(F), i.e. it induces a
triangle functor on the so-called singularity categories, cp. later chapter.

We also know an example of a 1-homologically exact functor which is not faithful:

Example 2.12. The following gives an example from [133] of an exact functor that is not
0-homologically exact (i.e. not fully faithful) but nevertheless it is 1-homologically exact. Let E be a
Frobenius exact category, we denote by E the stable category. This is the ideal quotient with respect
to morphisms factoring through a projective. This is a triangulated category with suspension given
by the cosyzygy functor Σ = Ω−, [87]. Let C ⊆ E be a full additively closed subcategory which is
extension-closed and Hom(C,Σ−nC ′) = 0 for all C,C ′ in C, n > 0. Then C inherits an exact
structure from E by taking as short exact sequences those pairs of morphisms which belong to a
distinguished triangle. Now let B ⊆ E be the full subcategory of objects which map under the ideal
quotient π : E → E to C. This is a fully exact subcategory. The ideal quotient restricts to an exact
functor B → C. This functor is not faithful und it is easy to see that it is 1-homologically exact.

2.1. Criteria for homologically exactness. This is the best understood example of a
homologically exact functor.

Example 2.13. (homological ring epimorphisms) Let f : A→ B be a ring homomorphism, then we
have an exact restriction of scalars functor f∗ : BMod→ AMod. The morphism f is an
epimorphism (in the category of rings) if and only if f∗ is fully faithful. Now, f∗ is homologically
exact if and only if f is a ring epimorphism and Tori

A(B,B) = 0 for all i > 0, [80, Thm 4.4].

Here is another example from reductive group theory.

Example 2.14. If G is a reductive group over a field k and P is a parabolic subgroup, then the
restriction functor resP

G : repkG→ repkP is homologically exact, cf. [110, Cor. 4.7], p. 233.

We recall characterizations of homological exactness from the literature.
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Lemma 2.15. ([126, Lemma 4.2.13]). Let f : E → F is an exact functor between exact categories
and consider the induced triangle functor Db(f) : Db(E)→ Db(F). The following are equivalent

(1) f is homologically exact
(2) Db(f) is fully faithful

Lemma 2.16. (”BBD-criterium”, [40, Rem. 3.1.17]) Let f : E → F be the inclusion of a fully exact
subcategory. The following are equivalent:

(1) f is homologically exact.
(1’) The induced morphisms on all Ext-groups are surjective.
(2) For every n ≥ 2 and every F-exact sequence η : X � Z0 → · · · → Zn−1 � Y with X,Y in E

there exists an E-deflation p : P → Y such that the pullback of η along p is a split exact
sequence (i.e. zero in ExtnF (P,X)).

(3) For every n ≥ 2 and every F-exact sequence η : X � Z0 → · · · → Zn−1 � Y with X,Y in E
there exists an E-inflation i : X → I such that the push-out of η along i is a split exact
sequence (i.e. zero in ExtnF (Y, I)).

Proof. We wrote a detailed proof in [133, Lemma 2.15]. �

This is cirtierium can be found in Keller’s [119], the naming is from Krause [126, in section 4.2].

Definition 2.17. Let f : E → F be the inclusion of a fully exact subcategory. Then f is called left
cofinal if for every F-inflation a : E → F with E ∈ E there exists an E-inflation E → E′ which
factor over a.
It is called right cofinal if for every F-deflation b : F → E with E ∈ E there exists an E-deflation
E′ → E which factors over b.

Then, one can see directly that e.g. right cofinal implies (2) in the BBD-criterium (look at the
Appendix, case n = 1).

Lemma 2.18. If the inclusion of a fully exact subcategory E ⊆ F is left cofinal, then it is
homologically exact and even D+(E)→ D+(F) is fully faithful.
If it is right cofinal then it is homologically exact and even D−(E)→ D−(F) is fully faithful.

Proof. [126, Prop. 4.2.15, Rem. 4.2.16] �

Observe that one can see left/right cofinal as an easy corollory from Lemma 2.16. In the same spirit
one can generalize this to another criterium (just academically, this has no applications as far as I
know):

Definition 2.19. Let f : E → F be the inclusion of a fully exact subcategory. Then f is called right
2-cofinal if for every F-admissible morphism G→ F with cokernel E in E there exists a short exact
sequence G� H � P with P in E , an E-deflation P � E and a commutative diagram

G F E

G H P

Then, a fully exact subcategory that is right 2-cofinal is always homologically exact. To see this, use
the BBD-criterium and the diagram fill-in from the Appendix.

This is the best known subclass of left and right cofinal subcategories.
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Definition 2.20. A fully exact subcategory E ⊆ F is called resolving if it is deflation-closed (i.e.
closed under kernels of deflations) and generates (i.e. for every object X in F there is a deflation
E → X with E ∈ E) and is closed under taking summands.
A fully exact subcategory is coresolving if it is inflation-closed and cogenerating.

We generalize this slightly to the following class.

Definition 2.21. A fully exact subcategory E ⊆ F is called partially resolving if has enough
projectives with P(E) ⊆ P(F) and is closed under summands.
It is partially coresolving if its opposite category is partially resolving.

Lemma 2.22. (Same proof as in [71, Lemma 2.5]) Every partially resolving subcategory is
deflation-closed.

Remark 2.23. By definition, every resolving and also every partially resolving subcategory is right
cofinal.
If E is closed under summands right cofinal in F then it is deflation-closed in F (cp. [126, Rem.
4.2.14].

An easy non-example.

Example 2.24. Inside the module category of an artin algebra:
Faithful functorially finite torsion classes are coresolving (cp. [2]). If they are not faithful they may
also be not homologically exact, such as T = add(S3 ⊕ P1 ⊕ S1) in mod Λ with

Λ = K(1
a−→ 2

b−→ 3)/(ba). The fully exact structure on T is semi-simple but Ext2
Λ(S1, S3) 6= 0

2.2. Criteria for homological faithfulness. Examples of homologically faithful functors are
not often studied. One reason is that checking this is harder than testing for homological exactness.
Another reason is that homological faithfulness is not implying that the the induced triangle functor
on the bounded derived category is faithful (see next example). But proper exact substructures are
never homologically exact (cp. Cor. 2.7) but sometimes homologically faithful.

Example 2.25. The inclusion of the split substructure is always homologically faithful but induces
on the derived categories a Verdier localization which is not faithful (if it is not the identity).

2.2.1. 2-homologically faithfulness.

Definition 2.26. Let E = (A,S) be an exact category. We call a morphism α ∈ Mor(A)
hereditary (or E-hereditary) if it is E-admissible and it is the diagonal in a cartesion square with all
sides are E-inflations or E-deflations.

For example, this means all inflations and all deflations are E-hereditary.

Now, observe that every admissible morphism α gives a 2-extension via
[α] := [(kerα, α, cokerα)] ∈ Ext2

E(coker(α), ker(α)).

Lemma 2.27. An admissible morphism α is hereditary if and only if [α] = 0 in
Ext2

E(coker(α), ker(α)).
In particular, E is hereditary exact (gldim E ≤ 1) if and only if all admissible morphisms are
hereditary.

Proof. The claim follows from the diagram fill-in in the case n = 2, Appendix. �

Lemma 2.28. Let f : E → F be an exact functor. Then the following are equivalent

(1) f reflects hereditary morphisms (i.e. if α is E-admissible and f(α) is F-hereditary, then α
is also E-hereditary.
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(2) f is 2-homologically faithful.

Proof. Let α be an E-admissible morphism. We look at
[α]E ∈ Ext2

E(Y,X)→ Ext2
F (f(Y ), f(X)) such that its image [f(α)]F = 0. This means f(α) is

F-hereditary. Injectivity of this map means f reflects hereditary morphisms. �

2.2.2. More generally. The following provides non-trivial examples of homologically faithful
functors.

Lemma 2.29. Let f : E → F be an exact functor which is n-homologically faithful (resp.
n-homologically exact) for some n ≥ 1. Assume that E has enough projectives P(E) and that
pdF f(P(E)) ≤ n− 1. Then f is m-homologically faithful (resp. m-homologically exact) for all
m ≥ n.

In particular, the inclusion of a fully exact subcategory E ⊆ F is always 2-homologically faithful, so
if E has enough projectives with pdF P(E) ≤ 1 then the inclusion is homologically faithful.

Proof. Let E,X be in E , we pick an E-short exact sequence Ω� P � E, then we apply
HomE(−, X) and we apply HomF (f(−), f(X)), this induces a commuting diagram for m ≥ n

ExtmE (Ω, X) Extm+1
E (E,X)

ExtmF (f(Ω), f(X)) Extm+1
F (f(E), f(X))

∼

∼

where ∼ indicates that this is an isomorphism of groups. Now, the claim is an easy inductive
argument (starting with m = n). �

We are not aware of a good criterium for homologically faithfulness (e.g. of an exact substructure).
Hereditary exact substructure are always homologically faithful. Fully exact subcategories with
gldim ≤ 2 are also always homologically faithful.

Example 2.30. Let i : E → F be the inclusion of a 2-homologically faithful exact substructure. If E
has enough projectives and pdF P(E) ≤ 1 then i is homologically faithful.

Let us look at two exact substructures which even have a very similar Auslander-Reiten quiver.

Example 2.31. First we look at Λ of type An-equioriented modulo radical square zero. Every exact
substructure has enough projectives and enough injectives (because they are of finite type). For
every exact substructure and every two indecomposables, in the exact substructure we either have
the same Ext-group as for Λ or zero. Therefore all are homologically faithful (and have therefore
gldim ≤ n− 1).
Now we look at Λ of type An-equioriented and we take the generator G = Λ⊕

⊕
X∈LX where L

contains all indecomposable non-projectives of vector space dimension larger or equal 2. Then the
exact substructure E with projectives add(G) has global dimension n− 1 and is therefore not
homologically faithful in Λ mod.

3. Exact structures making additive functors exact

We would like to introduce a construction of an exact structure following [66].
Let (A,S) and (B, T ) be idempotent complete exact categories and f : A → B an additive functor.
We denote by Sf = Sf,T ⊆ S the class of exact sequences η such that f(η) is in T . Observe, that
this depends also on the exact structures and not just on the additive functor.

Lemma 3.1. ([66, Lem.1.9, Prop.1.10]) Then the following are equivalent
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(1) Sf is an exact structure
(2) Given a short exact sequence in Sf and a morphism to the third object of the sequence

(resp. starting at the first object in the sequence), then the pullback (resp. pushout) of the
short exact sequence is in Sf .

It is also straight-forward to prove that (2) implies (1) by checking that compositions of
Sf -deflations (resp. -inflations) are Sf -deflations (resp. -inflations).
We will now look at particular situations ensuring that Sf becomes an exact structure.

Corollary 3.2. Assume that f : (A,S)→ (B, T0) is an exact functor between exact categories and let
T ⊆ T0 be an exact substructure then Sf considered with respect to T is an exact structure.

Given an exact category E , we write ex(E) the poset of exact substructures of E . The previous
corollary translates to: Every exact functor f : E → F induces a morphism of posets

f∗ : ex(F)→ ex(E), T 7→ Sf,T

Proof. We take η : 0→ A→ B → C → 0 in S such that f(η) ∈ T and a morphism c : C ′ → C.
The pullback η′ of η along c exists and maps under f to the pullback of f(η) ∈ T0 along f(c). But T
is an exact substructure of T0 and as f(η) ∈ T it follows that f(η′) ∈ T . The rest of the proof is the
dual statement. �

Lemma 3.3. Let f : (A,S)→ (B, T ) be an additive functor between exact categories and assume
that B is weakly idempotent complete. Assume either

(1) f is right exact (i.e. if 0→ A→ B → C → 0 is in S, then f(A)→ f(B) has an image in B
and Im(f(A)→ f(B))� f(B)� f(C) is in T ), or

(2) f is left exact (i.e. the opposite functor between the opposite exact categories is right exact)

Then Sf is an exact structure.

Proof. We prove only (1) as (2) is analogous. Assume f is right exact. Take η : A� B � C in
Sf . Let γ : C ′ → C be any morphism. Now, we pull-back η ∈ S along γ to an η′ : A� B′ � C ′ in S.
Applying f gives a commutative diagram with exact rows

f(A) f(B′) f(C ′)

f(A) f(B) f(C)

a

b

Since b ◦ a is an inflation it follows that a is an inflation (using that B is idempotent complete) and
therefore η′ ∈ Sf . Now, we pushout η along a morphism α : A→ A′′ to an η′′ : A′′� B′′ � C in S.
Recall from [49, Prop. 2.12], that we also get an an induced short exact sequence
η̃ : A� A′′ ⊕B � B′′.
Applying f gives a commutative diagram with exact rows

f(A) f(B) f(C)

f(A′′) f(B′′ f(C)

d

c

Let D be the push-out of d, c, since T is an exact structure, we get an exact sequence
f(A)� f(A′′)⊕ f(B)� D (in T ). In particular, the first map is an inflation. Now apply f to η̃ to
get a right exact sequence f(A)→ f(A′′)⊕ f(B′′)� f(B′′), since the first map is an inflation, we
conclude that η̃ ∈ Sf and D ∼= f(B′′). This implies that that the lower row coincides with the
push-out short exact sequence in T , in particular η′′ ∈ Sf .

�
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Remark 3.4. In the situation before, if Sf is an exact structure, then the composition

(A,Sf )
id−→ (A,S)

f−→ (B, T ) is an exact functor, we still denote it as f .

Example 3.5. Now given an object P ∈ A and consider f = HomA(P,−) : A → (Ab). As this
functor is left exact, the previous Lemma applies and SP := Sf is an exact substructure. For a small
subcategory P we define SP :=

⋂
P∈P SP . This exact substructure was found by Auslander-Solberg

[15]. All exact substructure with enough projectives are of this form.

Example 3.6. Let R be a ring and I be a 2-sided ideal. Then, we have an exact substructure of
RMod given by all short exact sequences 0→M → N → L→ 0 such that multiplication with I
induces a split exact sequence. (Consider f : HomR(R/I,−) : RMod→ RMod. This is left exact, so
Sf is an exact substructure. Then apply Cor. 3.2 to the exact functor f : (RMod,Sf )→ RMod and
the exact substructure T given by the split exact structure).

We also may often encounter the following situation:
Given a full additive subcategory i : B′ ⊆ B we say that T restricts to B′ if Si is an exact structure
on B′.

Remark 3.7. We will study this in our next chapter. Mainly, the following will be used:
If B′ is 1) extension-closed or 2) inflation- and deflation-closed (i.e. for every short exact sequence
with the middle and one of the outer in B′, the third is in B′) then T restricts to B′.

Lemma 3.8. Assume f is fully faithful. If T restricts to an exact structure on the essential image
then Sf is an exact structure.

Proof. By assumption, we can replace (B, T ) with the essential image of f with the restricted
exact structure, so we can assume wlog that f is additive equivalence. We can pull-back exact
structures along equivalences, i.e. f−1(T ) gives an exact structure in A. Now, Sf = S ∩ f−1(T ) is
again an exact structure. �

Example 3.9. Let us consider a noetherian scheme X and the global section functor
Γ: coh(X)→ Ab. This is a left exact functor therefore SΓ is an exact structure on coh(X). As
Γ = Homcoh(X)(OX ,−), this is just the exact making OX a projective. For example, let X = P1

k with

k a field. Then (coh(P1
K,SΓ) is an Auslander-Reiten exact category with AR-sequence all

AR-sequences such that they are not ending in OX (i.e. we have lost only one AR-sequence).

Open question 3.10. Let f : Y → X be a proper morphism of locally noetherian schemes then we
have adjoint functors f∗ : coh(X)→ coh(Y): f∗. Therefore, we have an exact substructure Ef∗ of
coh(X) and an exact substructure Ef∗ on coh(Y) making these functors exact. If f is a resolution of
singularities, we ask if f∗ : Ef∗ → coh(Y) has a homologically faithful restriction to a fully
homologically exact subcategory of coh(X).

Example 3.11. Given an abelian category B, Dickson in [63] defined a torsion pair to be a pair of
two full subcategories (T ,F) satisfying Hom(T ,F) = 0 and for every B in B there exists an exact
sequence Bt� B � Bf with Bt in T , Bf in F . Then T and F are fully exact subcategories in B
but they may or may not be homologically exact. The assignment B 7→ Bt extends to a functor
t : B → T (cf. loc. cit. Cor. 2.5), this functor preserves inflations but is in general not left exact. But
it is left exact for a so-called hereditary torsion pair (cf.[176, Ch. VI, Prop. 1.7]) - characterized by
T being closed under subobjects. So assume we have an hereditary torsion pair. By Lemma 3.3, we
have an exact substructure Bt = (B,St). In B every exact sequence X � Y � Z gives rise to a left
exact sequence t(X)� t(Y )→ t(Z) and a right exact sequence X/t(X)→ Y/t(Y )� Z/t(Z). Short
exact sequences in Bt are those for which both these sequences are short exact sequences (using the
snake Lemma), i.e. they can be seen as an extension between an exact sequence in T and one in F .
By definition, both inclusion functor T → Bt and F → Bt are exact and the pair of subcategories
(T ,F) in Bt is a torsion pair in an exact category (cf. e.g. [1, Ex. 3.5]). Now, we show:

gldimBt = max(gldim T , gldimF)
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As t : Bt → T is an exact functor with t ◦ i ∼= idT it follows that T is homologically faithful in Bt
(and similarly F is homologically faithful). But they are also homologically exact in Bt as the map
on Extn is also obviously surjective (given [η] ∈ ExtnBt(t(X), t(Y )), then [t(η)] is in the image
ExtnT (t(X), t(Y ))→ ExtnBt(t(X), t(Y )) but by definition t(η) and η are equivalent because we have a
morphism t(η)→ η of exact sequences with fixed end terms). This implies
gldimBt ≥ max(gldim T , gldimF). We claim that we have equality. To this, we define
n− 1 = max(gldim T , gldimF) <∞. So, given an n-exact sequence in Bt, say
η : X � X1 → · · · → Xn � Y , we want to see that [η] = 0 in ExtnBt(Y,X). We have t(η) and η/t(η)
are both exact sequences which are composed of short exact sequences in T (resp. F), so they are in
the image of ExtnT (t(Y ), t(X))→ ExtnBt(t(Y ), t(X)), but as ExtnT = 0 = ExtnF it follows that both
[t(η)] = 0 and [η/t(η)] = 0, let us call this property n-split. But n-split exact sequences are closed
under extensions (this is an easy exercise using the derived category Db(Bt)). It follows that [η] = 0.
We apply this in the following situation: Given R a principal ideal domain B = Rmod and T be the
full subcategory of torsion modules (i.e. they have a non-zero annihilator) and F the subcategory of
free modules. This gives a hereditary torsion pair in B. We conclude that in this case gldimBt = 1,
i.e. Bt is still an hereditary exact category.

4. The maximal exact structure making a functor exact

We recall from [167] the definition of a left exact strucure on an additive category A. It consists of a
class of cokernels D (called deflations) such that

(C) D is closed under composition, and contains the identity idA for every object A in A
(P) pullbacks of morphisms in D along morphisms in A exist and are in D,
(Q) If b ◦ a is in D and b has a kernel then b is in D

A right exact structure is a class of kernels I (called inflations) which satisfies the same axioms in
Aop.

Theorem 4.1. (Rump, [167, Thm 1]) If A is an additive category with a left exact structure D and
a right exact structure I there is an exact structure S given by all kernel-cokernels pairs (i, d) with i
in I, d ∈ D.

Theorem 4.2. (Rump, [167, Thm 2, Prop. 3]) For every additive category A and every class of
morphsims D which is closed under composition and contains all split epimorphisms there exists a
unique maximal subclass D′ ⊆ D which is a left exact structure.

Then as a corollary one can find unique maximal exact structure in many situations.

Corollary 4.3. ([167, Cor 2]) Every additive category has a unique maximal exact structure.

Proof. Take D = MorA = I. �

Corollary 4.4. Let f : E → F be an additive functor between exact categories. Then there exists a
maximal exact substructure Ef,max of E such that f : Ef,max → F is exact.

Proof. Take D = {d E−deflation: f(d) F-deflation},
I = {i E−inflation: f(i) F-inflation}. �

Remark 4.5. (1) Observe that the short exact sequences for this maximal exact structure
Sf,max ⊆ Sf with equality if and only if Sf already gives an exact structure.

(2) Alternatively, given an additive functor f : A → F to an exact category there exists a
unique maximal exact structure on A such that f becomes exact.
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5. Application to recollements of abelian categories

We try to find additive functors f : E → F between exact categories such that f : Ef → F is
homologically exact. Observe that an homologically exact functor is equivalent to a fully faithful
functor whose essential image is a homological exact subcategory (in particular extension-closed).
We look now for fully faithful functors with extension-closed essential image, by Lemma 3.8, then we
can always make the functor exact by passing to a substructure. A good place to find them are
recollements (we restrict to the abelian case, see remark 5.1):
We look at three abelian categories A,B, C together with the two pairs of adjoint triples (`, e, r) (i.e.
(`, e) and (e, r) are adjoint pairs) and (q, i, p) as indicated below. Then, (A,B, C), (`, e, r), (q, i, p) is a
recollement of abelian categories if

(1) `, r, i are fully faithful
(2) Im i = ker e

This definition is from [75], the notation follows [130]. Recollements of abelian categories were
invented originally for triangulated categories in [40]. Homological properties of these functors have
been more systematically studied in [155].

Remark 5.1. This has been generalized to exact (and extriangulated categories), cf. [181],
[90, Def. 4.29]. But the definition has more axioms, so we stick to the abelian case here. A
recollement of abelian categories is always a recollement of exact categories, cf. [155].

Since B is abelian, we can also define a seventh functor c : C → B given by C 7→ Im(`(C)→ r(C)).

The seven functors in a recollement of abelian category:

A i // B e //

p
oo

qoo
C

r
oo

`oo

c

\\

Four of these are candidates to be made homologically exact, namely `, r, c and i
Observe that i is fully faithful (by axiom (1)) and has an extension-closed essential image (by axiom
(2)).

Example 5.2. Let A be a ring and e ∈ A an idempotent element, then there is a recollement of
(left) module categories

A/(e) Mod i // AMod e //

p
oo

qoo
eAeMod

r
oo

`oo

where e : M 7→ eM is the multiplication with e and i is the natural inclusion. The left adjoint
functors `, q can be expressed as tensor functors and the right adjoint functors as Hom-functors
induced by the two bimodules A/(e)A/(e)A and AAeeAe.
In general this will only restrict partially to recollements on smaller abelian categories. But there is
one easy special case: If A is artinian, then also A/(e) and eAe then the category of finitely
generated modules is abelian and in this case all six functors restrict to subcategories of finitely
presented modules.

Lemma 5.3. The functors `, r, c are fully faithful with extension-closed essential images.

Proof. We have Im c = ker q ∩ ker q (cf. [75, Prop. 4.11]) it is enough to see that ker q and ker p
are extension closed. But since q (resp. p) is left (resp. right) adjoint to i, it is right (resp. left)
exact and therefore ker q (resp. ker p) extension-closed.
For t = ` or r. We have t ∼= tet, so apply to a B-exact sequence tX � E � tY , the exact functor e
and then t again, to obtain a complex tX → teE → tY . We want to see that E and teE are
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isomorphic. For t = `, it is enough to see that `X → `eE is an inflation. But we have the canonical
morphism `eE → E and postcomposition gives the inflation `X � E. Therefore the claim follows
from the obscure axiom. For t = r use the dual argument. �

The functors t ∈ {`, r, c} induce exact equivalences of t : (C,St)→ Im t where Im t is seen as a fully
exact subcategory of B, the functor e restricts in all three cases to an exact functor Im t→ (C,St)
which is the quasi-inverse. So we directly conclude e : Im t→ C is n-homologically faithful for n = 1
and for all n such that Ct → C is n-homologically faithful. Furthermore, we remark the following
easy properties:

Remark 5.4. Let η : X � Y � Z be a short exact sequence in C.

(1) The functor ` is right exact.
Then η is exact in C` iff `(X)→ `(Y ) is a B-inflation. We have: Im ` is inflation-closed

in B (i.e. if `(C)� `(D)� B is a B-exact sequence then B ∈ Im `).
(2) The functor r is left exact.

Then η is exact in Cr iff r(Y )→ r(Z) is a deflation in B. We have: Im r is
deflation-closed in B.

(3) The functor c preserves inflations and deflations.
Then η is exact in Cc iff c(X)→ c(Y )→ c(Z) is exact in the middle in B. We have: Im c

is closed under taking images of morphisms in B.

We have the following trivial special case.

Corollary 5.5. Let t ∈ {`, c, r, i}.
If gldimB ≤ 1 then t : (C,St)→ B or resp. t = i : A → B is homologically exact.
If gldimB ≤ 2 this functor is homologically faithful.

5.0.1. A quick survey of the knwon results. We summarize some results from [155], [75] and [11]
regarding to homological exactness the functors `, r, c, i.

The essential images of `, r, c: The functor q is right exact and the functor p is left exact. Assume
that the first derived functors L1q and R1p exist, then from [75, section 4.3] we have

Im ` = ker q ∩ kerL1q

Im c = ker q ∩ ker p

Im r = ker p ∩ kerR1p

Instead of using derived functors we choose to restrict to situations with C having enough projectives
and or injectives and use the following alternative descriptions (following [11]):
For a subcategory of injectives I in B, j ≥ 0 we write cogenj I for the full subcategory given by all
objects X such that that there exists an exact sequence

X � I0 → · · · → Ij � Y

with Is in I, 0 ≤ s ≤ j. For j =∞ we require an injective coresolution with all terms in I. For
j = 0 we leave out the supscript. We define genj(P) for a subcategory of projectives P in B dually.
By the horseshoe Lemma they are all extension-closed in B.

Lemma 5.6. We have:

(1) If C has enough projectives P, then `(P) ⊂ P(B) and Im ` = gen1(`(P)), ker q = gen(`(P)).
Furthermore, for j ≥ 1 the restriction

e : genj(`(P))→ C is s-homologically exact for 0 ≤ s ≤ (j − 1).

(2) If C has enough injectives I, then r(I) ⊂ I(B) and Im r = cogen1(r(I)),
ker p = cogen(r(I)). Furthermore, for j ≥ 1 the restriction

e : cogenj(r(I))→ C is s-homologically exact for 0 ≤ s ≤ (j − 1).
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(3) If C has enough projectives P and enough injectives I, then we have
Im c = gen(`(P)) ∩ cogen(r(I)). For j + k ≥ 0, the restriction
e : genj(`(P)) ∩ cogenk(r(I))→ C is s-homologically exact for 0 ≤ s ≤ j + k.

Observe that these restricted functors factor over an exact functor to Ct for t ∈ {`, r, c} respectively
in case (1),(2),(3). As a consequence one obtains that their essential image is an extension-closed
subcategory X of Ct such that the composition X → Ct → C is s-homologically exact, s in the range
specified as in the lemma respectively in case (1),(2),(3). If X = Ct and the inclusion of an exact
substructure is 1-homologically exact, it is the identity. So in that case Ct = C (so t is an exact
functor). The same in epic detail:

Corollary 5.7. (a) If C has enough projectives P then the following are equivalent:
(a1) ` : C → B is an exact functor.
(a2) gen1(`(P)) = gen2(`(P).
(a3) gen1(`(P)) = gen∞(`(P)).
(a4) Im ` has enough projectives given by `(P) (and is partially resolving, Def 2.21).
(a4’) Im ` is deflation-closed in B.
(a5) ` : C → B is a homologically exact functor.

(b) If C has enough injectives I then the following are equivalent
(b1) r : C → B is an exact functor.
(b2) cogen1(r(I)) = cogen2(r(I)).
(b3) cogen1(r(I)) = cogen∞(r(I)).
(b4) Im r has enough injectives given by r(I) and is partially coresolving.

(b4’) Im r is inflation-closed in B
(b5) r : C → B is a homologically exact functor.

(c) The following are equivalent
(c1) c : C → B is exact
(c2) Im c is inflation-closed or deflation-closed
(c3) Im c is inflation- and deflation-closed

(d) If C has enough injectives I and enough projectives P the following are equivalent
(d1) gen(`(P)) ∩ cogen(r(I)) = genj(`(P)) ∩ cogenk(r(I)) for at least one

(j, k) ∈ {(1, 0), (0, 1)}
(d2) gen(`(P)) ∩ cogen(r(I)) = genj(`(P)) ∩ cogenk(r(I)) for at least one

(j, k) ∈ {(∞, 0), (0,∞)}
(d3) Im c = Im ` has enough projectives given by c(P) = `(P) or Im c = Im r has enough

injectives given by c(I) = r(I)
(d4) Im c is deflation-closed and contains `(P) or inflation-closed and contains r(I) or both.
(d5) c = ` : C → B or c = r : C → B is homologically exact.
(d6) p` = 0 or qr = 0

We do not know if the conditions in (c) already imply (d) but it does not seem to be the case. Do
there exist recollements with p` = 0?

Proof. For part (a) (and (b)), look at [11], (c) is very easy and (d) is a corollary from case (3)
in the previous Lemma. �

The functor i. The functor i is already exact (as it is a functor between abelian categories which
has a left and right adjoint) and following [155] we call a recollement k-homological if the functor i
is m-homologically exact for 0 ≤ m ≤ k.
Observe that it is always 1-homological.
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Lemma 5.8. If C has enough projectives P resp. enough injectives I, then we have

genk(`(P)) =
k⋂
j=0

ker ExtjB(−, Im i)(=
k⋂
j=0

ker ExtjB(−, i(J )) if A w.e.i. J ) resp.

cogenk(r(I)) =
k⋂
j=0

ker ExtjB(Im i,−)(=
k⋂
j=0

ker ExtjB(i(Q),−) if A w.e.p. Q)

the following conditions are equivalent to i being m-homologically exact for 0 ≤ m ≤ k

(1) for C with enough projectives P: Im i ⊆ genk(`(P))
(2) for C with enough injectives I: Im i ⊆ cogenk(r(I))

(3) for A with enough projectives Q: ExtjB(i(Q), i(A)) = 0 for all 0 ≤ j ≤ k, A in A, Q ∈ Q
(4) for A with enough injectives J : ExtjB(i(A), i(J)) = 0 for all 0 ≤ j ≤ k, A in A, J ∈ J

Example 5.9. We recall for an artin algebra Λ the following result [11, Thm 2.1’]: An idempotent e
gives rise to a k-homological recollement if and only if ΛeΛ ∈ genk−1(`(P))

5.0.2. But this is not all.... One observes that Corollary 5.7 is much stronger than what we
asked for (they can only occur for already exact functors t).
For example as a corollary of 5.7, Im ` is right cofinal iff it is deflation-closed iff ` : C → B is
homologically exact.
We know that there are many more positive answers which are not covered by the previous corollary.
As Im ` is already inflation-closed we are already on the way to left cofinal.

Remark 5.10. The unfortunate fact is that we do not have a characterization of homologically
exactness but only sufficient criteria so a satisfying complete answer can not be expected.

Remark 5.11. (1) If Im ` is cogenerating, then Im ` is coresolving in B.
(2) If Im r is generating , then Im r is resolving in B.

Example 5.12. A module M over a ring A is called faithfully balanced if the natural ring
homomorphism A→ EndEndA(M)(M) is an isomorphism. Let e ∈ A be an idempotent such that Ae
is a faithfully balanced projective left A-module. This means that A = EndeAe(eA)op is
endomorphism of a generator (in left eAe-modules). In particular r(eA) = A ∈ Im r is resolving (in
finitely generated A-modules).
In fact, this is giving a complete answer, at least for module categories of artin algebras see below
(this is partly true for more general rings we just have not studied this very much).

Lemma 5.13. Given a finite-dimensional algebra A and an idempotent e ∈ A and
D = HomK(−,K), the following are equivalent for the recollement:

(a) DA ∈ Im `
(b) A ∈ Im r
(c) AAe is faithfully balanced

Proof. (b) ⇒ (c): A = r(X)⇒ eA ∼= X ⇒ EndeAe(eA) = r(eA) ∼= r(X) = A
(c) ⇒ (b): AA = A EndeAe(eA) = r(eA) ∈ Im r
(c) ⇒ (a): Now, observe with Hom-tensor adjunction gives an isomorphisms of bimodules
D`e(DA) = EndeAe(Ae). So if Ae is faithfully balanced then `(eA) = DA ∈ Im `.
(a)⇒ (c): DA = `(X)⇒ eDA ∼= X ⇒ DEndeAe(Ae) = `(eDA) ∼= `(X) = DA and apply D. �

Example 5.14. We also studied examples of recollements such that Im c is self-orthogonal (and
therefore homologically exact in B). In this case Cc is the split exact structure. We give here only the
reference, look at [61, Thm 4.4, Lem. 4.7].
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Example 5.15. Can we also find cases where Im ` is only partially coresolving (still assuming that
C has enough projectives)? This means we are looking for pairs (P, I) of a projective and an
injective subcategory in B such that

I ⊆ gen1(P) ⊆ cogen(I)

Then since gen1(P) is inflation-closed, it follows that gen1(P) has enough injectives given by I.
Here is a very simple example where this occurs: Take B = KQmod for K a field and Q the quiver
1→ 2→ 3→ 4. We choose P = S4 ⊕ P1 and I = P1 ⊕ I3, then in this case
gen1(P ) = add(S4 ⊕ P1 ⊕ I3) = cogen1(I) is partially coresolving.

Now, we give some negative answers.

Example 5.16. This gives an example for which Im ` is not homologically exact: Let Λ be the
following path algebra (over a field) with radical square zero relations

1
a1−→ 2

a2−→ 3
a3−→ 4, a2a1 = 0 = a3a2

and e = e1 + e2 + e4. Then Im ` = add(S4 ⊕ P2 ⊕ P4 ⊕ S1) is as fully exact subcategory of Λ mod
semi-simple, therefore Ext2

Im `(S1, S4) = 0. But Ext2
Λ(S1, S4) 6= 0. We conclude Im ` is not

homologically exact in this case. But it is nevertheless homologically faithful.

Example 5.17. We look at a recollement for module categories of finite dimensional algebras with
gldim C =∞ = gldimA and gldimB = 2 (then i is not homologically exact): Let Λ be a self-injective
algebra of finite representation-type (e.g. Λ = K[X]/(Xn) or a more general self-injective Nakayama
algebra), let Γ be its Auslander algebra and e ∈ Γ the projection onto the projective-injective
summand, so Λ = eΓe. In this case we have gldim Γ/(e) =∞ = gldim Λ and gldim Γ = 2.
In this case we have that the projective-injective summand in Γ is a faithfully balanced module and
therefore Im ` is coresolving and Im r is resolving. This means we find that gldim C` ≤ 2 and
gldim Cr ≤ 2 even though gldim C =∞.

Example 5.18. We look at a recollement for module categories of finite-dimensional algebras with
gldimB =∞ = gldimA and gldim C = 2: Let Π2n be the preprojective algebra of Dynkin type A2n

and e = e1 + · · ·+ en, then eΠ2n+1e is the Auslander algebra of K[X]/(Xn) and Π2n/(e) ∼= Πn. In
particular, we have gldim Π2n =∞ = gldim Πn and gldim eΠ2ne = 2. In this case we find that all
three exact substructures C`, Cr, Cc are Frobenius exact (by [46, Thm II 2.6]) of infinite global
dimension even though gldim C = 2.

6. Appendix: n-split exact sequences

Set σ : X � X1 → · · · → Xn � Y be an n-exact sequence and [σ] ∈ ExtnE(Y,X) be the representing
class. We want to characterize when is [σ] = 0, we say then that σ is (n-)split. Warning: Only for
n = 1 is this equivalent to being an exact sequence in the split exact structure.
Secondly we also ask for a characterization when f∗σ is split for a morphism f : Y ′ → Y .

n=1: [σ] = 0 is equivalent to σ is a short exact sequence in the split exact structure, i.e. the
inflation is a split monomorphism and the deflation is a split epimorphism.
f∗σ is split if and only if f factors over the deflation d

Y ′

X X1 Y

f

p
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n=2: In this case we also defined [σ] = [α] where α : X1 → X2.
σ is 2-split iff and only if the left hand side diagram can be filled in with exact sequences in the rows
and columns as a commuting diagram and f∗σ is 2-split if so for the right hand side.

X X1 Z X X1 Z

X A X2 A X2

Y Y Y ′ Y
f

Equivalently: Fill-in with exact rows

X X1 X2 Y X X1 X2 Y

X1 A Y X1 A Y ′

f

n>2. Then σ is n-split iff the following diagram can be filled in as a commuting diagram with
exact rows.

X X1 X2 X3 X4 · · · Xn Y

X1 A1 A2 A3 · · · An−1 Y

Figure 1

and then f∗σ is n-split iff the following diagram can be filled in as a commuting diagram with exact
rows.

X X1 X2 X3 X4 · · · Xn Y

X1 A1 A2 A3 · · · An−1 Y ′

f

Figure 2

Proof. n = 1 We only show: f∗σ splits iff f factors as f = ph where p is the deflation in σ.
Let us complete the diagramm, the upper line is f∗σ

X X ′1 Y ′

X X1 Y

p′

f ′ f

p

If f∗σ is split then there exists a section s of p′, (i.e. p′s = id). Then we have pf ′s = fp′s = f , so f
factors over p.
If f = ph for some morphism h, we use the universal property of the pullback to find a morphism s
as indicated

Y ′

X ′1 Y ′

X1 Y

1

h

s

p′

f ′ f

p
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Then s is a section of p′ and therefore f∗σ splits.
For general n > 1, by [76, Thm 6.39] the condition [σ] = 0 is equivalent to the fill-in of the diagram
in Figure 1 (cf. condition (v) in loc. cit.).
It is straight-forward to see that the pullback f∗σ has a diagram fill-in as in Figure 1 if and only the
fill-in in Figure 2 holds.
For n = 2: We ignore the f∗σ-split-description as it is a trivial special case of the general n case.
We need to see the equivalence of the two diagram fill-ins. Clearly from first diagram we can easily
deduce the second type of diagram. Conversely, from the second we arrive at a fill-in of the form

X X1 Z

A X2

Y Y

a

By [49, Prop. 2.12], we deduce that the commuting square in the upper corner is bicartesion (i.e. a
pullback and pushout square). Now, by [49, Prop. 2.15] the pushout of a deflation along an inflation
is a deflation, so a is a deflation. Again by [49, Prop. 2.12] we conclude that ker a is the composition
X � X1 → A and therefore the claim follows.

�

Remark 6.1. You find in [76, Thm 6.39] several other variants of these diagram fill-ins.
In [126, in section 4.2] (section before Prop. 4.2.11) there is also claimed a very simple criterion:
[σ] = 0 is equivalent to there exists a morphism of exact sequences σ → σ′ with fixed end terms such
that σ′ is an n-exact sequence with the last deflation being a split epimorphism.
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CHAPTER 2

The poset of exact structures

1. Synopsis

We survey the theory of exact structures on an essentially small idempotent complete additive
category. We focus on explicit answers and examples. But we also collect/recall several lattice
isomorphisms for the lattice of all exact structures. Several of these isomorphisms are induced by
equivalences of 2-categories which we collect in an Appendix.
What is new here? The description of exact structures with enough projectives. The equivalence
of 2-categories with tf-Auslander categories (i.e. the subcategory of torsionfree objects in the
Auslander exact category) is new. Apart from the Auslander correspondence none of the
equivalences of 2-categories are formulated as such in the literature that I know (we treat them for
time reasons also somewhat sketchy). Furthermore, we look at all exact substructures in examples
(e.g. finitely generated abelian groups) and establish some of their global dimensions.

2. Introduction

Now, we fix one essentially small, idempotent complete exact category E = (A,S) and introduce the
following posets of exact substructures

ex(E) = exact substructures of E .

Here the poset structure is given by inclusion on the collection of short exact sequences, i.e. E1 ≤ E2

means the identity functor E1 → E2 is an exact functor. Rump showed [167] that for every
essentially small additive category there always exists a maximal structure (independently this had
been shown by Crivei [62] under the assumption that the underlying additive category is weakly
idempotent complete). Therefore, we may as well define ex(A) := ex(Emax) where Emax is the
maximal exact structure on the additive category A.
As it is very easy to see that arbitrary intersections of exact structures give an exact structure, we
have a complete meet semi-lattice. Using the existence of a maximal exact structure, this implies
that ex(E) is a complete lattice, cf. [29]. We are interested in the following types of results:

(1) Explicit parametrizations and constructions of exact structures
(2) Lattice isomorphisms for ex(E)

We survey three explicit answers in sections 2,3,4 respectively. Firstly, the easiest construction are
exact substructures induced by subcategories, these include all exact structures with enough
projectives (or resp. with enough injectives). They have been introduced by Auslander and Solberg
in [15]. Secondly, in the representation-finite case, we obtain the very easy Boolean lattice of
generators - first observed by Enomoto, cf. Enomoto’s theorem 4.4.
Thirdly, for essentially small additive categories with weak cokernels, there exists a topological space
called the Ziegler spectrum consisting of certain indecomposables in the ind-completion. The
indecomposable injectives in the ind-completion of the maximal exact structure define a
Ziegler-closed subset Umax. Then there is a bijection between Ziegler-closed subsets containing Umax
and exact structures. This connection has been observed by Schlegel (in [173]), cf. Theorem 5.6. We
apply this result in some examples with known Ziegler spectrum to have an understanding all exact
substructures.
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Furthermore, we study lattice isomorphisms which are not leading (us) to explicit answers. First of
all, all four equivalences of 2-categories from the Appendices A,B,C give such lattice isomorphisms.
The most classical lattice isomorphism is the Butler-Horrock’s theorem (Appendix A) which
identifies ex(E) with the lattice of closed sub-bifunctors of Ext1

Emax . Auslander correspondence can
be seen as an equivalence of 2-categories (cf. [90]) - as a companion we add the tf-Auslander
correspondence (Appendix B). Ind-completion gives the forth equivalence of 2-categories (Appendix
C).

(2a,2b,2c) We follow Auslander’s idea to study associated functor categories. An exact structure is
determined by three different classes of morphisms, the i) admissible morphisms, ii) the
deflations, iii) the inflations. When looking at functors represented by either of these three
classes we obtain three correspondences ,respectively, i) the Auslander correspondence (cf.
also Appendix B), ii) Enomoto’s correspondence and iii) a new one which we call
tf-Auslander correspondence. The first and third are induced by the equivalences of
2-categories (cf. Appendix B). These lead to three further poset isomorphisms.

What remains open:
(2*)(Q1) Assuming the additive category has weak cokernels, [173] found several other lattice

isomorphisms to ex(A) (with certain Ziegler-closed mentioned before, with
fp-idempotent ideal, with torsion classes etc.). Can (some of it) be generalize to
arbitrary small additive categories?

(Q2) Let E be an essentially small exact category and I = I(
−→
E ) the injectives in the

Ind-completion. Properties of the Ind-completion imply

gldim E ≤ gldim
−→
E ≤ gldim Imod∞

where Imod∞ is the category of all additive functors F : I → (Ab) such that there
exists an exact sequence

· · · → Hom(I2,−)→ Hom(I1,−)→ Hom(I0,−)→ F → 0

with In ∈ I. This is always an exact category with set-valued Ext-groups (even though
IMod may not be).
Assume that there is a correspondence of exact structures with subsets of the Ziegler
spectrum Zg (see Q1) by assigning E → UE = I ∩ Zg. Is there an upper bound for
gldim E using UE?

3. Elementary constructions of exact substructures

Lemma 3.1. ([66], Section 1.2) Let (A,S) be an exact categeory. We have an obvious bijection
between the following two sets

(a) (additive) subfunctors F ⊂ Ext1
S

(b) subclasses S ′ of S closed under isomorphisms (and direct sums of short exact sequences),
pullback and pushout of short exact sequences, i.e. (Ex2) holds for S ′.

given by F 7→ SF where SF consists of all exact pairs Y → E → X in S such that its equivalence
class is in F (X,Y ). Conversely, S ′ 7→ F ′ with F ′(X,Y ) consists of all equivalence classes of exact
sequences in S ′.

As indicated by the brackets, the property of being an additive subfunctor translates into the
property that the short exact sequences are closed under direct sums. To study the structures
corresponding to additive sub(bi)functors the notion of weakly exact structure (i.e. those classes
of kernel-cokernel pairs which fulfill (b) in the previous theorem) has been introduced and studied by
[29].

30



Since exact structures are always closed under direct sums of short exact sequences, we will restrict
to consider additive functors.

Definition 3.2. Given an exact category (A,S) and a sub(-bi)functors F ⊂ Ext1
S . We call F closed

if it is additive and F (X,−) and F (−, Y ) are half exact for all objects X and Y in A (here: A functor
is half exact if applied to a short exact sequence it gives a sequence which is exact in the middle).

Definition 3.3. We say an exact sequence 0→ X
i−→ E

d−→ Y → 0 is F-exact if the equivalence class
of (i, d) in Ext1

S(Y,X) lies in F (Y,X). So SF in Lemma 3.1 consists of F -exact sequences.

Then we have

Theorem 3.4. (Butler-Horrock’s Theorem, [66, Prop.1.4]) Let (A,S) be an exact category. The
assignment F 7→ SF from Lemma 3.1 is a bijective map from

(1) closed sub(bi)functors of Ext1
S to

(2) exact structures S ′ on the additive category A with S ′ ⊂ S.

Remark 3.5. Theorem 3.4 has been generalized to n-exangulated categories in [95], section 3.2.
One can also assume that it was part of the inspiration to the definition of an extriangulated
category.

Corollary 3.6. If A is an additive category. Let Smax be its maximal exact structure. Then, the
bijection of the Theorem 3.4 gives a 1− 1 correspondence between

(1) closed sub(bi)functors of Ext1
Smax and

(2) exact structures on A.

Continuing to ignore set-theoretic issues, we have the following:

Corollary 3.7. Let (A,S) be an exact category. The class of all closed sub(bi)functors of Ext1
S

forms a poset with respect to inclusion of functors. It is even a lattice which is isomorphic via the
bijection in Theorem 3.4 to the full sublattice of all exact structures which are contained in S.

Definition 3.8. Let F be an additive closed sub(bi)functor F of Ext1
S . We write P(F ) (resp. I(F ))

for the category of projectives (resp. injectives) in (A,SF ) We will say that a closed sub(bi)functor
F of Ext1

S has enough projectives (resp. has enough injectives) whenever SF has. Instead of
the index SF we write just F , e.g. Ext1

F := Ext1
SF etc.

Lemma 3.9. Let (A,S) be an exact category.

(a) If F ⊂ Ext1
S has enough projectives, then an exact sequence (i, d) is F -exact if and only if

HomA(P,−) applied to it gives a short exact sequence in abelian groups for every P ∈ P(F ).
(b) If F ⊂ Ext1

S has enough injectives, then an exact sequence (i, d) is F -exact if and only if
HomA(−, I) applied to it gives a short exact sequence in abelian groups for every I ∈ I(F ).

Proof. The proof of [15], Prop. 1.5, also works for exact categories. �

Remark 3.10. One can prove a stronger statement than the previous lemma, see [49], Ex. 11.10:
Let (A,S) with enough projectives. Given any two composable morphisms (i, d), then this is an
exact sequence if and only if Hom(P,−) applied to it gives a short exact sequence of abelian groups
for all P ∈ P(S).

3.1. Subfunctors from subcategories. We continue to look at an exact category (A,S). Let
X ⊆ A be a full subcategory of A. We define two subfunctors FX and FX of Ext1

S for X,Z in A
FX (Y,Z) := {0→ Z → E → Y → 0 in Ext1

S(Y,Z) | HomA(X,−) exact on it for all X in X}
FX (Y,Z) := {0→ Z → E → Y → 0 in Ext1

S(Y,Z) | HomA(−, X) exact on it for all X in X}
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These are (the standard examples of) closed sub(bi)functors (closedness is proven in [66, Prop. 1.7]).
The generalization of these functors to n-exangulated categories can be found in [95], Def. 3.16.

Definition 3.11. For two additive subcategories C and D of A we write C ∨ D for the smallest
additive subcategory containing C and D. We call this the join of C and D.

Remark 3.12. We remark that we have the obvious inclusions: X ∨ P(S) ⊂ P(FX ) (resp. dually

X ∨ I(S) ⊂ I(FX )). Furthermore, it is clear that FX = FX∨P(S) (resp. FX = FX∨I(S)). Also, one

can see easily that any sub(bi)functor F of Ext1
S is also a sub(bi)functor of FP(F ) (resp. of F I(F ))

since an F -exact sequence η fulfills that HomA(P, η) is exact for any P ∈ P(F ).

Remark 3.13. Let (A,S) be an exact category. It is obvious that the inclusion of two additive

subcategories X ⊂ X ′ of A implies FX ⊃ FX ′ and FX ⊃ FX ′ .
There are two trivial examples

(1) X = P(S), in this case SFX = S and Ext1
FX

= Ext1
S . This is the unique maximal element in

the poset of exact structures induced by closed sub(bi)functors of Ext1
S .

(2) X = A, in this case, the exact structure is the split exact structure and Ext1
FA

= 0. This is
the unique minimal element in the lattice of all exact structures.

One can ask now: When is an exact structure S ′ ⊂ S on an exact category (A,S) is of the form SX
for an additive subcategory X ⊂ A?

Definition 3.14. We call a subcategory X of A projectively saturated (resp. injectively
saturated) if P(SX ) = X (resp. if I(SX ) = X ). We call an exact structure S ′ ⊂ S projectively
determined (resp. injectively determined) if it is of the form SX (resp. SX ) for some additive
subcategory X ⊂ A.

Lemma 3.15. Let (A,S) be an exact category and X ⊂ A an additive category. We have the
following properties

(1) P(SX ) is the smallest projectively saturated subcategory that contains X .
(2) If S ′ ⊂ S is an exact structure with enough projectives, then S ′ is projectively determined.

Proof. (1) It is straight-forward to see that FP(SX ) = FX (since X ⊂ P(SX ) implies
FX ⊃ FP(SX ) and conversely an SX -exact sequence fulfills by definition of the projectives that it is
SP(SX )-exact). This implies that P(SX ) is projectively saturated. If we have X ⊂ Y with Y
projectively saturated, then SX ⊃ SY and therefore P(SX ) ⊂ P(SY) = Y.
(2) Follows from Lemma 3.9. �

Proposition 3.16. Let (A,S) be an exact category. The assignments X 7→ SX and S ′ 7→ P(S ′) give
inverse bijections between

(1) projectively saturated subcategories X ⊂ A
(2) projectively determined exact structures S ′ ⊂ S on A

The proof is obvious. We leave the trivial dual statements to the imagination of the reader.

In [45], section 5 one can find an example of an exact structure on category of finite-dimensional
modules over the Kronecker algebra which is not projectively determined.

3.2. Exact structures with enough projectives.

Definition 3.17. Let A be an additive category. We call a subcategory M contravariantly (resp.
covariantly) finite in A if every object X in A admits a right (resp. left) M-approximation,
that is a morphism α : M → X (resp. β : X →M) with M ∈M such that every f : M ′ → X with
M ′ in M factors over α (resp. such that every g : X →M ′ factors over β). We say M is
functorially finite if it is co- and contravariantly finite.
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We remark that intersections of two contravariantly finite (resp. covariantly finite) subcategories do
not necessarily have this property. We start with the following easy observation.

Lemma 3.18. Let A be an additive category and B, C two additive subcategories, we write
M = B ∨ C for their join. Then we have

(1) If B and C are contravariantly finite (resp. covariantly finite), then M too.
(2) If M is contravariantly finite (resp. covariantly finite) and HomA(B, C) = 0, then B

contravariantly finite (resp. C covariantly finite).

Proof. (1) Let X be an object and assume we have a right B-approximation bX : BX → X
and a right C-approximation cX : CX → X. Then we get an induced morphism
mX := (bX , cX) : BX ⊕ CX → X. One can check that (bX , cX) is a right approximation for
B ∨ C.

(2) Let mX = (bX , cX) : MX = BX ⊕CX → X be a rightM-approximation and Hom(B, C) = 0.
Then we have bX : BX → X is a right B-approximation.

�

For the later part we need to understand what it means that right approximations of a
contravariantly finite subcategory are deflations. So we look at this special situation.

Lemma 3.19. Let (A,S) be an exact category with enough projectives (resp. enough injectives). Let
X be a contravariantly finite (resp. covariantly finite) additive subcategory. Then the following are
equivalent:

(a) Any right (resp. left) X -approximation is a deflation (resp. inflation).
(b) P(S) ⊂ X (resp. I(S) ⊂ X )

In particular, if (A,S) has enough projectives and X is contravariantly finite with P(S) ⊂ X , then
any right X -approximation also admits a kernel in A.

Proof. (a) implies (b) is clear. So assume (b). Let d : X → Z be a right X -approximation of an
object Z in A. Let π : P → Z be a deflation with P ∈ P(S). Since, by assumption, P ∈ X the map
HomA(P,X)→ HomA(P,Z) is surjective because d is a right approximation. Therefore, there exists
a π̃ : P → X such that d ◦ π̃ = π. Since π is a deflation, it follows that d is a deflation by axiom E2
of an exact category. �

Remark 3.20. If A is weakly idempotent complete and (A,S) an exact category. Then P(S) is
closed under direct sums and summands (cf. [49], Rem 11.5, Cor 11.6).

Theorem 3.21. Let A be weakly idempotent complete additive category and (A,S) be an exact
category. The assignments X 7→ FX 7→ SFX gives a bijections from

(1) additively closed, contravariantly finite subcategories X of A, closed under direct summands
and whose right approximations are deflations to

(2) closed sub(bi)functors of Ext1
S with enough projectives and to

(3) exact structures S ′ ⊂ S which have enough projectives.

We consider the dual statement of the previous Proposition as obvious and leave it to the reader.

Proof. The bijection from (2) to (3) is clear from Theorem 3.4 and by definition of having
enough projectives. The map from (1) to (2) is well-defined since P(FX ) contains by definition X
and for any A in A we have a deflation X → A with X ∈ X given by the right X -approximation.
Now, the assignment F 7→ P(F ) goes from (2) to (1). We need to see that this is inverse to the
previous map. By Lemma 3.9 we know F = FP(F ) since F has enough projectives. On the other
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hand, let X be as in (1). We clearly have X ⊂ P(FX ). Let P ∈ P(FX ), we take the right
X -approximation X → P which is a deflation. By [49], Prop. 11.3, this map splits and P is a
summand of X. Since X is closed under direct summands, we have P ∈ X . �

Example 3.22. There exist projectively saturated categories which are not contravariantly finite.
For example, take as A the category of finite-dimensional modules over the Kronecker algebra and
consider the category X given by all the preprojective modules. This is projectively saturated but
not contravariantly finite.

Given an additive category A, we write exep(A) (resp. exei(A), resp. exepei (A) ) for the subposet of
all exact structures which have enough projectives (resp. enough injectives, resp. both).
For an interval J in the poset ex(A) we write exep(A)J (resp. exei(A)J , resp. exepei (A)J) for the
intersection of these (respective) posets with the interval J .

Corollary 3.23. Let (A,S) be an exact category with enough projectives. Let i : B → A be an
inclusion of a full additively closed, contravariantly finite subcategory which contains P(S). Then,
SX 7→ Si(X ) is an isomorphism of posets

exep(B,S≤S∩B)→ exep(A)Si(B)≤∗≤S

Proof. The inclusion functor i : B → A gives a natural bijection between

(1) contravariantly finite, additive, summand-closed subcategories X of B with P(S) ⊂ X .
(2) contravariantly finite, additive, summand-closed subcategories X of A with
P(S) ⊂ X ⊂ i(B).

The rest of the claim follows from Prop.3.21 and Lem.3.19. �

Example 3.24. Let Λ be an artin algebra and A = Λ-mod be the category of finitely generated left
Λ-modules. Let C be a cotilting Λ-module (i.e. idC <∞, Ext>0(C,C) = 0 and there is an exact
sequence 0→ D Λ→ C0 → · · · → Cr → 0 with Ci ∈ add(C)). Then B = ⊥C :=

⋂
i≥1 ker Exti(−, C)

is full, extension-closed, summand-closed, contravariantly finite subcategory which contains Λ.

3.3. A classical situation. Let ϕ : A → B be an exact functor between exact categories (A,S)
and (B, T ). Then we have maps natural in X and Y

ϕX,Y : Ext1
S(X,Y )→ Ext1

T (ϕ(X), ϕ(Y )).

This gives an additive sub(bi)functor F := kerϕ∗,∗ ⊂ Ext1
S . It is closed by [66], Prop. 1.10. The

F -exact sequences are the exact sequences in (A,S) which are split exact once we apply the functor
ϕ.

Remark 3.25. If λ is a left adjoint functor to ϕ, then the counit λϕ(X)→ X for an object X in A
provides a right λ(B)-approximation of X. In particular, λ(B) is contravariantly finite in A.

Lemma 3.26. If the functor ϕ has a left adjoint λ then

(1) F = Fλ(B) = Fλ(B)∨P(S).
(2) If all counits λϕ(X)→ X are deflations in (A,S), then F has enough projectives and

furthermore, P(F ) consists of all direct summands of objects in λ(B).
(3) If A is weakly idempotent complete and (A,S) has enough projectives, then F has enough

projectives and P(F ) consists of direct summands of λ(B) ∨ P(S).

Dually, if the functor ϕ has a right adjoint ρ then

(1’) F = F ρ(B)

(2’) If all units X → ρϕ(X) are inflations in (A,S), then F has enough injectives, and
furthermore, I(F ) consists of all direct summands of objects in ρ(B).
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(3’) If A is weakly idempotent complete and (A,S) has enough injectives, then F has enough
injectives and I(F ) consists of direct summands of ρ(B) ∨ I(S).

Proof. (1) Let η be an exact sequence in (A,S). We have the adjunction property
HomA(λ(V ),W ) ∼= HomB(V, ϕ(W )) for all V in B and W in A. Therefore, exactness of
HomA(λ(V ), η) ∼= HomB(V, ϕ(η)) for all V in B means that ϕ(η) is FB-exact is. But
FB-exactness is the same as split exactness.

(2) By (1) we have λB ⊂ P(F ). Let X be in A. By assumption, the counit λϕ(X)→ X is a
deflation in (A,S) and as just observes λϕ(X) ∈ P(F ). We want to see, that this map is
split when we apply the functor ϕ. But by the second triangle identity of the adjunction, we
have that ϕλϕ(X)→ ϕ(X) has a section and therefore it splits (true?). Now given any
P ∈ P(F ), we have just constructed an F -epimorphism λϕ(P )→ P and so this map has to
be split, i.e. P is a summand of an object in λB. Since λB ⊂ P(F ) by (1) and P(F ) is
closed under summands, equality follows.

(3) Since λ(B) is contravariantly finite (cf. Rem. 3.25) we have that add(λ(B)) is
contravariantly finite. By Lemma 3.18 we also have add(λ(B)) ∨ P(S) is contravariantly
finite. Therefore, the claim follows from Theorem 3.21 and Lemma 3.19.

The dual statement can be proven analogously. �

Example 3.27. Let f : B → A a ring homomorphism and ϕ : A-Mod→ B-Mod, X 7→ BX the
functor given by restriction of scalars along f .
Then, there is a left adjoint given by the following tensor functor λ(X) := A⊗B X called the
induced module and a right adjoint given by the following Hom-functor ρ(X) := HomB(A,X)
called the co-induced module. The counits λϕ(X) = A⊗B X → X are epimorphisms since their
restrictions of scalars are surjective maps, this follows from the triangle identity. The units
X → HomB(A,BX) are monomorphisms since their restrictions of scalars are injective maps by the
triangle identity. Therefore, by the previous lemma we have for F = kerϕ∗,∗ the following

(1) F = FA⊗BB-Mod = FHomB(A,B-Mod)

(2) F has enough projectives and enough injectives. The F -projectives are the direct
summands of A⊗B B-Mod, the F -injectives are the direct summands of HomB(A,B-Mod).

This exact structure on A-Mod has been introduced by Hochschild in [97] in 1956. In loc. cit. this
has been used to define relative Hochschild homology, a Tor and Ext functor have been defined for
this setup. A very nice application of the classical situation is the finite representation type
classification for group algebras, cf. [26], chapter III, section 3. A recent application to Han’s
conjecture can be found in [56].

Example 3.28. Let Γ be a ring and e ∈ Γ an idempotent, we define Λ := eΓe. Then, the restriction
functor e : Γ-Mod→ Λ-Mod, X 7→ eX has a left adjoint ` = Γe⊗Λ (−) and right adjoint
r = HomΛ(eΓ,−). Therefore, we have for F = ker e∗,∗ the following description (numbered by the
parts of the lemma 3.26 that are used)

(1) F = FΓe⊗ΛΛ-Mod = FHomΛ(eΓ,Λ-Mod).
(3) Since Γ-Mod is abelian, it is weakly idempotent complete. It has enough projectives and

enough injectives. So, it follows that F has enough projectives and enough injectives. We
have P(F ) consists of direct summands of (Γe⊗Λ Λ-Mod) ∨Add(Γ) and I(F ) consists of
direct summands of HomΛ(eΓ,Λ-Mod) ∨ I(Γ-Mod).

If we take a noetherian ring Γ and consider the abelian Γ-mod category given by finitely
generated Γ-modules, then this category has not in general enough injectives but it has
enough projectives given by add(Γ). Assume that Λ = eΓe is again noetherian, then the
restriction functor e : Γ-mod→ Λ-mod has a well-defined left adjoint functor ` = Γe⊗Λ (−).
We conclude that in this case F has enough projectives given by the direct summands of
(Γe⊗Λ Λ-Mod) ∨ add(Γ).
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4. The representation-finite case - Enomoto’s result

Definition 4.1. For a ring Γ, we denote by proj(Γ) the category of finitely generated projective left
Γ-modules. We say an idempotent complete additive category A is representation-finite if it is
equivalent to proj(Γ) for some ring Γ.

By definition, A = proj(Γ) is Krull-Schmidt if and only if Γ is semi-perfect.

We recall Enomoto’s results (without proof).

Lemma 4.2. Let A = proj(Γ) a Krull-Schmidt category and E an exact structure on E. Then there
exists an idempotent e ∈ Γ such that P(E) = add(Γe). Then E has enough projectives if and only if
Γ/ΓeΓ is a finite length left Γ-module.

Assume additionally that we have a commutative artinian ring R and Γ is a finitely generated
R-algebra with R ⊂ Z(Γ). This is saying that A = proj(Γ) is Hom-noetherian R-linear. Then every
exact structure on A = proj(Γ) has enough projectives and enough injectives.

Definition 4.3. Let E be a an exact category and M a full subcategory. We say M is a generator
if M is additively closed and for every X in E there exists a short exact sequence Y →M → X with
M in M. A cogenerator is a generator in Eop.
If A is an additive category and M a full subcategory, then we call M a generator (resp.
cogenerator) if it is one in the maximal exact structure on A.

Then

Theorem 4.4. (Enomoto’s Theorem) Let R be a commutative artinian ring. Let A idempotent
complete, representation-finite, Hom-noetherian R-linear. Let P = add(Γe) be the projectives in the
maximal exact structure on A. Then generators in A are given by the Boolean lattice of all additively
closed subcategories containing P, we denote it by Generators(A). Then

ex(A)→ Generators(A),

E 7→ P(E)

is an isomorphism of lattices.

Example 4.5. We look at the quiver 1→ 2→ 3 and at its Auslander-Reiten quiver

P1

P2 I2

P3 S2 I1

To see the generators, fix the projectives P1, P2, P3 and add any subset of {S2, I2, I1}. So this is just
the power set of this set with three elements. More interesting is to observe that we have seven
hereditary exact substructures and one exact substructure of global dimension 2, corresponding to
the generator P1 ⊕ P2 ⊕ P3 ⊕ I2.

More generally for type An-equioriented quivers the maximal global dimension is n− 1, cf...

Remark 4.6. We think that substructures of finite-dimensional Dynkin quiver representations are
always of finite global dimension but we have not worked this out (except for type A-equioriented).
This should be mainly due to the Auslander-Reiten quiver has no oriented cycles. Then
endomorphism rings of modules can be realized as upper triangular rings and should admit a
quasi-hereditary structure which implies that they have finite global dimension.
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If we are looking at representation-finite finite-dimensional algebras of global dimension 2, then we
can already find examples of exact substructures of infinite global dimension.

Example 4.7. Let Γ be the Auslander algebra of K[X]/(X3). This has global dimension 2 and is
representation-finite. Then look at the Frobenius exact substructure described in [12] on the
Auslander algebra of a self-injective algebra.

5. Parametrization using the Ziegler spectrum - Schlegel’s result

We refer to Appendix C for Ind-completion of additive and exact categories. For an essentially small

additive category C we call
−→
C =: A its Ind-completion. Let E be an exact structure and

−→
E be its

ind-completion and i : E →
−→
E the Yoneda embedding. We call X in

−→
E is fp-

−→
E -injective if

Ext1−→
E

(i(E), X) = 0 for all E in E .

Definition 5.1. An object in an additive category M is called indecomposable if M = N ⊕ L
implies N = 0 or L = 0.

Let A =
−→
C be a locally finitely presented additive category. We define the pure exact structure

to be Ap :=
−−−→
Csplit to be the ind-completion of the split exact structure. An object in A is called

pure injective if it is an injective in Ap . Then we define the following class

ZSp(A) := {M ∈ A |M indecomposable and pure injective}
Remark 5.2. For general locally finitely presented additive categories we do not know of ZSp(A) is
a set or if it is one if it is non-empty.

Definition 5.3. Let C be an essentially small additive category, A =
−→
C and S a class of morphisms

in C. Let X (S) be the full subcategory of A of all objects I with the following property: For any
map s : M →M ′ in S and any map f : M → I there exists f ′ : M ′ → I such that f ′s = f .
Alternatively, one can descibe this as

X (S) = {I ∈ A | coker HomA(s, I) = 0 ∀s ∈ S}

A full subcategory X of
−→
A is called definable if there exists a class of morphisms S in A such that

X = X (S).
Assume that ZSp(A) is a set, then a subset U ⊆ ZSp(A) is called Ziegler-closed if there exists a
definable subcategory X such that U = ZSp(A) ∩ X .

From now on, we impose the condition that C has weak cokernels, this means that for every
morphism f : X → Y in C there exists a morphism g : Y → Z such that the following sequence is
exact (in the middle) in the abelian category Mod Cop (all covariant, additive functors C → (Ab))

HomC(Z,−)
Hom(g,−)−−−−−−→ HomC(Y,−)

Hom(f,−)−−−−−−→ HomC(X,−)

This condition is equivalent to mod1 Cop is abelian, in which case it also has enough projectives. This

has been used in [59] and [173] to embed A =
−→
C in a locally coherent abelian category called the

purity category. We are not going to explain this construction here, as we hope that these results can
be generalized (without using this embedding).

Theorem 5.4. (combine [59, section (3.5), Lem 1] with [126, Lem. 12.1.12]) If C has weak cokernels
then ZSp(A) is a set and we have a topology on ZSp(A) with closed sets given by Ziegler-closed
subsets. This topological space is called the Ziegler spectrum of A.

Lemma 5.5. ([173], proof of Lem. 2.9) Let C be essentially small, idempotent complete with weak

cokernels and E an exact structure on it. Let
−→
E be its Ind-completion.

(1) Let XE be the full subcategory fp-
−→
E -injectives, then this is a definable subcategory since it

can be written as
XE = X (InflE)

where InflE denotes the E-inflations.
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(2) Let UE be the set of indecomposable injectives in
−→
E . Then UE is Ziegler-closed because

UE = ZSp(A) ∩ XE
Theorem 5.6. ([173], Thm B) Let C be an idempotent complete essentially small additive category
with weak cokernels and Emax its maximal exact structure. We write Xmax := XEmax ,Umax := UEmax.
Then the assigment E 7→ XE and resp. E 7→ UE gives a an lattice isomorphism between ex(A) and

(1) the lattice of definable subcategories which contain Xmax and resp.
(2) the lattice of Ziegler-closed subsets which contain Umax.

We want to understand the exact substructures in cases where the Ziegler spectrum is known. For
this we need the following:

Proposition 5.7. In the situation of the previous theorem, we have a map

{U Ziegler-closed ,Umax ⊆ U} → ex(A)

U 7→ (Emax)U

where EUmax consists of all Emax-short exact sequences σ such that HomA(σ, U) is exact for all U ∈ U .
This map is the inverse to the bijective map ex(A)→ {U Ziegler closed ,Umax ⊆ U} in Theorem 5.6.

We need the following easy lemma for the proof.

Lemma 5.8. Let C be an idempotent complete essentially small category and A =
−→
C its

Ind-completion. Assume we have an exact structure E on C and U some set of pure injective objects
in A. We denote EU the exact substructure of E consisting of E-exact sequences σ such that
HomA(σ, U) exact for all U ∈ U .

Then all objects in U are fp(
−−→
EU )-injectives.

Proof. (of Lemma 5.8) Let U be in U and X be an C and we take a
−→
EU -short exact sequence

σ : U � Y � X

We need to see it splits. We write σ = colimσi as a filtered colimit of EU -short exact sequences
Ui� Yi � Xi. Now, we factorize the canonical morphisms σi → σ, i ∈ I of short exact sequences
following [49]..

σi Ui Yi Xi

ηi U Zi Xi

σ U Y X

This means ηi is the push-out of σi along the canonical morphism Ui → U . As HomA(σi, U) is exact,
it follows that ηi is split exact. Now, it is a straight forward observation to see that we have
colimI ηi = σ. As ηi are split exact they are also pure exact sequences. Now, filtered colimits of pure
exact sequences are again pure exact as the pure exact structure is a locally coherent exact structure
(cf. Appendix..). In particular σ is pure exact and U is pure injective, it splits. �

Let us come back to:

Proof. (of Prop. 5.7) Let E be an exact structure on C and we set U := UE . As E is fully exact

in
−→
E we have that E ≤ F := EUmax is an exact substructure. To see that they are equal, it is enough

to see that U = UF . As E ≤ F we have that
−→
E ≤

−→
F this implies that the subcategory of injectives

fulfill I(
−→
E ) ⊇ I(

−→
F ) and therefore U ⊇ UF . Now, for the other inclusion we conclude from Lemma

5.8 that U ⊆ XF . This implies U ⊆ XF ∩ ZSp(A) = UF by Lemma 5.5. �
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Let us also note the following corollary.

Corollary 5.9. Let C be an idempotent complete essentially small category and A =
−→
C its

Ind-completion. Assume we have an exact structure E on C and U some set of pure injective objects
in A. Then

EU = EU

where U denotes the closure of U in the Ziegler spectrum.

Proof. By definition EU is an exact substructure of EU . This implies that U ⊆ XEU ⊆ XEU .

This implies U ⊆ UEU ⊆ UEU = U but as UEU is Ziegler-closed, it has to be equal to U . Since we have

a bijection it follows that EU = EU . �

Let Λ be a ring, then we define the (left) Ziegler spectrum of Λ as ZgΛ := ZSp(Λ Mod).

5.1. Examples.

Example 5.10. As a consequence of [154, Cor. 5.3.36, Cor. 5.3.37, Thm 5.1.12] one obtains: For a
finite-dimensional algebra Λ the following are equivalent

(1) Λ is of finite representation-type
(2) ZgΛ is a finite set
(3) ZgΛ does not contain any infinite-dimensional modules.

In this case, ZgΛ is a discrete topological space, Umax consists of the indecomposable injectives in
Λ mod. So, Ziegler-closed subsets containing Umax are in bijection with basic cogenerators in Λ mod.
This is easily seen to be an equivalent description to Enomoto’s theorem in this case.

Example 5.11. Ziegler spectrum in tame hereditary case has been described by Ringel in [160], we
just look here at the easiest case:
We define Q to be the Kronecker quiver 1 2

oooo and Λ = KQ for some field K. Its
Auslander-Reiten quiver (see picture below) has as vertices the indecomposables in Λ mod, they are
divided in three types 1) P preprojectives (in the τ−-orbit of the projectives), they are denoted by
their dimension vector (n+ 1, n) , 2) R regulars, they are determined by the regular simple which
they contain and their dimension vector, the regular simples are denoted by Sλ, λ ∈ K ∪ {∞} =: Ω ,
3) Q preinjectives (in the τ -orbit of the injectives), they are denoted by their dimension vector
(n, n+ 1).

...
...

Sλ[3] Sµ[3]

(2, 1) (4, 3) · · · Sλ[2] Sµ[2] · · · (3, 4) (1, 2)

(1, 0) (3, 2) · · · Sλ Sµ · · · · · · (2, 3) (0, 1)

P R Q
The arrows between the vertices indicate irreducible maps between the indecomposables and the
dotted arrow the Auslander-Reiten translate, for every dotted arrow there is an almost split
sequence. For more details look into [159].
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Then ZgΛ consists of the following points

(1) indecomposables in Λ mod
(2) For every λ ∈ Ω a Prüfer module Sλ[∞], which is the filtered colimit (union) over

Sλ� Sλ[2]� Sλ[3]� · · ·
(3) For every λ ∈ Ω an adic module Ŝλ, which is the limit over · · ·� Sλ[3]� Sλ[2]� Sλ
(4) The generic module G, it is characterized by being an indecomposable module with

HomΛ(G,Sλ) = 0 = HomΛ(Sλ, G) for all λ ∈ Ω

Now, Umax = {(1, 2), (0, 1)} only consists of the two indecomposable injectives in Λ mod. Given a
subset U ⊆ ZgΛ containing Umax we find T,M ⊆ Ω

Ufin := {U ∈ U | U ∈ Λ mod, U /∈ Umax}

UT,M := Umax ∪ {St[∞] | t ∈ T} ∪ {Ŝm | m ∈M} ∪ {G}

such that U = Umax ∪ Ufin ∪ UT,M or U = Umax ∪ Ufin ∪ UT,M \ {G}. Following Ringel’s
characterization in [160] we find that U is Ziegler-closed iff

(a) Ufin finite, then it and T,M can be arbitarily chosen (also empty is allowed) and
U = Umax ∪ Ufin ∪ UT,M or if T = M = ∅ we can also have U = Umax ∪ Ufin.

(b) Ufin infinite, then always G ∈ U but T,M must satisfy the following.
(c1) If Ufin ∩ P is infinite, then M = Ω (all adics in)
(c2) If Ufin ∩Q is infinite, then T = Ω (all Prüfer in)
(c3) For every λ ∈ Ω, if Ufin ∩ {Sλ[n] | n ∈ N} is infinite, then λ ∈ T ∩M

Before we start we need to understand some properties of the functors HomΛ(−, U) and Ext1
Λ(−, U)

for points of type (2,),(3),(4). In [161, p. 46] and [60, section 3] we found the following vanishing
where we set S = Sλ and denote by Rλ be (the tube of) all regular modules with S as a submodule.

HomΛ(R, G) = HomΛ(Q, G) = 0 = Ext1
Λ(R, G) = Ext1

Λ(P, G)

HomΛ(R, Ŝ) = HomΛ(Q, Ŝ) = 0 = Ext1
Λ(P, Ŝ) = Ext1

Λ(Rµ, Ŝ) µ 6= λ

HomΛ(Rµ, S[∞]) = HomΛ(Q, S[∞]) = 0 = Ext1
Λ(R, S[∞]) = Ext1

Λ(P, S[∞]) µ 6= λ

As a consequence we see: If U ∈ {G, Ŝ, S[∞]} and σ a short exact sequence in Λ mod with all three
terms in either add(P), add(R) or add(Q), then Hom(σ, U) is exact.
As there are very many Ziegler-closed sets in this case, we focus on two types:

(I) Either Ufin = ∅, these give exact structures containing all almost split sequences.

(II) U = Ufin, these are so-called Auslander-Solberg exact structures. Here, this is still an
Auslander-Reiten category, the almost split sequences are precisely the ones of Λ mod not
starting in Ufin.

Now, we look at the exact structures in these cases:

(I) For U = {U}, we set Ext1
U := Ext1

EU .
We start with the unique maximal not abelian exact structure in this case U = {G},

then Ext1
G(X ,Y) = Ext1

Λ(X ,Y) for all (X ,Y) ∈ {P,R,Q}2 \ {(Q,P)} and Ext1
G(Q,P) = 0

(for this we leave the proof out). The interesting thing is that this is an exact substructure
of global dimension ≥ 2 (probably = 2), since the following exact sequence σ is not zero in
Ext2

G(Q,P): Let R be a regular module, take a projective Λ-module resolution and an
injective Λ-module resolution of R and concatenate to an exact sequence σ

P1 � P0 → I0 � I1

Observe, this implies for all not abelian exact structures of type (I) that Ext1(Q,P) = 0.
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Next, we consider U = {Ŝ}, we have Ext1
Ŝ

(X ,Y) = Ext1
G(X ,Y) for all (X ,Y) 6= (Rλ,P)

and Ext1
Ŝ

(Rλ,P) = 0.

Now, we consider U = {S[∞]}. Then Ext1
S[∞](Q,Rλ) = 0 and

Ext1
S[∞](X ,Y) = Ext1

G(X ,Y) for all (X ,Y) ∈ {P,Q,Rµ, µ ∈ Ω}2 \ {(P,Rλ)}.

In both cases U = {Ŝ} or U = {S[∞]} is the global dimension of EU still ≥ 2. Just look
at the exact sequence σ as above. Choose in its definition R to be a regular module R with
no summand in the tube λ, then for both exact substructures it gives an exact sequence
which is not 2-split.

Now, we look at intersections of these exact structures and respectively unions of the
Ziegler-closed sets.

When M = Ω and T = ∅ then the exact structure consists of ses σ = σp ⊕ σrq such that
σp is an exact sequence in add(P) and σrq is an exact sequence in add(R∪Q). It is very
easily seen to be hereditary exact.

When M = ∅ and T = Ω then the exact structure consists of ses σ = σpr ⊕ σq such that
σpr is an exact sequence in add(P ∪R) and σq is an exact sequence in add(Q). It is very
easily seen to be hereditary exact.

The case T = M = Ω, then this is the minimal exact structure containing all almost
split sequences. The short exact sequences in this structure are σp ⊕ σr ⊕ σq with σp is an
exact sequence in add(P), σr is an exact sequence in add(R) and σq is an exact sequence in
add(Q). Again, we easily see that this is hereditary exact.

(II) Ufin =: H. The exact structure corresponding to U is just given by all short exact
sequences such that Hom(−, H) is exact on it for all H in H, we write E = (Λ mod, FH).
This case is well-studied in [15], [13], [14]. If H is finite, then the exact structure always
has enough projectives and enough injectives given by add(H). Its global dimension can be
characterized as follows gldim E ≤ k is equivalent to the following two conditions (i)
gldim EndΛ(

⊕
H∈HH) ≤ k + 2 and (ii) idE Λ ≤ k.

For Λ = KQ with Q the Kronecker quiver every global dimension can occur. This can
be seen directly, just take H = {(0, 1), (1, 2), (3, 4), (5, 6), (7, 8), · · · , (2n− 1, 2n)}. Then
injective coresolutions are calculated via left add(H)-approximations and it can be easily
seen that minimal injective coresolutions have at most (n+ 1)-injective modules, e.g.

(2n, 2n+ 1)� (2n− 1, 2n)⊕2 → (2n− 3, 2n− 2)⊕2 → · · · → (1, 2)⊕2 � (0, 1)

If you take H = {Sλ, Sλ[3]}, then you find idSλ[2] =∞ and therefore we have infinite global
dimension.

Another class of examples always gives hereditary exact substructures, take
H = {(n, n+ 1) | 0 ≤ n ≤ N} for some N ∈ N, then the cogenerator add(H) is closed under
quotients, this is easily seen to imply that the corresponding exact structure is hereditary
exact.

Once you take H infinite, it is also easy to find infinite global dimensions:

H = {(2n− 1, 2n) | n ∈ N}

Using minimal injective coresolutions for (2n, 2n+ 1) for all n ∈ N, we find objects of
injective dimension n for every n ∈ N, this implies gldim =∞.

Example 5.12. We describe all exact substructures on finitely generated modules over a
commutative discrete valuation ring R with maximal ideal P . We recall the description of the
Ziegler spectrum from [154, Section 5.2]:
The points in ZgR are:

(a) indecomposable modules of finite length R/Pn, n ≥ 1
(b) the P -adic completion R = limR/Pn (this is the limit over · · · → R/P 2 → R/P = k)
(c) The Prüfer module RP∞ = colimR/Pn (this is the colimit over k = R/P → R/P 2 → · · · )
(d) the quotient division ring Q = Q(R) of R
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Now, Umax = {Q,RP∞} is the Ziegler-closed set given by the indecomposable injective R-modules.
We also observe that Zg′R := {R} ∪ Umax is Ziegler-closed.
Next, all Ziegler-closed subsets containing Umax are given by:

(1) for ∅ 6= L ⊆ N finite, we have

UL := {R/Pn | n ∈ L} ∪ Umax
(2) for ∅ ⊆ L ⊆ N arbitrary subset we have

VL := {R/Pn | n ∈ L} ∪ Zg′R

So let us describe the exact structures on C = Rmod the category of finitely generated left
R-modules corresponding to these closed sets:

(max) Trivially Umax corresponds to the abelian structure on C, this is hereditary and with enough
projectives (but not with enough injectives)

(min) and ZgR corresponds to the split exact structure.
(Zg’) The Ziegler-closed set Zg′R corresponds to the exact structure E ′ making the torsion functor

exact. This is a hereditary exact structure , cp. example...
(UL) This corresponds to the exact substructure EL such that HomR(−, R/Pn), n ∈ L are exact

functors to abelian groups.
(VL) This corresponds to the exact substructure E ′L such that the torsion functor and

HomR(−, R/Pn), n ∈ L are exact.

First, of all in general how can one see that for ∅ 6= L ⊆ N finite: EL and E ′L are different exact
structures?
Take a short exact sequence R� R� R/Pn and the pushout along R� R/Pm, this gives an exact
sequence R/Pm� R/Pm+n � R/Pn. But the cartesian square induces another exact sequence

R� R/Pm ⊕R� R/Pn

It is easily seen to be not exact in E ′ if n 6= m and we conclude that Ext1
E ′(R/P

n, R) = 0. But if you

apply HomR(−, R/P `) using HomR(R/P s, R/P `) = R/Pmin(s,`) we see that this is exact for n,m
both larger or equal than `.
We say that L has gaps if there is an interval [a, b] such that [a, b] ∩ L = ∅ and b+ 1 ∈ L and
a− 1 ∈ L if a > 1. If L has gaps then gldim EL =∞ = gldim E ′L (for E ′L we also allow L to be an
infinite subset).

In this case one can always find an infinite injective E(′)
L -coresolution for an R/P s some s ∈ [a, b]. We

give them as sequence of short exact sequences.

(a = 1) Take s = b and R/P b� R/P b+1 � R/P , then continue with R/P � R/P b+1 � R/P b and
repeat with the first short exact sequence etc.

(2) If a > 1 and b+ a even then we take s = 1
2(a+ b) and the short exact sequence

R/P s → R/P a−1 ⊕R/P b+1 � R/P s

and then continue with the same sequence.
(3) If a > 1 and b+ a uneven then we take s = 1

2(b+ a− 1) and first

R/P s� R/P a−1 ⊕R/P b+1 � R/P s+1 then R/P s+1 � R/P a−1 ⊕R/P b+1 � R/P s and
then repeat with the first sequence.

If L has no gaps and L 6= N then L = [1, n] for some n ∈ N. The set {R/P ` | ` ∈ L} is closed under
quotients, so injective coresolutions in this class of modules will always end after one short exact
sequence. We show in the next Lemma that these exact structures are hereditary exact.

Lemma 5.13. Let R denote a commutative discrete valuation ring with maximal ideal P and let
n ∈ N. We have a functor radn : Rmod→ Rmod defined by radnM = PnM . Let L = [1, n] ⊆ N.
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(1) Then we have Ext1
EL(−,−) = radn Ext1

R(−,−) and Ext1
E ′L

(−,−) = radnR Ext1
E ′(−,−)

(2) For every EL-exact sequence σ and every object X, the sequences Ext1
EL(X,σ) is right exact.

For every E ′L-exact sequence σ and every object X, the sequences Ext1
E ′L

(X,σ) is right exact.

In particular, EL and E ′L are hereditary exact.

Proof. (1) We first describe the R-module structure on
(a) Ext1

R(R/Pm, R/P `) ∼= R/P s where s = min(m, `). For a, b ∈ N we write
σa,b ∈ Ext1

R(R/Pm, R/P `) for an exact sequence with middle term R/P a ⊕R/P b
(whenever this exist). In R/P s we pick P = (p) and we have the following mult. by p
1 7→ p 7→ p2 7→ · · · 7→ ps−1 7→ 0 this corresponds to the following on the Ext-group
(a1) If s = ` ≤ m we have

σ0,m+` 7→ σ1,m+`−1 7→ · · · 7→ σ`−1,m+1 7→ 0

Then we have radn Ext1
R(R/Pm, R/P `) ∼= R/P s−n whenever n < s and zero

otherwise. For n < s = ` it is the image of pn, i.e.
σn,m+`−n 7→ σn+1,m+`−n−1 7→ · · · 7→ σ`−1,m+1

(a2) If ` > m = s we have
σ`+m,0 7→ σ`+m−1,1 7→ · · · 7→ σ`+1,m−1 7→ 0

Then we have radn Ext1
R(R/Pm, R/P `) ∼= R/P s−n whenever n < s and zero

otherwise. For n < s = ` it contains the following elements
σ`+m−n,n 7→ σ`+m−n−1,n+1 7→ · · · 7→ σ`+1,m−1

(b) Ext1
R(R/Pm, R) ∼= R/Pm we write σa for the extension with R⊕R/P a as middle term.

Then the multiplication by p is given by
σ0 7→ σ1 7→ · · · 7→ σm−1 7→ 0
The submodule radn Ext1

R(R/Pm, R) is of course zero is n ≥ m and if n < m is given
by the following
σn 7→ σn+1 7→ · · · 7→ σm−1

We claim Ext1
E[0,n]

= radn Ext1
R. First observe that in EL: R/P a 1 ≤ a ≤ n are injectives

and they are also projectives. So for s = min(`,m) ≤ n we have Ext1
E[0,n]

(R/Pm, R/P `) = 0

and for m ≤ n we have Ext1
E[0,n]

(R/Pm, R) = 0.

So we may always assume wlog that n < min(`,m), then proceed by induction over n.
For n = 1, a short exact sequence of in Rmod is in E[0,1] iff the indcomposable summands of
number of the indec. summands of the outer terms add up to the indec summands of the
middle term. This means in case (a) all exact sequence are in this exact structure except
σ0,m+n and σm+n,0, in case (b) all except σ0.

For n > 1, it is enough to observe that Hom(−, R/Pn) is
(ad a1) exact on σn,m+`−n and not exact on σn−1,m+`−n+1

(ad a2) exact on σ`+m−n,n and not exact on σ`+m−n+1,n−1

(ad b) exact on σn and not exact on σn−1

Then the rest follows by induction hypothesis.
Now, for E ′L one observes that Ext1

E ′L
(X,Y ) = Ext1

EL(X,Y ) for all X,Y torsion, and for

Y free it is zero.
As Ext1

E ′(X,Y ) = Ext1
R(X,Y ) for all X,Y torsion and for Y free it is zero. Then the

claim Ext1
E ′L

follows from the proof for Ext1
EL .

(2) Taking n-th radical of an epimorphism in Rmod is again an epimorphism - as the n-th
radical can be described as the image of multiplication by pn (making it also a quotient and
not ony a submodule). As Ext1

R(X,σ) (resp. Ext1
R(σ,X)) is right exact for all exact

sequences σ, we conclude that radn Ext1
R(X, f) (resp. radn Ext1

R(g,X)) are epimorphisms
for f an epimorphism and g a monomorphism.

Of course, on general exact sequence radn is not a middle-exact functor (but this follows
from (1) since for σ ∈ EL the sequences Ext1

EL(X,σ) and Ext1
EL(σ,X) are middle exact). In

particular, the right exactness claim follows.
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For Ext1
E ′L

(X,σ) we can restrict to X indecomposable torsion and as σ in E ′, it fits into

an exact sequence of ses σtor � σ � σfree with σtor the torsion part and σfree the free part,

and we conclude that Ext1
E ′L

(X,σ) = Ext1
E ′L

(X,σtor) = Ext1
EL(X,σtor) is right exact.

�

After understanding exact substructures of Rmod for R a commutative discrete valuation ring, we
are ready to generalize this to commutative Dedekind domains:

Example 5.14. We describe all exact structures on finitely generated left modules over a
commutative Dedekind domain.
The Ziegler spectrum is studied as a more general case of the discrete valuation ring, again we follow
[154, Section 5.2] for its description: Let mSpec(R) := {P | max. ideal in R}. The points in ZgR
are:

(a) indecomposable modules of finite length R/Pn, n ≥ 1, and P ∈ mSpec(R).
(b) the P -adic completion RP = limR/Pn (this is the limit over · · · → R/P 2 → R/P ) for

P ∈ mSpec(R).
(c) The Prüfer module RP∞ = colimR/Pn (this is the colimit over R/P → R/P 2 → · · · ) for

P ∈ mSpec(R).
(d) the quotient division ring Q = Q(R) of R

Now, Umax = {Q} ∪ {RP∞ | P ∈ mSpec(R)} is the Ziegler-closed set given by the indecomposable
injective R-modules. We describe all Ziegler-closed subsets containing Umax (following loc. cit.).
First we fix some notation, let L ⊆ mSpec(R)×N always denote such a subset and for P ∈ mSpec(R)
let LP := {` ∈ N | (`, P ) ∈ L}. Subsets of indecomposable finite length modules are of the form
FL = {R/P ` | (P, `) ∈ L}. We fix a closed subset U and denote by FL its points of finite length.
(type 1) L = ∅. For every M ⊆ mSpec(R) we have a closed subset Zg′M = Umax ∪ {RP | P ∈M}. We
define Zg′ := Zg′mSpec(R).

(type 2) 0 < |L| <∞. Then U = FL ∪ Zg′M for an arbitrary subset M ⊆ mSpec(R) (the sets L and
M are independent from each other).
(type 3) |L| =∞. We define ML := {P ∈ mSpec(R) | ∃ n ∈ N : (P, n) ∈ L} and in this case
U = FL ∪ Zg′ML

.
Let us look at the corresponding exact substructures:

(type 1) Make all P -torsion functors exact for all P ∈M . As we are dealing with hereditary torsion
pairs, the torsion functors are left exact and .. applies to show that these are hereditary
exact structures.

(gaps) Let us assume we are in type 2 or type 3.
If for some P ∈ mSpec(R) we have LP has a gap (see previous example), then we find

an infinite injective coresolution as in the previous example and it follows gldim =∞.
(no gaps) Let us assume we are in type 2 or type 3. If all non-empty LP have no gaps for every

maximal ideal P , then we find LP = [1, nP ] for an nP ∈ N. We claim that we only have
hereditary exact structures in this case. We give the proof in the next Lemma.

Now, let R be a commutative Dedekind domain. Observe that Ext1
R only takes values in torsion

modules. We write ()P for its P -torsion submodule and ()tor for the remaining torsion summands.
So, for two finitely generated R-modules X = Rt ⊕XP ⊕Xtor, Y = Rs ⊕ YP ⊕ Ytor we have

Ext1
R(X,Y ) = Ext1

R(X,Y )P ⊕ Ext1
R(X,Y )tor

Ext1
R(X,Y )P = Ext1

R(XP , YP ⊕Rs)
Ext1

R(X,Y )tor = Ext1
R(Xtor, Ytor ⊕Rs)

Then Ext1
R = (Ext1

R)P ⊕ (Ext1
R)tor is a direct sum decomposition of bifunctors (but this does not

imply that these subfunctors are middle exact for the abelian structure on Rmod). Let
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FP : Rmod→ Rmod be the functor X 7→ Rt ⊕XP (resp. Ftor(X) = Rt ⊕XP ), induced by the
projection into the torsionfree part (in the split hereditary torsion pairs considered in (type 1)).
They preserve epimorphisms. In particular, if f : A� B is an epimorphism, then the following are
also epimorphism as Ext1

R(M,−) preserves epimorphisms for all objects M

Ext1
R(X, f)P = Ext1

R(FP (X), FP (f))

Ext1
R(X, f)tor = Ext1

R(Ftor(X), Ftor(f))

As it looks simpler let us look at the case of only one prime:

Lemma 5.15. Let R be a commutative Dedekind domain. Let P be a fixed maximal prime ideal. We
define for M ∈ Rmod, P ∈ mSpec(R), n ∈ N the following radnP M := PnM . If L = {P} × [1, n] we
denote by EL the exact structure corresponding to FL ∪ Umax.

(1) Then Ext1
EL = (radnP Ext1

R)⊕ (Ext1
R)tor

(2) The exact structure EL is hereditary exact.

Proof. (1) As for different primes the torsion submodules are HomR- and
ExtR-orthogonal, the exactness of Hom(−, R/P a) for some a ∈ N only depends on the
P -torsion and the free module summand. The same proof as in Lemma 5.13 applies.

(2) By the discussion before the Lemma and knowing that radn preserves epimorphisms, it
follows from (1) that Ext1

EL preserves epimorphisms. Therefore EL is hereditary exact.

�

But it actually is the same for an arbitrary subset of primes:

Lemma 5.16. Let R be a commutative Dedekind domain.
Let L =

⋃
P∈M{P} × [1, nP ] ⊆ mSpec(R)× N and E = EU for a Ziegler-closed subset U with modules

of finite length given by FL, then E is hereditary exact.

Proof. (of Cor. 5.16) U = FL ∪ Zg′M for some subset M ⊆ mSpec(R) (type 2 or type 3).
Let us denote by an index tor(M c) the torsion summand corresponding to the complement of M .
The above Lemma generalizes to

Ext1
EL =

⊕
P∈M

(radnPP Ext1
R)⊕ (Ext1

R)tor(Mc)

This is clear as intersection of exact substructures correspond to intersecting the corresponding
Ext1-subfunctors.
This functor is still preserving epimorphisms as before. �

6. The functorial point of view

Let E be an essentially small exact category. We consider three classical assignments for F ∈ ex(E)

(i) the Auslander category
(ii) its category of inflation represented functors
(iii) the category of deflation represented functors (called effaceable functors)

all will be considered fully exact subcategories in mod1A (where A is the underlying additive
category). By a results of [90] and [72], we have characterizations of the subcategories when we look
only at exact substructures of E .

Recall a Serre subcategory is a full additive subcategory F in an exact category E with the following
property: For every E-short exact sequence X → Y → Z we have Y ∈ F if and only if X,Z ∈ F .
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Definition 6.1. We denote by P2(A) the full subcategory of ModA given by all functors F such
that there exists an exact sequence

0→ HomA(−, X)→ HomA(−, Y )→ HomA(−, Z)→ F → 0

for some X,Y, Z in A.

G2(A) = {F ∈ P2(A) | ∃(i, d), (j, p) ∈ KC(A),F ∼= coker HomA(−, j ◦ d)}
C2(A) = {F ∈ P2(A) | ∃(i, d) ∈ KC(A),F ∼= coker HomA(−, d)}
J 1(A) = {F ∈ P2(A) | ∃(j, p) ∈ KC(A),F ∼= coker HomA(−, j)}

Apriory these are additive categories. The grade of F ∈ ModA is defined as the supremum of all

natural numbers i ≥ 0 such that ExtjModA(F,HomA(−, A)) = 0∀A ∈ A for all j < i (of course, only if
this exists, else we define it to be ∞). Categories defined in terms of grade equalities are by
definition extension-closed in Mod−A. We have

G2(A) ⊆ {F ∈ P2(A) | grade(F) ∈ {0, 2}}
C2(A) = {F ∈ P2(A) | grade(F) = 2}
J 1(A) ⊆ {F ∈ P2(A) | grade(F) = 0}

The two inclusions follow from the definition. The equality in the middle is proven in [72], Lemma
2.3, so C2(A) is extension-closed in P2(A). (These subcategories G2(A),J 1(A) can be fully
characterized using the Auslander-Bridger transpose, if one is keen to avoid KC(A) - look at [90],
chapter 5 and the HKR-bijection for more details). We do not mind working with KC(A) and use
these not always extension-closed subcategories.

Now we define our categories of interest.

Definition 6.2. Let E be essentially small exact. The Auslander exact category of E is defined
as the full subcategory of P2(A) given by

AE(E) = {F ∈ P2(A) | F = coker(HomA(−, f)), with f E-admissible}
It has as a subcategory

eff(E) = AE(E) ∩ C2(A) = {coker(HomA(−,d) | d E-deflation}
called the subcategory of effaceable functors and another subcategory

H(E) := {coker HomA(−, i) | i E-inflation}
which we refer to as tf-Auslander category (cf. Appendix B).

Obviously: AE(E) ⊆ G2(A), eff(E) ⊆ C2(A),H(E) ⊆ J 1(A).
In [90, Prop. 3.5, Prop.3.6, Prop.5.4], it is shown that AE(E) is extension-closed in mod1A, even
resolving in P2(A), and (H(E), eff(E)) is a torsion pair in AE(E). In particular, H(E) is also a
resolving subcategory of AE(E).
To state the results that we look at two (different) dualities. Enomoto found the following duality
between C2(A) and C2(Aop)

Theorem 6.3. (Enomoto) Let A be an idempotent complete small additive category. There exists a
duality E : C2(A)op → C2(Aop) such that
E(coker HomA(−, d)) ∼= coker(HomA(i,−)) for every kernel-cokernel pair (i, d) in A.

Then he can characterize exact structures as follows

Theorem 6.4. (Enomoto’s bijection) Given a small idempotent complete additive category A. Then
the assignments E 7→ eff(E) and C 7→ S := {(i, d) ∈ KC(A) | coker Hom(−,d) ∈ C} give inverse
bijections between

(1) exact structures on A
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(2) full subcategories C ⊆ C2(A) with C is a Serre subcategory in mod1A and E(C) is a Serre
subcategory in mod1Aop

If we denote by Emax the maximal exact structure on A with corresponding Serre subcategory Cmax
then (2) coincides with the following.

(2’) Serre subcategories C of Cmax

Where (2’) is an observation of Kevin Schlegel (cf. [173, Cor. 2.3]).

The second duality is Auslander-Bridger transpose. We need the ideal quotient with respect to the
projectives (called the stable category) - this exists even if the category has not enough projectives.
As there are no grade 0 objects in C2(A) the composition

C2(A)→ mod1A → mod1A

is still fully faithful.

Theorem 6.5. Let A be an idempotent complete small additive category. Then we have a duality
Tr: (mod1A)op → mod1(Aop) which maps coker HomA(−, f) to coker HomA(f,−).

Remark 6.6. On objects (Tr ◦ Ω)(C) ∼= E(C) for C in C2(A) but in general Ω is not an endofunctor
on the stable category. (But on stable categories of exact categories with enough projectives, Ω
defines an endofunctor.)

For a subcategory X ⊆ mod1A, we denote by Tr(X ) the full subcategory of mod1Aop consisting of
objects X such that X ∼= Tr(X′) in mod1Aop for some X ′ in X .

Remark 6.7. By definition

Tr(G2(A)) = G2(Aop), ΩTr(J 1(A)) = J 1(Aop)

For every X ⊆ G2(A) containing all representables: TrTr(X ) = X .
For every J ⊆ J 1(A) containing all representables: ΩTrΩTr(J ) = J .

Theorem 6.8. (HKR-bijection) Given a small idempotent complete additive category A. Then the
assignments E 7→ AE(E) gives a bijection between

(1) exact structures on A
(2) resolving subcategories X ⊆ P2(A) with all objects have either grade 0 or 2 such that

Tr(X ) ⊆ P2(Aop) is resolving and all objects have either grade 0 or 2.

Furthermore, in this case, the full subcategory of grade 2 objects is AE(E) ∩ C2(A) = eff(E) and the
one of grade 0-objects is AE(E) ∩ J 1(A) = H(E).

Open question 6.9. In (2) we could use G2(A) as well. Furthermore, we can also use the maximal
exact structure, let Xmax be the resolving subcategory of P2(A) corresponding to the maximal exact
structure. Is the following (2’) equivalent to (2)?
(2’) Resolving subcategories X in Xmax.

We add the following third bijection.

Theorem 6.10. Given a small idempotent complete additive category A. Then the assignments
E 7→ H(E) gives a bijection between

(1) exact structures on A
(2) full subcategories J ⊆ J 1(A) such that J ⊆ P1(A) and ΩTr(J ) ⊆ P1(Aop) are both

resolving.
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Open question 6.11. Again, we look at Jmax to be the resolving subcategory of P1(A)
corresponding to the maximal exact structure, then can we describe the subcategories in (2) also as
the following?
(2’) Resolving subcategories J in Jmax.

Remark 6.12. As P1(A) is an hereditary exact (i.e. gldim ≤ 1) with enough projectives we have
that a full subcategory is resolving if and only if it is fully exact, closed under summands and
contains the projectives.

We need the following lemma for the proof.

Lemma 6.13. If i is a monomorphism in A such that F = coker HomA(−, i) ∈ J 1(A) then there is
(i, p) ∈ KC(A). Also, if A is idempotent complete then J 1(A) is closed under taking direct sums and
summands (in P1(A)).

Proof. By assumption we can find a commutative diagram

X
j //

a
��

Y

b
��

q // Z

U
i // V

with (j, q) ∈ KC(A) and X
(a,j)t−−−→ U ⊕ Y (i,−b)−−−→ V (call this (*)) a split exact sequence (this implies

in particular that the commuting square is a pullback-pushout diagramm in A). Then there exists
p : V → Z with q = pb and p = coker(i) - see e.g. [62], Lemma 2.3 (or prove this directly). We claim
that (using the split exact sequence) we can also show i = ker(p) (i.e. (i, p) ∈ KC(A).
Given r : R→ V with pr = 0. We claim that r factors over i (as i is a monomorphism, such a
factorization is unique). We form the pullback (see below) of (*) along r in the split exact category
and consider the commutative diagramm:

X //

=
��

E
d //

(u,y)t

��

R

r
��

X // U ⊕ Y
(i,−b) //

(0,−q) ##GGGGGGGGG V

p

��
Z

As (0,−q) ◦ (u, y)t = 0 we find that (u, y)t factors uniquely through
(1, j)t = ker(0,−q) : U ⊕X → U ⊕ Y , i.e. y = jx for an x : E → X. Therefore, we have (using the
two commuting squares from before)

rd = iu− bjx = iu− iax = i(u− ax)

As d is a split epimorphism there exists an s : R→ E with ds = 1R and therefore r = i(u− ax)s as
claimed.
Closed under direct sums: Straight forward using the horseshoe lemma and the fact that direct sums
of kernel-cokernel pairs are again kernel-cokernel pairs.
Now assume F ⊕G ∈ J 1(A). As P1(A) is closed under taking summands, choose monomorphisms
i, j such that F = coker HomA(−, i), G = coker HomA(−, j) and by the horseshoe lemma we conclude
F ⊕G = coker HomA(−, i⊕ j). By the previous part it follows that there exists (i⊕ j, g) ∈ KC(A).
We look at projection onto and then inclusion of the summand i of the two-term complex given by
i⊕ j. This induces an idempotent endomorphism e on the cokernel Z → Z. By assumption this

idempotent is split admissible, i.e. factors as Z
π−→ Z1

ι−→ Z with π split epimorphism and ι split
monomorphism. Then, it is straight forward to see that g = p⊕ q with (i, p), (j, q) ∈ KC(A) and
therefore F,G ∈ J 1(A).

�
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Proof. (of Thm 6.10). Given an exact structure E , the category J = H(E) ⊆ J 1(A) and
ΩTr(J ) = H(Eop) ⊆ J 1(Aop) by definition. As observed before J is resolving in AE(E) which is
resolving in P2(A) by Thm 6.8, this implies that it is also resolving in P1(A). Dually, we also have
ΩTr(J ) is resolving in P1(Aop), so the map is well-defined.
Conversely given J as in (2), we consider S = {(i, d) ∈ KC(A) | coker HomA(−, i) ∈ J } and claim
that E = (A,S) is an exact structure. As J contains the projectives, all split exact sequences are
contained in S. For (i, d) ∈ S we call i an E-inflation and d an E-deflation. We claim the following

(e1) composition ji of two (composable) E-inflations j,i are E-inflations
(e2) for every morphism f and every E-inflation i (starting at the same object), the morphism(

i
−f
)

is an E-inflation with cokernel (f ′, i′) where i′ is again an E-inflation.

Together with the dual statements for the deflations implied by ΩTr(J ) having the same properties
it follows that E is an exact category.
We use the following notation PX = HomA(−, X) and for a morphism f : X → Y we have
Pf = HomA(−, f) : PX → PY .

(e1) Let i : X → Y and j : Y → V be two E-inflations in A, we look at the commutative diagram
where F,G,H are defined as cokerPi, cokerPji, cokerPj respectively.

0 // PX
Pi //

=

��

PY //

Pj
��

F //

��

0

0 // PX
Pji //

Pi
��

PV //

=

��

G //

��

0

0 // PY
Pj // PV // H // 0

In particular i, j, ji are monomorphisms and the three rows are exact (in P1(A)). Now,
using the ker-coker sequence (e.g. [49], Prop. 8.11), in Mod−A, we can deduce that
0→ F → G→ H → 0 is a short exact sequence on P1(A). As J is extension-closed, it
follows that G is an object in J . By Lemma 6.13 it follows that ji is an E-inflation.

(e2) We have

(
i
−f

)
=

(
i 0
0 1

)(
1 0
−f 1

)(
1
0

)
and as composition and direct sums of E-inflations

are E-inflations by (e1) and Lemma 6.13 we conclude that

(
i
−f

)
is again an E-inflation. So

there exists (

(
i
−f

)
,
(
g j

)
) ∈ KC(A), i.e. we have a pullback-pushout diagramm in A

X
i //

f
��

Y

g

��
U

j // V

We need to see that j is an E-inflation. It is again a monomorphism in A, therefore we have
F = cokerPj ∈ P1(A). We will show F ∈ J :

As we have an (i, p : Y → Z) ∈ KC(A) we can find a cokernel q = coker(j) with p = qg.
But j = ker q is not directly clear.

We look at the covariant functors PA = HomA(A,−) and define G := cokerPi. We find
a commutative diagram with rows exact in Mod−Aop:

0 // PZ // P Y // PX // Tr(G) // 0

0 // PZ //

=

OO

P V //

OO

PU //

OO

Tr(F)

OO

// 0
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We get an induced commutative diagram with exact rows

0 // PZ // P Y // ΩTr(G) // 0

0 // PZ //

=

OO

P V //

OO

ΩTr(F)

OO

// 0

Therefore, the right hand square is a pullback-pushout square and we get an induced exact
sequence

0→ P V → P Y ⊕ ΩTr(F)→ ΩTr(G)→ 0

As ΩTr(J ) is resolving, it follows that ΩTr(F) ∈ ΩTr(J ). This implies F ∈ J .

If we denote this exact category by E = EJ , then we easily see by definition J = H(EJ ).
Also, by definition we have for an exact structure E that E ≤ EH(E) is an exact substructure. For
equality, we need to see: If (i : X → Y, p) ∈ KC(A) such that F := cokerPi ∈ H(E) then i is an
E-inflation. By definition there exist an E-inflation j : U → V such that cokerPj = F . Looking at the
projective presentations we get a morphism of exact sequences

0 // PU
Pj //

Pu
��

PV //

Pv
��

F

=

��

// 0

0 // PX
Pi // PY //

OO

F // 0

Since the right hand square has to be bicartesian it follows that we have a split exact sequence
PU � PX � PV → PY which has to be split as PY is projective. This means we have split exact
sequence U � X ⊕ V � Y , in particular we have a pullbak-pushout diagram in A

U
j //

u
��

V

v
��

X
i // Y

As j is an E-inflation it follows that i is also one. �

7. Appendix on equivalences of categories

We shortly review three equivalences of 2-categories for small exact categories.
We will only consider strict 2-categories, i.e. they are enhanced in the category of small categories.
This means 1-morphisms will be certain functors between categories and 2-morphisms will be
natural transformations between them. We only consider strict 2-functors, i.e. these are which
preserve compositions of 1-morphisms and compositions of 2-morphisms.

(A) The Butler-Horrock theorem (seeing exact categories as extriangulated categories)
(B) The Auslander correspondence (going to functor categories)
(C) Ind-completion (passes from small exact to locally coherent exact structures)

8. Appendix A: Going into extriangulated - The Butler Horrocks Theorem

For a small additive category A we denote by Emax its maximal exact structure and we set
Ext1

A := Ext1
Emax .

The Butler Horrock’s theorem (Thm. 3.4) gives for a small additive category a one-to-one
correspondence between closed sub-bifunctors of Ext1

A and exact structures on A. By [140], the pair
(A,Ext1

E) gives an extriangulated category.
We have Ex is the 2-category of small exact categories, 1-morphisms are exact functors and
2-morphisms are natural transformations.
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In [37] the 2-category Extri is defined and exact categories are embedded via the Butler-Horrocks
theorem as objects in it. Let BH be the full 2-subcategory of the 2-category of extriangulated
categories with objects in exact categories. It can be described as follows:

(1) Objects are pairs (A,E) of a small additive category A together with an additive bifunctor
E : A×Aop → (Ab) which is a closed sub-bifunctor of Ext1

A.
(2) 1-Morphisms (A,E)→ (A′,E′) are pairs of an additive functor f : A → A′ and a natural

transformation ϕ : E→ E′(f(−), f(−)) of functors on A which satisfies the following
connecting-property : Let E , E ′ be the exact categories corresponding to (A,E), (A′,E′). For
every E-exact sequence (i, p) we have an associated distinguished triangle in Db(E), with

X
i−→ Y

p−→ Z
σ−→ X[1], then we have a distinguished triangle in Db(E ′)

f(X)
f(i)−−→ f(Y )

f(p)−−→ f(Z)
ϕ(σ)−−−→ f(X)[1]

A morphism (f, ϕ) induces a functor Ses(f) : Ses(E)→ Ses(E ′) on the categories of short
exact sequences.

(3) 2-Morphisms between two 1-morphisms (f, ϕ), (g, ψ) : (A,E)→ (A′,E′) are given by
natural transformations Φ: f → g. These always induce natural transformations
Ses(f)→ Ses(g), i.e. for every E-short exact sequence X � Y � Z we have a commutative
diagram with E ′-exact rows

f(X) f(Y ) f(Z)

g(X) g(Y ) g(Z)

ΦX ΦY ΦZ

such that for every morphism of short exact sequences are mapped into the corresponding
3-dimensional diagram.

The connecting property is a reformulation of: The composition E → E ′ → Db(E ′) is a δ-functor in
the sense of Keller ([117]) - or in a modern language: We only want extriangulated functors as
morphisms in BH in the sense of [38, Def. 2.32].

Theorem 8.1. (cf. Thm 3.4 together with [38, Thm 2.34]) The assignment E = (A,S) 7→ (A,Ext1
E),

and mapping an exact functor to the underlying additive functor gives an equivalence of strict
2-categories Ex→ BH.

As morphisms in BH are defined, we can obviously write down the inverse 2-functor.

9. Appendix B: Auslander correspondences as equivalence(s) of 2-categories

We recall the equivalence of 2-categories to Auslander exact categories from [90] and on the way the
explain the similar equivalence of 2-categories to torsionfree subcategories in Auslander exact
categories.
Let E = (A,S) be an essentially small exact category. We have the Auslander exact category and the
tosionfree subcategory assigned to E

AE(E) := modadmA ⊇ modinflA =: H(E)

Here H stands for hereditary (i.e. gldim ≤ 1)1. We endow both with the fully exact substructure
restricted from ModA. As we have no suitable name for it, we call H(E) the tf-Auslander
category (tf stands for torsionfree).

Definition 9.1. We call an additive functor between to exact categories f : E → F
inflation-preserving if it maps E-inflation to F-inflation. We call it left exact if every E-short

1please do not confuse this with the Hall algebra of the exact category
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exact sequence (i, p) is mapped to a pair (f(i), f(p) = j ◦ q) with f(i), j F-inflations and
q = coker f(i) an F-deflation.

Obviously, every left exact functor is inflation-preserving.

We define the following 2-categories
Ex ⊆ ExL ⊆ Exinf

with

(a) Ex is the 2-category of small exact categories, 1-morphisms are exact functors and
2-morphisms are natural transformations.

(b) ExL is the 2-category of small exact categories, 1-morphisms are left exact functors and
2-morphisms are natural transformations.

(c) Exinf is the 2-category of small exact categories, 1-morphisms are inflation-preserving
additive functors and 2-morphisms are natural transformations.

Lemma 9.2. (1) The assignment modadm : E 7→ AE(E) defines a 2-functor which is left adjoint
to Ex ⊆ ExL

(2) The assignment modinf : E 7→ H(E) defines a 2-functor which is left adjoint to the inclusion
Ex ⊆ Exinf

For (1), look at [90, Cor 3.15] and (2) is completely analogue - just observe that the Yoneda
embedding into the Auslander exact category is left exact and the Yoneda embedding into the
tf-Auslander category is only inflation-preserving (and usually not left exact).
Recall the intrinsic definition of an Auslander exact category

Definition 9.3. An exact category E is called an Auslander exact category if it is an exact
category with enough projectives P such that

(1) (⊥P =: eff, cogen(P) =: H) is a torsion pair (here H is the torsionfree subcategory)
(2) Every morphism to an object in eff is admissible with image also in this category
(3) Ext1

E(eff,P) = 0
(4) gldim E ≤ 2

Now we define the following two 2-categories

(d) AE is the 2-category of Auslander exact categories with 1-morphsims are exact functors
mapping projectives to projectives and 2-morphisms are natural transformations.

(e) H is the 2-category of tf-Auslander categories with 1-morphisms are a exact functors
mapping projectives to projectives and 2-morphisms are natural transformations.

Observe that we have a 2-functor
Res : AE→ H

assigning to an Auslander exact category its torsionfree subcategory. Exact functors preserving
projectives restrict to the torsionfree subcategory (as it can be presented as objects which admit an
inflation to a projective).

Theorem 9.4. The 2-functors modadm,modinf induce equivalences of 2-categories

modadm : ExL → AE modinf : Exinf → H
These fit into a diagram which commutes up to

ExL
modadm//

⊆
��

AE

Res
��

Exinf
modinf // H
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This is all adapted from [90, Thm 4.8]. For the second equivalence of 2-categories, we just define the
inverse 2-functor H→ Exinf . On objects assign to a tf-Auslander category H its category of
projectives P(H) and the exact structure such that the inflations are the H-inflations in P(H).
On morphisms, an exact functor f : H → H ′ which restricts to projectives, is restricted to
projectives f |P : P(H)→ P(H ′) an inflation-preserving functor.
A natural transformation Φ: f → g between two exact functors which preserve the projectives,
restricts to a natural transformation Φ|P : f |P → g|P between the restricted functors.

9.0.1. Properties of tf-Auslander algebras.

Remark 9.5. The category H = H(E) is always hereditary exact with enough projectives P. Every
object admits a monomorphism (in H) m : X → PX with PX in P such that HomH(m,P ) is an
isomorphism for all P in P.
If X = coker i for a P-monomorphism i : P1 → P0, then a P-cokernel for i is obtained by the
composition p : P0 → X → PX . This way we find the short exact sequences (i, p) for the exact
structure on P.

Observe in a hereditary exact category with enough projectives: If a monomorphism X → P is an
inflation then X has to be projective as well (this follows since the category is hereditary exact). As
a consequence we see.

Remark 9.6. If H(E) is abelian then it is semi-simple and this implies E is split exact.

We link this with the following concept.

Definition 9.7. ([82], Def.1.1) An exact category is called a 0-Auslander category if it is a
hereditary exact category with enough projectives and for every projective P there exists a short
exact sequence

P → I → X

with I projective-injective.
We say an exact category is torsionfree 0-Auslander category if it is a 0-Auslander category
which is also hereditary torsionfree.

Remark 9.8. We recall [179], Thm B: Let Q be a quasi-abelian category and (T ,F) a torsion-pair
in Q, then T and F are also quasi-abelian.

We also easily deduce the following special cases.

Lemma 9.9. If E is abelian then H(E) is quasi-abelian.
If E has enough injectives then H(E) is a 0-Auslander exact category.

This is particularly interesting as 0-Auslander exact categories have a very strong mutation theory
for tilting subcategories, cf. [82].

Open question 9.10. We are missing an intrinsic characterization of tf Auslander categories.

10. Appendix C: Ind-Completion of (small) exact categories

These notes are based on the recent preprint of Positselski [152] - but we prefer the construction
using the Gabriel-Quillen embedding (this way, we extend Crawley-Boeveys classical dictionary to
exact structures [59]).
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Locally finitely presented additive categories. Here, we give a quick summary of the
correspondence from [59].

Let C an essentially small additive category. We define Ĉ := Mod−C to be the category of all
additive functors Cop → (Ab), we call this the category of (left) C-modules. It is easily seen to be an
abelian category.We have the (covariant) Yoneda embedding

Y : C → Ĉ, X 7→ (−, X) := HomC(−, X)

this is fully faithful, the essential image consists of (some) projective objects which we call
representable functors.
Every object in Ĉ is as a small colimit of representables - for F ∈ Ĉ define the slice category C/F for

F ∈ Ĉ (objects: (X,x), X ∈ C, x ∈ F (X), morphisms f : X → X ′ in C such that F (f)(x′) = x), then

we have a small category and a functor Φ: C/F → Ĉ, (X,x) 7→ (−, X). Its colimit is F = colimC/F Φ.

Definition 10.1. ([8], Expose I) We define the ind-completion
−→
C (in the literature denoted as

Ind(C)) as the closure of C under arbitrary directed colimits: Objects are functors D : I → C from
small filtered categories I. Morphisms are defined as

Hom(D : I → C, E : J → C) := HomMod−C(colim
I

YD, colim
J

YE)

= lim
i∈I

colim
j∈J

HomC(D(i), E(j))

Observe that the Yoneda embedding factors over
−→
C . Via the Yoneda embedding, we can identify

this with the following full subcategory of Ĉ
−→
C := {colim

i∈I
(−, Xi) | (Xi)i∈I I−shaped diagram in C with I directed set }

Remark 10.2. The second description uses that closure under small filtered colimits it the same as
closure under small directed colimits, cf. [3], Thm 1.5.

Proposition 10.3. ([8], Expose I, Prop. 8.6.4) Ind-completion is a 2-functorial.

An additive functor f is faithful (resp. fully faithful) if and only if
−→
f is faithful (resp. fully faithful).

Furthermore the ind-completion
−→
f of an additive functor f : C → D is an equivalence if and only it

is fully faithful and the essential image inclusion Im f → D induces an equivalence on idempotent
completions.

Let D be an additive category, we denote by Add(C,D) the category of additive functors from C to D
and Addfc(C,D) the subcategory of functors which preserve directed colimits (whenever these exist).

Ind-completion can be defined for arbitrary additive and even arbitary categories categories and can
be characterized by a universal property such as:

Lemma 10.4. (Universal property of ind-completion, cf. [8], Expose I, Prop. 8.7.3) Let C be

a small additive category, then
−→
C has all directed colimits.

Assume that D is an additive category which is closed under arbitrary directed colimits.

Precomposition with C →
−→
C is an equivalence of categories

Addfc(
−→
C ,D)→ Add(C,D)

Furthermore, it also has the following property

Lemma 10.5. ([59], Lem. 1)
−→
C is idempotent complete.

For small additive categories, we have an alternative description of the ind-completion found in [59].

Definition 10.6. Let C be a small additive category. We say that an object F in Ĉ is flat if the
tensor functor F ⊗C − : ˆCop → (Ab) is exact. We denote by Flat(Cop, Ab) the full subcategory of flat
functors.
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Theorem 10.7. ([59], Thm p. 1646)
−→
C = Flat(Cop, Ab) and F ∈

−→
C is equivalent to

(1) C/F is filtered
(2) Every natural transformation coker(−, f)→ F factors over a representable.

Definition 10.8. Let A be an additive category. We say an object X in A is finitely presented if
HomA(X,−) commutes with arbitrary filtered colimits. We denote by fp(A) the full subcategory of
finitely presented objects in A.
The additive category A is called locally finited presented if fp(A) is essentially small and A is

equivalent to
−−−→
fp(A).

Remark 10.9. If A is locally finitely presented then fp(A) is essentially small, closed under direct
sums and summands. In particular by Lemma 4.2, it is idempotent complete.

Lemma 10.10. (cf. [59], part of Thm on p.1647)

For an essentially small category C we have fp(
−→
C ) ∼= Cic is equivalent to the idempotent completion

of C.

Theorem 10.11. ([59], Thm. in (1.2), p.1645) If C is essentially small, then

fp(Ĉ) = {F ∈ Ĉ | F ∼= coker(−, f), f ∈ Mor(C)} =: mod1 C

Furthermore, Ĉ is locally finitely presented.

Example 10.12. Locally finitely presented abelian categories are Grothendieck categories (i.e.
(1) abelian, (2) with arbitrary small coproducts, (3) directed colimits are exact, (4) has a generating
object G). Here, the generator can be chosen as

G =
⊕

C∈Ob(C)

(−, C) ∈
−→
C

For the converse: If a Grothendieck category admits a set of finitely presented objects whose
coproduct is a generator, then it is locally finitely presented.
Grothendieck categories always have enough injectives (often they are hard to find), have arbitrary
small limits and colimits.

Remark 10.13. For a not necessarily small category C we can still define its ind-completion. If C is
abelian, this is an abelian category - but it may not have enough injectives (cf. [114], Prop. 15.1.2).

The following is a consequence of Lem. 10.4 together with [59], Thm in (1.4), p. 1647.

Theorem 10.14. (equivalence of (2-)categories)

The assignments C 7→
−→
C and A 7→ fp(A) are 2−functorial and give rise to an equivalence of (strict)

2−categories between

(1) essentially small, idempotent complete additive categories C with additive functors
(2) Locally finitely presented additive categories A with additive functors that preserve arbitrary

filtered colimits and restrict to the subcategories of finitely presented functors.

Let C be idempotent complete, essentially small additive category and A a locally finitely presented

(additive) category. We assume C = fp(A) and A =
−→
C . Then the following holds (by restricting

further and further):

(i) C left abelian ⇔ A abelian
the definition of left abelian (cf. [59], (2.4)): Every morphisms has a cokernel, every

epi is a cokernel and whenever A
f−→ B

c−→ C with c = coker(f) and g : D → B, cg = 0 then
there exists an epi d : E → D such that gd factors over f .

(ii) C abelian ⇔ A locally coherent
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(iii) C abelian and all objects noetherian ⇔ A locally noetherian abelian
(iv) C is length abelian ⇔ A is locally finite abelian

Example 10.15. R a ring:
(i) R−Mod abelian and R−mod1 is left abelian
(ii) for R left coherent
(iii) for R left noetherian
(iv) e.g. for R left artinian (with Loewy length)

10.1. Gabriel Quillen embedding. We review this well-known embedding of an essentially
small exact category as a fully exact subcategory in an abelian category.
Let E = (C,S) be an essentially small exact category.

Definition 10.16. We define the category Lex(Eop,Ab) to be the category of all additive functors

F : Cop → (Ab) which map short exact sequences X
i−→ Y

d−→ Z in E to left exact sequences

0→ F (Z)
F (d)−−−→ F (Y )

F (i)−−→ F (X) in abelian groups. We will call this the category of left exact
functors on E . We define the category of locally effaceble functors EffE to be the full
subcategory of Ĉ of objects F such that for every pair (X,x) of an object X in C and x ∈ F (X)
there exists an E-deflation d : Z → X with F (d)(x) = 0.

Lemma 10.17. [126], Prop. 2.3.7 (1),(2) (with intermediate steps)

(i) (Prop 2.2.16) D = EffE is a Serre subcategory of Ĉ closed under coproducts. Therefore, the
Serre quotient functor Q : Mod C → Mod C/D admits a right adjoint.

(ii) (Lem. 2.2.10) Let Qρ be the right adjoint. It factors as Ĉ/D Φ−→ D⊥ I−→ Ĉ with Φ an
equivalence of categories and I the inclusion functor. The quasi-inverse of Φ is given by
Q ◦ I.

(iii) Lex(Eop,Ab) = D⊥ := {Y ∈ Ĉ | HomMod C(E,Y) = 0 = Ext1
Mod C(E,Y)∀E ∈ D}.

Remark 10.18. Lex(Eop,Ab) is a Grothendieck category (as it is the localization of a Grothendieck
category by a Serre subcategory?). In the abelian structure it has a generator

G =
⊕

X∈Ob(C)

(−, X)

As (−, X) are (some) finitely presented objects in Lex(Eop, Ab), it follows that Lex(Eop, Ab) is locally
finitely presented abelian.
It also has an exact substructure as fully exact category in Ĉ but these two exact structures usually
do not coincide.

Remark 10.19. The inclusion Lex(Eop,Ab)→ Ĉ is not an exact functor (if we consider Lex(Eop,Ab)
with its abelian structure). Yet it reflects exactness in the following sense: If 0→ F → G→ H → 0

in Ĉ with F,G,H in Lex(Eop,Ab), then this is a short exact sequence in Lex(Eop,Ab).

Corollary 10.20. Lex(Eop,Ab) ⊆ Ĉ is a deflation-closed subcategory: Given a short exact sequence
0→ F → G→ H → 0 in ModA.
If G,H ∈ Lex(Eop,Ab), then also F ∈ Lex(Eop,Ab).
If F,G ∈ Lex(Eop,Ab) and Ext2(E,F ) = 0 for all E effaceable, then H ∈ Lex(Eop,Ab).

In general we can characterize short exact sequences in Lex(Eop,Ab) (in the abelian structure) as
follows:

Lemma 10.21. Given two composable maps 0→ F
i−→ G

p−→ H → 0 in Lex(Eop,Ab). TFAE

(1) (i, p) are an exact sequence in Lex(Eop,Ab)

(2) In Ĉ we have a exact sequence 0→ F
i−→ G

p−→ H and coker(p) is locally effaceable.
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Theorem 10.22. Let E = (C,S) be an exact category. The Yoneda functor gives a functor

i : E → Lex(Eop,Ab), X 7→ (−,X) = HomC(−,X)

with the following properties

(1) i is exact, reflects exactness and the essential image of i is extension-closed, its idempotent
completion is deflation-closed.

(2) i induces isomorphisms on all extension-groups.

Proof. (1) [49], Appendix A and [126], Prop. 2.3.7.(3). The last statement follows from [152],
Prop. 6.1, (e).
(2) [126] in Lem 4.2.17 it is shown that E → Lex(Eop,Ab) is right cofinal (Keller’s definition) that
implies the statement. �

The following result is also relevant for us:

Proposition 10.23. ([152], Prop. 6.2) For every X in the category E, the functor
ExtnLex(Eop,Ab)((−, X),−) preserves filtered colimits.

10.2. Locally coherent exact. The ind-completion of a small exact category E has a natural
exact structure (namely as fully exact in the Gabriel-Quillen embedding), this exact structure can
also be described as directed colimits of short exact sequences in E and is called locally coherent
exact structure.
The CB-correspondence (section 1) is extended to i.c. small exact categories.

We begin with the following observation.

Lemma 10.24. Let C be a small additive category, F a flat functor and X
f−→ Y

g−→ Z with
g = coker(f) in C then 0→ F (Z)→ F (Y )→ F (X) is exact in abelian groups.

Proof. Define (X,−) := HomC(X,−) : C → (Ab) and the contravariant Yoneda embedding

Cop → ˆCop, X 7→ (X,−). By assumption we have an exact sequence 0→ (Z,−)→ (Y,−)→ (X,−).
Since F is flat, the functor F⊗A is exact and we have F ⊗C (E,−) ∼= F (E). Therefore, we obtain the
exact sequence 0→ F (Z)→ F (Y )→ F (X). �

Now for an exact category E = (C,S), by the previous lemma Flat(Cop,Ab) ⊆ Lex(Eop,Ab).

Lemma 10.25. (and definition.) Flat(Cop,Ab) is closed under extensions in Lex(Eop, Ab).
We define

−→
E to be the fully exact structure on

−→
C and call this the ind-completion of the exact

category E.

Proof. (sketch) (of Lemma 10.25) Given a short exact sequence σ : F → G→ H in (the abelian
structure on) Lex(Eop, Ab) with F,H flat.
First assume H = (−, X), write F as filtered colimit and use Prop 10.23 and the fact that the
essential image of E → Lex(Eop, Ab) is extension-closed to conclude the claim.
In general, we use Thm 10.7, (2). Given a morphism θ : coker(−, f)→ G. Postcompose to
coker(−, f)→ H. As H is flat, this factors over a morphism g : (−, X)→ H for some X in Ob(E).
Now form the pull-back of σ along g in the abelian category Lex(Eop, Ab), say this is a short exact
sequence F → E → (−, X). The universal property of the pull-back gives a morphism
θ′ : coker(−, f)→ E and a morphism u : E → G with θ = uθ′. By the first case θ′ factors over a
representable, therefore θ does so too. �

Remark 10.26. (and definition) Let E = (C,S) be an essentially small exact category, then E is
fully exact in Lex(Eop, Ab). As the latter is abelian, it is idempotent complete, therefore E ic is also a
fully exact subcategory in Lex(Eop, Ab).
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But this means fp(
−→
C ) is an extension-closed subcategory in

−→
E . We define fp(

−→
E ) to be the fully

exact structure on fp(
−→
C ).

Definition 10.27. Let F = (A, T ) be an exact category. We say it is locally coherent exact if
fp(A) is essentially small and extension-closed in F -in this case we denote by fp(F) the fully exact

subcategory- and F =
−−−→
fp(F).

In an ess. small exact category E , the category of short exact sequences Ses(E) is again an essentially
small exact category (with degree-wise short exact sequences).

Theorem 10.28. ([152], proof of Lemma 1.2) A filtered colimit of short exact sequences in
−→
E is a

short exact sequence in
−→
E .

The universal property of the ind-completion yields an equivalence of categories
−−−−→
Ses(E)→ Ses(

−→
E )

We also observe the following:

Lemma 10.29. For an essentially small exact category E, we have that
−→
E is a resolving subcategory

in Lex(Eop, Ab), in particular it is homologically exact.

Proof.
−→
E is extension-closed, idempotent complete and contains a generator of Lex(Eop, Ab) ,

so it is enough to see that it is also deflation-closed. Now given a short exact sequence F → G→ H
in Lex(Eop, Ab), it gives a 4-term exact sequence in Ĉ: 0→ F → G→ H → E → 0 withe E locally
effaceble. Assume that G,H are flat, we want to see that E is so too. As every finietly presented
effaceable functor has projecive dimension 2, every locally effaceable has flat dimension 2 and this
implies F is flat. �

Furthermore, since (−, X) ∈ Flat(Eop,Ab) for all X in C, we get a fully faithful exact functor with
extension-closed essential image

i : E →
−→
E , X 7→ (−, X)

Lemma 10.30. The functor i is homologically exact.

Proof. As E → Lex(Eop, Ab) is homologically exact and also
−→
E → Lex(Eop, Ab), this is

immediate. �

We directly get the following from the previous corollary and Prop. 10.23.

Corollary 10.31. For X in Ob(E), the functor Extn−→
E

((−, X),−) commutes with filtered colimits.

Let Ex(E ,F) be the category of exact functors between two exact categories and Exfc(E ,F) be the
full subcategory of exact functors which preserve filtered colimits.

Lemma 10.32. (Universal property of ind-completion for exact categories) Let E be an

essentially small exact category. Then
−→
E is closed under directed colimits and directed colimits are

exact functors.
Let F be an exact category closed under all directed colimits and they are exact functors. Then

precomposition E →
−→
E gives an equivalence

Exfc(
−→
E ,F)→ Ex(E ,F)

Theorem 10.33. (equivalence of 2-categories)

The assignments E 7→
−→
E and F 7→ fp(F) are functorial and give rise to an equivalence of

(2−)categories between
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(1) essentially small, idempotent complete exact categories E with exact functors
(2) Locally coherent exact categories F with exact functors that preserve arbitrary filtered

colimits and restrict to the subcategories of finitely presented functors.

We remark that a functor that preserves filtered colimits on objects, also preserves filtered colimits
on morphism categories and this implies it also preserves filtered colimits of short exact sequences.
This implies that as exact functor between essentially small exact categories F : E1 → E2 extends

with the universal property of the ind-completion uniquely to an exact functor
−→
F :
−→
E1 →

−→
E2, this is a

consequence of Thm 10.28. Recall: F fully faithful if and only
−→
F is fully faithful by Prop. 10.3.

Ignoring set-theory for a moment: Let F be an exact category, we consider EX(F) the lattice of all
exact subcategories. For F locally coherent exact, we define EXfc(F) to be the exact subcategories
in the category (2) above, i.e. exact functors i : F ′ → F such that i is fully faithful, F ′ is locally
coherent exact and i preserves filtered colimits.

Corollary 10.34. Let E be an essentially small category. We have mutually inverse, isomorphisms
of posets

−→
(−) : EX(E)↔ EXfc(

−→
E ) : fp(−)

It restricts to all the usual subposets such as extension-closed, exact substructures etc.

Positselski found the maximal and minimal locally coherent exact structure on a locally finitely
presented category particular interesting. The minimal exact structure is the ind-completion of the
split exact structure (on an essentially small additive category) and is called pure exact structure
on a locally finitely presented category.

Example 10.35. Let R be a ring. The abelian exact structure on R−Mod is the maximal locally
coherent exact structure, it corresponds to the left abelian structure on R−mod1 (fp R-modules).
The category of flat R-modules R−Modfl is extension-closed in R−Mod. Its subcategory of finitely
presented objects is (add(R))ic with the split exact structure is the fully exact substructure. By a

Thm of Govorov-Lazard,
−−−−→
add(R) = R−Modfl. In this case: The fully exact structure is the pure

exact structure.

Stovicek generalized the notion of a Grothendieck category to an exact category of Grothendieck
type.

Theorem 10.36. ([152, Cor. 5.4]) Locally coherent exact categories are exact categories of
Grothendieck type (in the sense of Stovicek).

In particular, all established properties of exact categories of Grothendieck type hold true.

Corollary 10.37. (also [152, Cor. 5.4])
−→
E has enough injectives.

This implies that the unbounded derived category D(
−→
E ) is locally small (i.e. has Hom-sets), cf.

Chapter 6.

11. Open problems

Here is my personal (naive) list of problems

(0) Describe
−→
E for exact categories of the form modSM and for Auslander-Soberg exact

structures.
(1) If E has enough projectives/injectives what are the corresponding properties in

−→
E ?

(2) Which conditions on the exact category imply gldim(E) = gldim(
−→
E )?
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(3) When is D(E)→ D(
−→
E ) fully faithful? (for some answers, cf [153])

(4) Are there situations when derived equivalence is preserved/reflected by ind-completion of
exact categories?

11.1. Literature.

11.1.1. For ind-completion. Ind-categories have been introduced for arbitrary categories by
Grothendieck in [84], and more thoroughly studied by Grothendieck-Verdier in [8], Expose I. The
concept of Finitely presented/presentable categories is due to [79].
In [59] it had been observed that in the additive category-setup, ind-completion for small additive
functors can be realized as categories of flat functors.
A (multiply) more general approach can be found in [3], where the more general analogue of finitely
presented categories is called finitely accessable categories.

11.1.2. For the Gabriel-Quillen embedding. References: Bühler exact categories, Appendix A
contains a historical discussion of the origins. Further reference [126] and [152], section 5.

11.1.3. For locally coherent exact categories. This has been introduced in [152]. In the special
case that C has weak cokernels an alternative construction is given using the embedding into the
purity category by [173].
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CHAPTER 3

The posets of exact subcategories

1. Synopsis

This is the quest to extend known descriptions of the lattice of exact structures on a given additive
category to the much bigger lattice of all exact subcategories.
What is new? This question is usually not considered, so everything in this chapter.

2. Introduction

Now, we fix one essentially small, idempotent complete exact category E = (A,S) and introduce the
following four posets of exact subcategories (the first poset is just auxiliary):

ADD(A) = all additively closed subcategories A′ of A
EX(E) = exact categories (A′,S ′) such that A′ ∈ ADD(A)

with (A′,S ′) ⊆ (A,S) is an exact functor

Ex(E) = (A′,S ′) ∈ EX(E) such that A′ is extension-closed in E
ext(E) = fully exact subcategories A′ in ADD(A)

ex(E) = exact substructures of E

here, fully exact extension-closed means that the exact structure S ′ on A′ is all kernel-cokernel pairs
(i, p) in A′ such that (i, p) ∈ S.
Observe that Ex(E) contains ext(E) and ex(E).
We have the following operation on EX(E)

(A′,S ′) ∧ (A′′,S ′′) := (A′ ∩ A′′,R = {σ ∈ S ′ ∩ S ′′ | all three objects are in A′ ∩ A′′})

with respect to this operation, EX(E) becomes a complete meet-semilattice and all three
Ex(E), ext(E), ex(E) are closed under this operation (making them complete meet-subsemilattices).
If a complete meet-semilattice (X,≤,∧) has a unique maximal element then one can define a join
such that it becomes a complete lattice, so given a subset {xi | i ∈ I} of X its join is given by∨

i∈I
xi :=

∧
y : xi≤y∀i∈I

y.

Observe that the joins obtained this way for EX(E),Ex(E), ext(E) usually differ.

We first make the following easy observation.

Theorem 2.1. (cf. Thm 3.3) EX(E),Ex(E), ext(E) are complete lattices and ex(E) is a complete
sublattice of EX(E) and of Ex(E).

Open question 2.2. Considering the bijection between Ziegler-closed subsets (containing a given
closed set) and exact structures on an idempotent complete small additive category with weak
cokernels (cf. Chapter 2), we ask: Are the opposite lattices frames? Are they even coherent frames?
(see e.g. [129] for the definitions)
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As a corollary of Rump (cf. in Chapter 1, Cor. 4.4) we deduced that for every additive functor
between small exact categories f : F → E there is a unique maximal exact substructure of F such
that f becomes an exact functor on it.
Let now E = (A,S) be a small exact category and i : B ⊆ A a full additively closed subcategory. We
write S ∩ B for the subset of S given by all short exact sequences such with all three objects in B
(also denoted by Si in Chapter 1).
Let F = Fmax the maximal exact structure on B and we look at the inclusion functor i : F → E ,
then we denote by

FB := (B,S≤(S∩B)

the maximal exact structure on B such that i is an exact functor on it.

Then our second result is the following simple corollary of this:

Theorem 2.3. . Let E = (A,S) be an idempotent complete essentially small exact category. Then
we have equalities of sets

EX(E) =
⊔

B∈ADD(A)

ex(FB)

Ex(E) =
⊔

E ′∈ext(E)

ex(E ′)

To our knowledge, usually either only the lattice of exact structures is studied or a chosen subposet
of ext(E) assuming extra-properties (such as Serre subcategories, torsion classes, thick subcategories,
wide subcategories, resolving subcategories, tilting subcategories etc.).

We are interested in the following questions

(1) Explicit descriptions
(2) Lattice isomorphisms for EX(E)
(3) Can we find homological properties which are preserved under forming meets?

In neither case we claim to have a good answer but we give some partial answers.
Representation-finite means here:
Krull-Schmidt, K-linear (for some field K), Hom-finite with only finitely many indecomposables.
The first task is even in the representation-finite complicated because of the size of the constructed
lattice, see e.g. some enumerative example in the end. We remark that the Ziegler spectrum is not
functorial and even in the representation-finite case we do not see how we can use it here. In this
case the cogenerators (whose indecomposable summands) give Ziegler-closed subsets in the Ziegler
spectrum of B ∈ ADD(A) are those which contain the cogenerator from the dual of Lemma 6.1.

For the second task, we look again at Auslander’s functorial point of view (cf. Chapter 2). We extend
the three lattice isomorphisms from ex(E) to the whole lattice EX(E): Using the Auslander category,
the tf Auslander category and the category of effaceble functors. This result is Theorem 4.15.

For the third question:
Is a given homological1 condition preserved under taking meet in EX(E)?
We have no systematic way of studying this, we just collect some answers (if you know more please
let me know).
Some negative answers:

(1) homologically exactness (and also homologically faithfulness)
(2) gldim = n (same fixed n)
(3) having enough projectives (or injectives)
(4) ((2) for n = 1 but more specifically:) hereditary exact substructures in an hereditary exact

category

1i.e. defined by imposing conditions on the Ext-functors.
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Also, the subposet of hereditary exact substructures may not have a unique maximal element.
Some positive answers:
This is what I found:

(1) 1-homologically exact (i.e. extension-closed).
Special case: If E is hereditary exact, all extension-closed subcategories are

homologically exact (and also hereditary exact)
(2) n-rigid subcategories (all with the same n).

Special case: self-orthogonal subcategories (n-rigid for all n)
(3) resolving subcategories in an exact category with enough projectives
(4) (only wrt. finite meets!) exact substructures with enough projectives in an exact structure

with enough projectives

There are probably many more. We also give the following examples (without further applications).
Given an exact fully faithful functor f : F = (B,S ′)→ E We say that the f − gldimF ≤ n if
ExtnE(f(X), f(σ)) is right exact for all objects X in B and F-exact short exact sequences σ.
This can be seen as a relative version of gldim, since for f = id: E → E we have f − gldim E ≤ n iff
gldim E ≤ n by Lemma 5.4.
We observe the following completely obvious:

Lemma 2.4. Let E be essentially small idempotent complete exact category and Fj = (Bj ,Sj) be in
EX(E), j ∈ J . Then:
If all Fj have relative global dimension ≤ n for all j ∈ J , then also

∧
j∈J Fj has relative global

dimension ≤ n.

Here is another property one may consider: Let E be an exact category. Contravariantly-finite
E-generators G (i.e. for every object X in E there is an E-deflation dX : GX → X which is also a
right G-approximation) which are also E-subobject-closed (i.e. given an E-exact sequence
X � G� Y with G ∈ G, then X is also in G) induce always hereditary exact substructures with
enough projectives (by looking at the exact substructure such that Hom(G,−) becomes exact for all
G ∈ G). These give usually not all hereditary exact substructures. But we observe that
E-subobject-closedness is preserved under arbitrary intersections (but we do not know when such an
intersection is contravariantly finite!).

Lemma 2.5. Let E be an exact category such that the underlying additive category is
representation-finite (see above). Then all generators are contravariantly finite. The set of all
hereditary exact substructures with enough projectives given by an E-subobject-closed generator is
closed under taking arbitrary joins in EX(E).

Proof. Given Gi subobject-closed generators with Ei corresponding exact substructures such
that P(Ei) = Gi. As we are in a finite-type situation the join is

∨
i Ei = F with P(F) =

⋂
Gi =: G

which is again a subobject-closed generator. �

Example 2.6. Let E = Λn mod with Λn the path algebra over 1→ 2→ · · · → n. In this case, the
subobject-closed generators are not only closed under intersections but also by taking direct sums
and form a sublattice of ex(E). This is in bijection with subobject-closed subcategories in Λn−1 mod.
In general, subobject-closed subcategories in Λ mod with Λ a Dynkin quiver has been studied,
explicit bijections to the elements of the Weyl group of the corresponding (simply-laced)
Dynkin-type have been found in [146].

What I do not know:
In the following we do not know the answer (cf. Chapter 1 for the definitions): Left (or right)
cofinal, (co)resolving (in general exact category), partially (co)resolving
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3. The lattice of exact subcategories in an exact category

Let E = (A,S) be an exact category.
We will always assume A is idempotent complete to avoid confusion on the definition of an exact
category. We also will assume that A is essentially small (else we would have to generalize the notion
poset from sets to classes).
Let ADD(A) be the collection of all additively closed subcategories of A (this is a complete lattice).
Observe that additively closed subcategories are also idempotent complete.
For A′ ∈ ADD(A) we denote bu iA′,A (or if there is no confusion, just i) for the inclusion A′ ⊆ A.

Definition 3.1. Now we define EX(E) as the collection of exact categories (A′,S ′) with
A′ ∈ ADD(A) and iA′,A an exact functor (wrt. (A′,S ′) and (A,S)). We call this the poset of
exact subcategories of E .
We also consider Ex(E) ⊆ EX(E) consisting of all (A′,S ′) such that A′ is also extension-closed in E .
This implies that (A′,S ′) is an exact substructure on (A′,S ∩ A′). We call this the poset of
extension-closed exact subcategories of E .

In the literature two subposets of Ex(E) are studied:

(1) ext(E) consisting of all additively closed fully exact subcategories E .
(2) ex(E) consisting of all exact substructures of E (cf. [44, Thm 5.3] for the lattice

structure).

We have by definition

Ex(E) =
⊔

E ′∈ext(E)

ex(E ′)

Remark 3.2. If f : E ′ → E is a fully faithful exact functor, then the additive closure of the essential
image equipped with the exact structure induced from E ′ gives an element in EX(E). It lies in Ex(E)
if and only if the essential image is extension closed in E .

We have the obvious poset structure on EX(E):

E1 ≤ E2 if E1 ∈ EX(E2)

Theorem 3.3. EX(E),Ex(E), ext(E) are complete lattices and ex(E) is complete sublattice of EX(E)
and of Ex(E).

All four posets have a unique maximal element E and a unique minimal element (which is {0} except
for ex(E) where it is the split exact structure).

The main ingredient is the following observation

Proposition 3.4. Let A be a small additive category and ij : Aj → A, j ∈ I (for some set I)
inclusions of full, additively closed subcategories (recall these also closed under isomorphism).
Assume, we have exact structures E = (A,S), Ej = (Aj ,Sj) such that ij are exact functors. Then:∧

Ej := (B :=
⋂
j∈I
Aj , R := {X1

i−→ X2
p−→ X3 : Xi ∈

⋂
j∈I
Aj , (i, p) ∈ Sj∀j ∈ I})

is an exact category such that the inclusion
∧
j∈I Ej → Ei is an exact functor for all i ∈ I.

Remark 3.5. I = {1, 2}, the exact category E1 ∧ E2 is an exact category, it will fulfill the universal
property of a pullback in the category of exact categories with exact functors (warning: This will
fulfill the universal property of the strict 2-pullback, we are not considering other versions of
2-pullbacks here!).
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Proof. Clearly, (i, p) ∈ R implies that (i, p) is a kernel-cokernel pair in B as this is the case in
the bigger categories Aj for each j ∈ I.

Assume we have a cospan of objects in B: Y
p−→ Z

f←− C such that p is an Ej-deflation for all j ∈ I.

Then by [49], Prop.2.12: We have an Ej-exact sequence Kj
kj−→ Y ⊕ C (p,f)−−−→ Z for j ∈ I. But as ij

are exact functors, we find all kj are A-kernels of the same map, so they are isomorphic and
therefore K := Kj ∈ B. Now, as the Aj-pullback of p coincides with the Aj′-pullback for every
j, j′ ∈ I, it is an R-deflation K → C.
For C = 0, we also get the Aj-kernel and the Aj′-kernel of p are isomorphic for all j, j′ ∈ I, then it is
obvious that composition of R-deflations are R-deflations.

Now, assume we have a span in B: D
g←− X i−→ Y with i an Ej-inflation for j ∈ I. As above we

observe that we have Q = coker(X → D ⊕ Y ) ∈ B and then the Aj-pushout of i coincides with the
Aj′-pushout of i for all j, j′ ∈ I and is an R-inflation. We also easily see that composition of
R-inflations are R-inflations. �

Proof. (of Thm. 3.3) From the previous Proposition, we can conclude that EX(E) is a complete
meet semi-lattice. As we have an obvious unique maximal element E ∈ EX(E) it becomes a lattice
via the following join described in the introduction. �

Remark 3.6. In given B ∈ ADD(A), and E = (A,S) an exact category. We may look at B ∩ S, i.e.
all short exact sequences with all three terms in B. To characterise when this is an exact structure is
technical (and not very enlightning), see Lemma below. Here are some easy positive answers:
If B is extension-closed it is and in this case Ext1

S∩B = (Ext1
E)|B.

If B is deflation- and inflation-closed (i.e. closed under kernels of arbitary deflations and cokernels of
arbitrary inflations between objects in B) then it also is.
A negative answer is provided below.

Example 3.7. (A negative answer) Consider the abelian category of finite-dimensional
representations (over some field) of the quiver 1→ 2→ 3. The indecomposables are the projectives
Pi, injectives Ii (with I3 = P1) and S2. We consider B = add(P3 ⊕ P1 ⊕ I2 ⊕ S2). We have an exact
sequence 0→ P3 → P1 → I2 → 0. Which in E has a pull-back along S2 → I2 given by P2. But in
B ∩ S there does not exist a kernel-cokernel pair to which it could pullback.

Example 3.8. Consider E = ModA for a ring A. Let I be a two sided ideal, then
A′ = {X ∈ Mod−A | IX = 0} is extension-closed if and only if I2 = 0. In either case the restriction
of scalars Mod−(A/I)→ Mod−A is a fully faithful exact functor with essential image A′ and A′ is
inflation- and deflation-closed. So this gives an element (A′,S ′) ∈ EX(E). It is easily see that this
exact structure is abelian (since it is equivalent to the one on Mod−A/I).

Lemma 3.9. Let E = (A,S) be an exact category and B ∈ ADD(A). Then, the following are
equivalent:

(1) (B,S ∩ B) is an exact category
(1’) S ∩ B are closed under pull-back and S ∩ B are closed under push-out.

(In particular, these pull-back and push-out have to exist in B).
(2) For every inflation i : B� B′ in S ∩ B we have: If i factors in A as i = ba, a : B → C with

coker a in B, then C ∈ B.
For every deflation d : B′ � B′′ in S ∩ B we have: If d factors in A as d = ef ,

e : D → B′′ with ker e in B then D ∈ B.

In this case, iB,A is an exact functor, i.e. (B,S ∩ B) ∈ EX(E).

Proof. The equivalence (1) to (1’) follows from [66, Lem. 1.9, Prop.1.10]. The equivalence (1’)
to (2) follows from the strong Obscure axiom [49, Prop. 7.6]. �

This is one of the few instances where more general exact subcategories than just extension-closed
are considered:
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Example 3.10. Not extension-closed exact subcategories in (the following exact categories)
Hausdorff locally convex spaces, Frechet spaces and topological vector spaces respectively are studied
in [64].

As a direct corollary of Cor. 4.4 we have the following: Every F ∈ EX(E) we have i : F → E can be
factorized either as

F ≤ FB
i−→ E

where FB is the maximal exact structure making i exact (and ≤ means we have an inclusion of a
substructure). Or it can be factorized as

F i−→ E ′ ≤ E

where E ′ =
∧
E ′′ where E ′′ runs through all exact substructures such that i : F → E ′′ is exact.

From the first factorization we can conclude:

Theorem 3.11. Let E = (A,S) be an i.c. small exact category then we have

EX(E) =
⊔

B∈ADD(A)

ex(FB)

Ex(E) =
⊔

E ′∈ext(E)

ex(E ′)

There are many other posets one can define here. Since we think fully faithful exact functors with
extension-closed images are interesting, these two posets are our main interest. But for example we
could also look at

Ex′(E) :=
⊔

E ′∈ex(E)

ext(E ′)

Example 3.12. Let T ⊆ E be a self-orthogonal category, then
presE(T ) = {X : ∃T � X, with T ∈ T } is extension closed in E . If E ′ is an exact substructure of E ,

we have T ⊆ E ′ is still self-orthogonal and presE
′
(T ) ⊆ presE(T ). We get a subposet of Ex′(E)

{presE
′
(T ) | E ′ ∈ ex(E)}

It has a unique maximal element presE(T ) and a unique minimal element T .

Remark 3.13. Let A′ ∈ ADD(A) and E = (A,S) an exact category. Let IA′ ⊆ ex(E) be the exact
substructures of E such that A′ is extension-closed in it. I do not know anything on maximal
elements in IA′ .

4. The functorial point of view

Let E be an essentially small exact category. We consider three classical assignments (which are all
2-functorial on the category of small exact category with exact functors) for F = (B,S ′) ∈ EX(E) the
Auslander exact category, tf Auslander category and effaceable functors respectively

AE(F) = {coker(HomB(−, f)) | f F-admissible}
H(F) := {coker HomB(−, i) | i F-inflation}

eff(F) := {coker(HomB(−, d) | d F-deflation}

All will be considered fully exact subcategories in mod1A (where A is the underlying additive
category of E). By a results of [90] and [72] (cf. chapter 2), we have characterizations of the
subcategories when we look only at exact substructures of E . Our aim is to extend these to the
whole lattice EX(E).
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4.1. Partially resolving subcategories. We start with some background definitions.

Definition 4.1. Let E be an exact category with enough projectives P. Let F ⊆ E be a fully exact
subcategory. We say that F is partially resolving if

(PR1) F = add(F) (i.e. F is closed under taking direct summands in E)
(PR2) For every F ∈ F we find an E-short exact sequence ΩF → P → F with P ∈ P ∩ F and

ΩF ∈ F (we call this property: F is closed under taking syzygies)

Then F also has enough projectives with P(F) = Q ⊆ P(E) and we say F is partial resolving with
respect to Q ⊆ P.

Remark 4.2. A partially resolving subcategory F in an exact category with enough projectives P is
resolving if and only if P ⊆ F .

Lemma 4.3. ([71], Lem. 2.5) Let E be an exact category with enough projectives P. Let F be a fully
exact subcategory which is closed under taking summands in E, then the following are equivalent:

(1) F is partially resolving
(2) F is deflation-closed with enough projectives Q and Q ⊆ P.

The proof is completely analogue to the given reference, we leave it to the reader.

Remark 4.4. If we are in a Krull-Schmidt category (say we have minimal projective covers) then
the syzygies in (PR2) can be always taken with respect to the minimal projective cover and in this
case we can find intersections of arbitrary partially resolving subcategories are partially resolving.

Remark 4.5. If F is partially resolving in E then it is homologically exact, cf. chapter 1.

For a small additive category A, we denote by mod1A the category of all additive functors
F : Aop → (Ab) with F ∼= coker HomA(−, f) for some morphism f in A (f ∈ Mor−A). We see this
as a fully exact subcategory of the abelian category Mod−A (all additive contravariant functors
Aop → (Ab)).
For a full additive subcategory B ⊆ A we define the full subcategory of mod1A

mod1(A|B) := {F ∈ mod1A | F ∼= coker HomA(−, f), f ∈ Mor− B}
Then this is a fully exact subcategory of mod1A by the horseshoe lemma.

Lemma 4.6. The restriction functor

Φ: mod1(A|B)→ mod1 B, F 7→ F |B
is an equivalence of additive categories which is also an exact functor.

The proof is straight-forward. This is usually not an equivalence of exact categories, the
quasi-inverse functor is a not necessarily exact tensor functor - we see mod1(A|B) as an exact
substructure of mod1 B.
(Nevertheless it restricts to an exact equivalence of many smaller categories, e.g. on
mod2(A|B)→ mod2 B it is already an exact equivalence, see other instances later).

Recall a Serre subcategory is a full additive subcategory F in an exact category E with the following
property: For every E-short exact sequence X � Y � Z we have Y ∈ F if and only if X,Z ∈ F .

Definition 4.7. We denote by P2(A) the full subcategory of ModA given by all functors F such
that there exists an exact sequence

0→ HomA(−, X)→ HomA(−, Y )→ HomA(−, Z)→ F → 0

for some X,Y, Z in A. Let B ⊆ A be a full additively closed subcategory. We write P2(A|B) for the
full subcategory of P2(A) given by all functors F such that there exists an exact sequence as above
with X,Y, Z in B.
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It is an easy horse-shoe-lemma argument to see that P2(A|B) ⊆ P2(A) ⊆ ModA are inclusions of
extension-closed subcategories. From now on, we equip them with the fully exact structure.

Lemma 4.8. Let B ⊆ A be a full additive subcategory. Then, P2(A|B) is a partially resolving
subcategory of P2(A). Furthermore the restriction functor

P2(A|B)→ P2(B), F 7→ F |B

is an equivalence of exact categories (i.e. an equivalence of categories which is homologically exact).

Proof. As P2(A|B) is by definition closed under taking syzygies in P2(A), it follows that it is
an exact category with enough projectives given by HomA(−, B), B ∈ B. This implies it is partially
resolving.
Restriction functors are exact functors on functor categories, therefore their restrictions to fully
exact subcategories are still exact. By definition this functor is essentially surjective. Using the
projective presentations one can see that this is an equivalence of additive categories which restricts
to an equivalence on the category of projetives. Now, both are exact categories with enough
projectives and have gldim ≤ 2, therefore the derived functor is a triangle equivalence. This implies
that the funtor is homologically exact. �

In particular, (using the quasi-inverse of the equivalence) we will consider P2(B) from now on as a
partially resolving subcategory in P2(A).

4.2. Short recap of definitions from chapter 2. The grade of F ∈ ModA is defined as the
supremum of all natural numbers i ≥ 0 such that

ExtjModA(F,HomA(−, A)) = 0∀A ∈ A for all j < i (of course, only if this exists, else we define it to
be ∞). Let us denote by KC(A) the collection of all kernel-cokernel pairs in A

G2(A) = {F ∈ P2(A) | ∃(i, d), (j, p) ∈ KC(A),F ∼= coker HomA(−, j ◦ d)}
⊆ {F ∈ P2(A) | grade(F) ∈ {0, 2}}

C2(A) = {F ∈ P2(A) | ∃(i, d) ∈ KC(A),F ∼= coker HomA(−, d)}
= {F ∈ P2(A) | grade(F) = 2}

J 1(A) = {F ∈ P2(A) | ∃(j, p) ∈ KC(A),F ∼= coker HomA(−, j)}
⊆ {F ∈ P2(A) | grade(F) = 0}

Enomoto’s duality:

E : C2(A)op → C2(Aop)
E(coker HomA(−, d)) ∼= coker(HomA(i,−)) (i, d) ∈ KC(A)

Auslander-Bridger transpose (also a duality):
The ideal quotient of mod1A with respect to the projectives is denoted by mod1A.

Tr : (mod1A)op → mod1(Aop)
coker HomA(−, f) 7→ coker HomA(f,−).

Enomoto (in [72],..) observed the following:

Lemma 4.9. If there is an exact structure E and we have a short exact sequence (i, d) and a
kernel-cokernel pair (j, p) such that coker HomA(−, d) = F = coker HomA(−, p), then (j, p) is also an
E-short exact sequence.
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Following loc. cit. we say E short exact sequences are closed under homotopy (within kernel-cokernel
presentations).

In a similar way, we showed in Lemma 4.9 that E-inflations are closed under homotopy among all
presentations.

4.3. Generalizations. Now, given a full additive subcategory ι : B ⊆ A and denote by
KC(A|B) the collection of all relative kernel-cokernel pairs in A, these are kernel-cokernel
pairs (ι(j), ι(p)) in A such that (j, p) is a kernel-cokernel pair in B.

G2(A|B) = {F ∈ P2(A|B) | ∃(i, d), (j, p) ∈ KC(A|B),F ∼= coker HomA(−, j ◦ d)}
C2(A|B) = {F ∈ P2(A|B) | ∃(i, d) ∈ KC(A|B),F ∼= coker HomA(−, d)}
J 1(A|B) = {F ∈ P1(A|B) | ∃(j, p) ∈ KC(A|B),F ∼= coker HomA(−, j)}

For an exact category F = (B,S ′) in EX(E), we obviously have

AE(F) ⊆ G2(A|B), eff(F) ⊆ C2(A|B), H(F) ⊆ J 1(A|B).

The Auslander category AE(F) ⊆ P2(B) ∼= P2(A|B) ⊆ mod1A is an extension-closed subcategory.
As P2(A|B) is partially resolving in P2(A), we have that AE(F) is partially resolving in P2(A) (and
also H(F) is partially resolving in P1(A)). By Auslander correspondence we expect F 7→ AE(F) to
be a bijection with certain partially resolving subcategories of P2(A). But we have to modify the
definition of the transpose category (because it always adds all projectives).
On the other hand, for eff(F)(⊆ AE(F)) ⊆ mod1A we have to expect to get very often the same
subcategory (for example: The split exact categories F always have eff(F) = 0 no matter on which
underlying category). In fact, the data which is lost, is given precisely by the additive category B on
which the exact structure has to be defined.

Assume that we have a left exact functor f : F = (B, T )→ (A,S) = E . In [90], Thm 3.9, it is shown

that the composition F f−→ E X 7→Hom(−,X)−−−−−−−−−→ AE(E) is left exact and factors (uniquely up to
isomorphism) over an exact functor AE(f) : AE(F)→ AE(E).

Lemma 4.10. Then the following are equivalent:

(1) f is fully faithful.
(2) AE(f) is homologically exact.

Furthermore, if f is inclusion of an additively closed subcategory, we can identify AE(F) with the
essential image of AE(f) which is a partial resolving subcategory in AE(E). In this subcategory all
objects have either grade 2 ore 0. The grade 2-objects are precisely the effaceable functors eff(F), i.e.
we have

AE(F) ∩ C2(A) = eff(F)

Proof. The derived functor of AE(f) identifies with Kb(f) : Kb(B)→ Kb(A). Therefore f is
fully faithful iff Kb(f) is fully faithful iff AE(f) is homologically exact. The second claim follows
from AE(E) ∩ C2(A) = eff(E) observed in [90], then AE(f) maps the torsion pair
(eff(F) = ⊥Q,H(F) = copresQ) where Q = AE(F) to (eff(E) = ⊥P,H(E) = copresP) where
P = AE(E) because it preserves projectives and is exact. Therefore the last claim follows. �

Remark 4.11. With the same proof we also show for an inflation-preserving f : E → F : The
functor f is fully faithful if and only if H(f) is homologically exact.

Lemma 4.12. Let F ∈ EX(E) and consider eff(F) as a full subcategory of eff(E) (by applying Φ−1
A|B

to it), then we have
eff(F) ⊆ eff(E) ∩ C2(A|B)
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is a Serre subcategory.
Furthermore if E restricts to F on B (i.e. every ses in E which has all three objects in B is exact in
F), then we have eff(F) = eff(E) ∩ C2(A|B).

Proof. Clearly eff(F) ⊆ eff(E) ∩ C2(A|B) extension-closed. As F is an exact structure, eff(F) is
already Serre subcategory in C2(B) ∼= C2(A|B), this implies it also is a Serre subcategory in
eff(E) ∩ C2(A|B).
Assume now that E restricts to F on B, then we have to show the other inclusion. Let
F ∈ eff(E) ∩ C2(A|B), then we find two A-kernel-cokernel pairs representing F and one is an E-ses
and the other one is an (i, p) ∈ KC(A|B). As E-short exact sequences are closed under homotopy
(Lemma 4.9) it follows that (i, p) is also an E-short exact sequence. By our assumption, the E-short
exact sequences with all three terms in B are just the F-short exact sequences, it follows that
F ∈ eff(F). �

We will also need the following definition.

Definition 4.13. Let X ⊆ P2(A) an additive subcategory, we define B := BX ⊆ A to be the full
(additive) subcategory of objects B ∈ A such that HomA(−, B) ∈ X .
We consider the composition P2(Aop|Bop)→ mod1A → mod1Aop as the identity on objects. In this
case we define the relative transposed category Trrel(X ) to be the full subcategory of objects X
in P2(Aop|Bop) such that X ∼= Tr(X′) in mod1Aop for some X ′ ∈ X .

Remark 4.14. By definition BG2(A|B) = B = BJ 1(A|B) and

Trrel(G2(A|B)) = G2(Aop|Bop), ΩTrrel(J 1(A|B)) = J 1(Aop|Bop)

We also remark that BC2(A|B) = {0}.

We fix an exact structure E on A. For every B ⊆ A full additively closed subcategory let
CB,max ⊆ mod1 B be the Serre subcategory corresponding to the maximal exact structure F on B
such that the inclusion F → E is an exact functor. Recall that we have an equivalence
ΦA|B : C2(A|B)→ C2(B), F 7→ F |B of exact categories.

Theorem 4.15. Let A be an idempotent complete, small additive category and E = Emax the
maximal exact structure on it. Then the assignments

F 7→ AE(F), F 7→ inf(F), F = (B,S) 7→ (B, eff(F))

give bijections between EX(E) and (1), (2) and (3) respectively.

(1) Partially resolving subcategories X ⊆ P2(A) such that X ⊆ G2(A|B) for B = BX and
Trrel(X ) ⊆ P2(Aop) is also partially resolving.

(2) Partially resolving subcategories J ⊆ P1(A) such that J ⊆ J 1(A|B) for B = BJ and
ΩATrrel(J ) ⊆ P1(Aop) is also partially resolving.

(3) pairs of categories (B, C) with
(*) B ⊆ A a full additively closed subcategory and
(*) C ⊆ C2(A|B) a full additively closed subcategory such that ΦA|B(C) is a Serre

subcategory in CB,max.

Proof. We observe that (3) is just a trivial consequence of Enomoto’s bijection, Theorem 6.4,
we just state it here for completeness sake.
Let us turn to (1) and (2) and show the assignments are well-defined. Let F = (B,S) ∈ EX(E).

(1) We already observed that X := AE(F) is partially resolving in P2(A). We want to see
AE(Fop) = Trrel(X ). We denote by G2(A) the essential image of G2(A)→ mod1A. When
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we restrict the functor TrA we a commutative diagram (*)

G2(A|B) G2(A)

G2(Aop|Bop) G2(Aop)

incl

TrB TrA

incl

The underline on the right hand side can either be seen as the essential image in mod1A(op)

or the essential image in mod1B(op), the functors TrA and TrB coincide on this subcategory.
This means that the relative trace category Trrel(X ) = TrB(X ) = AE(Fop) and this is
partially resolving in P2(Aop).

(2) We already know that J := H(F) is partially resolving in P1(A) and we want to see
H(Fop) = ΩATrrel(J ). We look at the diagram (*). Not just trace also ΩA and ΩB identify
on these subcategories, so ΩATrrel(J ) = ΩBTrB(J ) = H(Fop) and this is partially resolving
in P1(Aop).

Now, we define the inverse assignments:

(1) Assume we have X as in (1) and define B = BX , then we see that X ⊆ P2(A|B) ∼= P2(B) is
resolving and as we have X ⊆ G2(A|B), it follows as above
Trrel(X ) = TrB(X ) ⊆ G2(Aop|Bop) is resolving in P2(Aop|Bop) ∼= P2(Bop). By Theorem 6.8
it follows that X = AE(F) for an exact structure F on B. The inclusion X ⊆ AE(E) apriori
corresponds to a fully faithful left exact functor f : F → E . But the inclusion
Trrel(X )→ AE(Eop) corresponds to fop also being left exact, we conclude that f : E → F is
exact and so F ∈ EX(E). This gives the inverse map.

(2) Assume we have J as in (2) and define B = BJ , then J is resolving in P1(A|B) ∼= P1(B).
As J ⊆ J 1(A|B) we conclude ΩATrrel(J ) = ΩBTrB(J ) is resolving in P1(Aop|Bop). By
Theorem 6.10 it follows that J = H(F) for an exact structure on B and as we have
J ⊆ J 1(A|B) we conclude (using Lemma 4.9) hat all short exact sequences in F are
mapped to kernel-cokernel pairs in A. Then we look at the H(F) ⊆ H(E), by Appendix B,
chapter 2, it corresponds to a fully faithful inflation-preserving functor E → F , but as this
functor also maps short exact sequences to kernel-cokernel pairs it is exact.

�

5. Meet-preserving of homological conditions

5.1. Examples for negative answers. We collected these negative answers:

(1) homologically exactness and also homologically faithfulness
(2) gldim = n
(3) having enough projectives (or injectives)
(4) hereditary exact substructures in an hereditary exact category

Also, the subposet of hereditary exact substructures may not have a unique maximal element.
The following is an example for (1).

Example 5.1. Intersections of homologically exact subcategories may not be homologically exact
subcategories. We give an example of a resolving and a coresolving subcategory in an abelian
category whose intersection is a semi-simple subcategory which is not homologically exact in the
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abelian category. Take E = Λ mod, with Λ = KQ/I where (Q, I) is the following bound quiver

3

1
a // 2

b
@@��������

c
��>>>>>>>>

4

I = (ba)

Then this has nine indecomposable representations (the projectives, the injectives S2 and rad(P1)).
Then R = add(Λ⊕ rad(P1)⊕ I1) is resolving and C = add(DΛ⊕ S2 ⊕ P3) is coresolving. Their
intersection is add(P1 ⊕ I1 ⊕ P3). This is a semi-simple extension-closed subcategory (observe
P1 = I4). Since Ext2

Λ(I1, P3) 6= 0 it is not homologically exact in E .

For (3), one just has to observe that given infinitely many contravariantly finite generators Pi in an
exact category, it is generally not true that

∨
Pi (i.e. the smallest generator containing all Pi) is

contravariantly finite.

Example 5.2. Let E = Λ mod with Λ the path algebra of the Kronecker quiver. We find finite
dimensional preprojective generators Gn = Λ⊕ τ−Λ⊕ · · · ⊕ τ−nΛ, n ∈ N such that

∨
n∈N add(Gn) is

the preprojective component. Then we observe that the preprojective component is not
contravariantly finite.

The following gives an example for (2), (4) and shows that homologically faithfulness is not
preserved under forming meet.

Example 5.3. We give an example of an hereditary exact category with two hereditary exact
substructures such that the intersection is no longer hereditary exact. Let E = Λ mod where Λ is the
path algebra of 1→ 2→ 3→ 4. We choose two generators G1 = Λ⊕ I3 ⊕ S3 ⊕ S1 and G2 = Λ⊕ S2.
Let Ei = (Λ mod, FGi) be the exact substructure such that Hom(Gi,−) is exact on short exact
sequences, then E1 ∩ E2 = (Λ mod, FG1⊕G2). By looking at projective resolutions of non-projective
indecomposables one easily see gldim(Λ mod, FGi) = 1 for i = 1, 2 and gldim(Λ mod, FG1⊕G2) = 2.

5.2. Positive answers. Are already discussed in the introduction, we just prove here this
missing Lemma:

Lemma 5.4. Let E be an exact category and n ∈ N. Then the following are equivalent

(1) gldim E ≤ n
(2) Extn(X,σ) is right exact for all objects X and E-short exact sequences σ
(3) Extn(σ,X) is right exact for all objects X and E-short exact sequences σ

Proof. We only show the equivalence of (1) and (2) (the other equivalence follows from passing
to the opposite exact category). Clearly (1) implies (2) follows from the long exact sequence on the
Ext-groups. So assume (2) and take σ ∈ Extn+1

E (X,Y ). Write σ as a concatenation σ1σ2 with
σ1 : Y � V �W and apply Hom(X,−) to σ1. We look at the connecting morphism

ExtnE(X,W )→ Extn+1
E (X,Y )

By [126, Cor. 4.2.12] this is given by concatenation with σ1. In particular σ2 7→ σ and so σ is in the
image. But as ExtnE(X,σ1) is right exact, this is zero. �

We say a bifunctor which is middle exact and fulfills the (corresponding) condition (2) and (3) from
the previous lemma is right exact. So we can identify hereditary exact substructures with right
exact subfunctors of Ext1

Emax . These are usually not closed under intersection (see: negative answers).
There also can not exist a structure as a complete lattice on hereditary exact substructures.
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Example 5.5. This is an example with two maximal hereditary substructures. Let Λ be the path

algebra of 1
a−→ 2

b−→ 3 bound by the relation ba = 0. We consider the abelian category E = Λ mod.
Let Ei be the exact substructure with P(Ei) = add(Λ⊕ Si), i = 1, 2. Both are hereditary exact and
maximal wrt being hereditary.

6. Representation-finiteness

Let K be a field. Now, we assume that A is Krull-Schmidt K-linear category of finite
representation-type (i.e. only finitely many indecomposable objects in A). Given a full additively
closed subcategoryM, then it is covariantly finite in a category A and we denote for any object A in
A by fA : A→MA with MA in M a left M-approximation of A.

Lemma 6.1. Let K be a field. Let A be a small K-linear additive, Hom-finite Kull-Schmidt category
of finite type and M = add(M) an additively closed subcategory. Let E be an exact structure on A
with enough projectives with P(E) = add(G) and let F be the maximal exact structure on M making
the inclusion an exact functor. Then we have P(F) = add(MG ⊕Mcoker fC ) where we define
copresE(M) := {X ∈ E | ∃ E-ses X �M ′ � Y } and since this is of finite type, we assume it is
add(C) for an object C in A.

Proof. We first show that (1) MG and (2) Mcoker fC as in the lemma lie in P(F):
(1) We show that fG is an E-deflation: Take g : G0 �MG be a E-deflation with addG0 ∈ addG. We
may assume G = G0. Then g factors over f , i.e. there exists an endomorphism h ∈ End(MG) such
that g = fh. By the obscure axiom h is an E-deflation. It is an easy observation that then
dim Hom(G, kerh) = 0 and therefore h an isomorphism. This implies f is also an E-deflation. In
particular Hom(f,M) : Hom(MG,M)→ Hom(G,M) is an isomorphism. This shows MG ∈ P(F).
(2) The left add(M)-approximation fC : C →MC is an E-inflation, let D := coker(fC). This implies
we have a a left exact sequence 0→ Ext1

E(D,M)→ Ext1
E(MC ,M)→ Ext1

E(C,M). Now
fD : D →MD together with the composition MC →MD and passing looking at the inclusion of the
subfunctor Ext1

F ⊆ Ext1
E |M we look at the following commutative diagramm

0 Ext1
E(D,M) Ext1

E(MC ,M) Ext1
E(C,M)

Ext1
E(MD,M)

Ext1
F (MD,M) Ext1

F (MC ,M)

Now, we claim Ext1
F (MA,M)→ Ext1

E(A,M) is injective for all objects A (then applied in the
diagramm for A = D and A = C implies first that Ext1

F (MD,M)→ Ext1
F (MC ,M) in a

monomorphism and then that Ext1
F (MD,M) = 0)).

Let us prove the claim: The map is given by pull-back F-short exact sequences ending in MA along
the map fA, assume the lower line pulls back to a split exact sequence. Then we find the dashed
morphism f : A→M1 such that the triangle commutes

A

M M1 MA

fA

As M1 ∈M using that fA is a left M-approximation we find splitting MA →M1 of the lower exact
sequence. This show the injectivity.
Secondly, we need to see that P(F) ⊆ add(MG ⊕MD).
We claim (call this (*)): For every E-exact sequence (i, d) : X �MG1 � Y with G′2 ∈ add(G) and
Y ∈ add(M) we have i is a left add(M) approximation, i.e. we may assume i = fX .
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Before, we proof the claim, let us explain its consequence. Let Q ∈ P(F) and take an E-deflation
q : G′ � Q with G′ ∈ add(G). It factors over an E-deflation q′ : MG′ → Q. Let X = ker q′, then by
claim (*), we have Q = coker fX = Mcoker fX ∈ add(MG ⊕MD).
Proof of claim (*): Let G =

⊕
i∈I G

i be a direct sum decomposition into indecomposables. We
assume wlog MG =

⊕
i∈IMGi . We use the horse-shoe lemma to produce split exact sequence

H1 � H2 � H3, Hi ∈ add(G) such that there is a morphism (p1, p2, p3) to the short exact sequence
(i, d) with all pj E-deflations. Then p2, p3 have to factor over fH2 , fH3 respectively and therefore also
p1 has to factor over fH1 (all of these are E-deflations). We find another split exact sequence
MH1 �MH2 �MH3 such that there exists a morphism (h1, h2, h3) of ses to (i, d) with all hi are E-
deflations. As MG′2

∈ add(MG) it follows that h2 is a split epimorphism, i.e. we find another split
exact sequence MG2 �MH2 �MG′2

. Now, we define G1 to be the largest common summand of the

two summands H1 and G2 in H2 and we set G′1 = H1/G1. As MG1 is mapped under q1 to zero, we
get a commutative diagram

MG′1
MG′2

X MG′2

split

q′1 =

i

with q′1 an E-deflation. Right, now after all this affords we produced a split monomorphism
j : G′1 → G′2 with r : G′2 → G′1, rj = idG′1 such that we find a commutative diagram

G′1 G′2

X MG′2

j

g1 fG′2

i

with g1 also an E-deflation. Then we look at a morphism t : X →M and we want to see it factors
over i. We have there exists m : MG′2

→M such that

tg1r = mfG′2 ⇒ tg1 = mfG′2j = mig1

and since g1 is an epimorphism it follows t = mi. �

Remark 6.2. Even in the representation-finite case: Exact subcategories can have more, less or
equal number of indecomposable projectives to the exact category in which they are embedded into.

By a result of Enomoto, [72, Prop. 3.14, Cor. 3.15], every exact structure on A has enough
projectives and enough injectives and is an Auslander-Reiten category.
Exact structures on A is the boolean lattice of generators. The lattice of all exact subcategories has
for every additively closed subcategory B a boolean sublattice of all generators containing the
generator constructed in the previous lemma (for E = Emax the maximal exact structure on A). The
disjoint union of all these sublattices contains all exact subcategories in A.
We also easily find:

Lemma 6.3. Let A as through-out in this subsection. Then EX(A) is a finite poset, let Fi be an
exact structure on Bi ⊆ A, i = 1, 2. Let F1 → F2 be an arrow in the Hasse diagramm, then:
(1) If the underlying additive categories are equal, then it is an arrow in the Boolean lattice
corresponding to this subcategory.
(2) If they are not equal we have |B1| < |B2| and F1 is the maximal exact structure making the
inclusion B1 → F2 exact and for all proper intermediate B1 ( B ( B2, if FB is the maximal exact
structure making the inclusion B → F2 exact then the inclusion F1 → FB is not exact.

The proof is obvious.
With the previous two Lemmata we can theoretically compute these lattices. Instead we just look at
the easiest non-trivial case and count how many objects we have (that already takes some time).
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Exact structures on A is a graded poset by the map: E 7→ |P(E)| ∈ N where the last one is the
number of indecomposable projectives (up to isomorphism). Let E be an exact structure on A and
E(E) ∈ {EX(E),Ex(E), ext(E), ex(E)}. As these lattices are notoriously big, we look instead at the
following simple generating function

µE(E)(X,Y, T ) :=
∑

E ′∈E(E),gldim E ′<∞

X |P(E ′)|Y |E
′|T gldim E ′

e.g. if we set aEijk to be the multiplicity of XiY jT k. For example, let Q be a Dynkin quiver, then

a
ext(KQmod)
nn0 with n = |Q0| is the number of basic tilting KQ-modules.

Now, let us look at the simplest cases.
Let E = Λ-mod with Λ = K(1→ 2→ 3→ · · · → n) and let G be basic module given by the direct
sum of all indecomposable non-projectives. As a lattice ex(E) is a cube given by all summands of G,
the meet of add(G′) and add(G′′) is given by add(G′ ⊕G′′), and the join is given by
add(G) ∩ add(G′).

Example 6.4. n = 2, then EX(E) has 9 elements, the cube on the bottom is ADD(A) (i.e. all split
exact structures) and the maximal element is the abelian structure on E , i.e. the Hasse diagramm
looks like

•

•

• • •

• • •

•

Example 6.5. n = 3, we have 8 generators, so ex(E) has 8 elements, we have 26 = 64 additively
closed subcategories in ADD(A) of whom 34 are extension-closed, then Ex(E) has 56 elements and
EX(E) has 95.

µex(A3)(X,Y, T ) = Y 6[X6 + (X3 + 2X4 + 3X5)T +X4T 2]

µext(A3)(X,Y, T ) = 1 + 6(XY ) + 10(XY )2 + 5(XY )3

+ [4Y 3X2 + (5Y 4 + 2Y 5 + Y 6)X3]T

µEx(A3)(X,Y, T ) = 1 + 6(XY ) + 10(XY )2 + 9(XY )3 + 5(XY )4 + 2(XY )5 + (XY )6

+ [4Y 3X2 + (5Y 4 + 2Y 5 + Y 6)X3 + (4Y 5 + 2Y 6)X4 + 3Y 6X5]T

+ Y 6X4T 2

µEX(A3)(X,Y, T ) = 1 + 6XY + 15(XY )2 + 20(XY )3 + 15(XY )4 + 6(XY )5 + (XY )6

+ +[4Y 3X2 + (9Y 4 + 2Y 5 + Y 6)X3 + (8Y 5 + 2Y 6)X4 + 3Y 6X5]T

+ (Y 4X3 + Y 6X4)T 2

Example 6.6. n = 4, E(E) = ex(E) has 26 = 64 elements. Then one can calculate

µex(A4)(X,Y, T ) = Y 10[X10 + (X4 + 3X5 + 7X6 + 14X7 + 12X8 + 6X9)T

+ (3X5 + 7X6 + 5X7 + 3X8)T 2 + (X6 +X7)T 3]

Observe, that we have 42 exact substructures of gldim = 1, this means the poset of hereditary exact
substructures has 43 elements, which is substantially more then the 24 submodule-closed generators.
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CHAPTER 4

Exact categories represented by morphisms

1. Synopsis

For every module over a ring there is the associated module category over the endomorphism ring,
i.e. a construction of a new module category over a ring.
This has the following generalization to exact categories: For an exact category E and a full
subcategory M we look at all the E-admissible morphisms S in M and define the category of
S-presented functors F : Mop → (Ab), this is a fully exact category of all finitely presented functors.
Interestingly, we can also choose other classes of morphisms (for example deflations or inflations) and
still obtain an exact category. Of course this topic deserves a systematic study that I can not give
(due to time constraints).
We have already seen in Chapter 2, the Auslander exact category as an instance of this construction,
we explain its generalizations which lead to the generality of a contravariantly finite generator M in
an arbitrary exact category. We give a short history of ideas in the next section.
Furthermore, we have an exact category with enough projectives always presented by its admissible
morphism between the projectives. Tilting subcategories are a generalization of the subcategory of
projectives and we start using this construction in tilting theory for exact categories (cf. Chapter 10).
What is new? Functor categories represented by (general) classes of morphisms (in the literature
you find either admissible morphisms or deflations). The generator correspondence for exact
categories.

2. A short history of ideas

Of course, one would like to have an endo-dictionary translating properties into each other. Related
to this is the question: Can one reconstruct the module category/exact category from this
endomorphism ring/admissibly presented functor category?
This question has been answered in many different situations, we quickly survey the history of ideas
here: We start recalling two result of M. Auslander.

Theorem 2.1. (Auslander correspondence, 1971, [17]) There exists a bijection between the set
of Morita-equivalence classes of representation-finite finite-dimensional algebras Λ and that of
finite-dimensional algebras Γ with gldim Γ ≤ 2 ≤ domdim Γ. It is given by Λ 7→ Γ = EndΛ(M) where
mod Λ = add(M)

This has further generalizations to (from special to more general, some predate Auslander’s result)

(*) The higher Auslander correspondence [102]
(*) The Morita-Tachikawa correspondence [139], [178]
(*) The generator correspondence [177], [27]

They are all instances of faithfully balancedness which we explain by considering an assignment of
Morita equivalence classes of pairs of rings and modules and the assignment

E : [Λ, ΛM ] 7→ [Γ = EndΛ(M), ΓM ]

Then we call a module ΛM faithfully balanced if E2[Λ,M ] = [Λ,M ]. All correspondences (for
rings and modules) using this assignment E are instances of faithfully balanced modules. As a
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feature, Hom(−,M) then always gives a duality between certain subcategories of the module
categories [136, Lem 2.9] and all dualities given by such a Hom-functor arise from faithfully
balanced modules (e.g. Matlis duality - [128]). The best studied examples apart from (co)generators
are (co)tilting (cf. [137]) in which the duality becomes the Theorem of Brenner and Butler ([42]).
There are many more correspondences of faithfully balanced modules, we recommend to read the
introduction in [136].
In loc. cit. we generalized faithfully balanced to Auslander-Solberg exact structures of finite type on
f.d. module categories of f.d. algebras. In Chapter 5 we look at faithfully balancedness in functor
categories (because we need some of the results in tilting theory for exact categories).
(It is unclear how general faithfully balancedness can be defined - but all ambient exact categories
are with enough projectives and we think that having enough projectives will always be an
assumption for the set-up.)
Then, secondly

Theorem 2.2. (Auslander’s formula, 1966, [16]) Let C be a small abelian category and mod1 C
the category of finitely presented additive functors Cop → (Ab). Then this is an abelian category and
there exists a left adjoint exact functor L : mod1 C → C to the Yoneda embedding. Its kernel is a
Serre subcategory, called the effaceable functors, kerL = eff(C) and there is an induced equivalence

mod1 C/eff(C)→ C

This suggest a different way of reconstructing the category C from its module category mod1 C,
namely as localization with respect to the subcategory of effaceable functors. We call this approach
reconstruction using Auslander’s formula. Using this the following has been generalized to arbitrary
exact categories

(*) The Auslander correspondence [90]
(*) The higher Auslander correspondence [68]
(*) The Morita-Tachikawa correspondence [83]
(*) The generator correspondence, cf. Theorem 3.28

Nevertheless, the assignment considered in all cases is the following:
To an exact category E and an additively closed subcategory M, we assign the category modSM of
additive functors F : Mop → (Ab) such that there exists an E-admissible morphism s : M1 →M0,
Mi ∈M such that F = coker HomM(−, s). We write this as assignment of (exact equivalence classes
of) pairs of exact categories together with a subcategory.

E′ : [E ,M] 7→ [modSM, eff(M)]

We will consider E′ and E at least on the first entry as the same assignment.
The question is: ”Can we find a localization sequence as in Auslanders formula which reconstructs E
and M and therefore gives an inverse assignment to E′?”.

The obvious general open question

Open question 2.3. How does the first and the second type correspondence fit together? Both are
crucially using adjoint pairs of functors, is there a joint generalization?

Let us look at an idempotent recollement on an endomorphism ring of a generator. In this situation
we can study this generclosedator as a faithfully balanced module or we can look at the recollement
and can recover the right hand side abelian category as a localization. Yet for other faithfully
balanced modules this is not known to be true, so a description with an Auslander formula can not
really be expected.
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always small exact categories with subcategory M:

contrav. fin. gen.

f. b. in (*)

generator in (*)

where (*) is an exact category in which faithfully balanced (f.b.) is defined, so far only for
Auslander-Solberg exact structures of finite type [136] and for categories of all additive functors
ModP with P essentially small, cf. Chapter 5.

3. Presentations of exact categories

We start with a study of exact categories of the form modSM (called exactly presented by (M, S))
for some class of morphisms S in the first section. Then we translate properties of S into properties
of modSM. The most important: S has weak kernels in S translates into modSM is has enough
projectives given by the presentables.

Definition 3.1. Given an additive category M and a class of morphisms S in M. We say it is
closed under homotopy if for two morphisms s, t in M with
coker HomM(−, s) ∼= coker HomM(−, t) in mod1M we have s ∈ S if and only if t ∈ S.

Being homotopy-closed is often useful, such as:

Lemma 3.2. If S is closed under homotopy and direct sums and summands of morphisms (i.e.
s, t ∈ S iff s⊕ t ∈ S) then modSM is an additively closed subcategory in ModM.

The proof is obvious.

Remark 3.3. If S is homotopy closed then it contains all split epimorphisms. If every representable
Hom(−,M) is of the form coker Hom(−, s) for some s ∈ S and if S is homotopy closed then all split
admissible morphisms are contained in it.

Lemma 3.4. If S ⊆ MorM is a class of morphisms which is closed under direct sums and
summands. If S contains all split epimorphisms then S is homotopy-closed.

Proof. Assume F = coker HomM(−, s) = coker HomM(−, t). We look at the projective
presentations of F in ModM, say s : M1 →M0, t : N1 → N0. Then we have
s⊕ idN0 ⊕ (N1 → 0) ∼= t⊕ idM0 ⊕ (M1 → 0) and by assumption s ∈ S if and only if t ∈ S. �

Definition 3.5. Let M be an additive category and S a class of morphisms in M. We define the
category of S-represented M-modules modSM to be the full subcategory of ModM consisting
of the functors F : Mop → (Ab) such that there exists an exact sequence

Hom(−,M1)
Hom(−,f)−−−−−−→ Hom(−,M0)→ F → 0
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Definition 3.6. We say that a class of morphisms S on an additive category M (or the pair
(M, S)) is an exact presentation if E = modSM is an extension-closed subcategory in ModM
(we will always equip it with this exact structure). In this case, we also say the exact category E is
exactly represented by (M, S).

We will from now on assume that S is homotopy-closed and closed under direct sums.

Example 3.7. Exactly presented exact categories are precisely all fully exact subcategories of
mod1M for some additive categoryM. If E is a fully exact subcategory of mod1M, take S to be the
class of all morphisms s in M such that coker HomM(−, s) lies in E , then obviously E = modSM.

Definition 3.8. We say an exact category E is projectively determined (by Q ⊆ P(E)) if a
kernel-cokernel pair (i, p) is an exact sequence in E if and only if (Hom(Q, i),Hom(Q, p)) is an exact
sequence of abelian groups for all Q ∈ Q.
More generally, given an exact subcategory i : E ′ ⊆ E , we say that E ′ is projectively determined
by Q ⊆ P(E ′) inside E if: An E-exact sequence X � Y � Z with X,Y, Z in E ′ is E ′-exact if and
only if (Hom(Q, i),Hom(Q, p)) is an exact sequence of abelian groups for all Q ∈ Q.

In particular if E is projectively determined by Q than it is projectively determined by Q inside the
maximal exact structure on the underlying additive category.

Example 3.9. Given an exact category E with enough projectives then E is projectively determined.

Example 3.10. Let E be an exact category. Every additive subcategory M of E gives an exact
substructure EM ≤ E defined as follows: A E-exact sequence (i, p) is an exact sequence in EM if and
only if (Hom(Q, i),Hom(Q, p)) is an exact sequence of abelian groups for all Q ∈M.
These exact substructures are called Auslander-Solberg structures. By definition they are
projectively determined by M inside E . In particular, if E is projectively determined by Q, then
E = EmaxQ is the Auslander-Solberg structure given by Q of the maximal exact structure on the
underlying additive category.

Example 3.11. Given an exact category E which is projectively determined by Q. If E ′ is a fully
exact subcategory which also contains Q then E ′ is also projectively declosedtermined by Q and also
projectively determined by Q inside E .

Definition 3.12. Let S be a class of morphisms in an additive category M, then we say S has
weak kernels in S if for every morphism s : M → N in S there exists another morphism t : L→M
such that

HomM(−, L)
Hom(−,t)−−−−−−→ HomM(−,M)

Hom(−,s)−−−−−−→ HomM(−, N)

is exact in the middle (in ModM).
Dually weak cokernels in S if Sop has weak kernels in Sop.

Lemma 3.13. Let S be a class of morphisms closed under isomorphism, direct sums and summands
and contains all split admissible morphisms. Let E be exactly presented by (M, S). Let

M̃ = {Hom(−,M) ∈ mod1M : M ∈M} and S̃ := {Hom(−, s) | s ∈ S}.
The following are equivalent

(a) S has weak kernels in S

(b) S̃ equals all E-admissible morphisms in M̃
(c) E has enough projectives given by add(M̃).

Proof. Very easy. We leave it to the reader. �

Definition 3.14. We call a class of morphisms S in a category M suitable if (M, S) is an exact
presentation and S has weak kernels in S and is closed under homotopy.
In this case we say that the exact category modSM is suitably presented by (M, S).
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We also observe that M̃ ⊆ E implies E is projectively determined by M̃ (as ModM fulfills this and
E is fully exact in it).

Lemma 3.15. Let E be an exact category and M a full additively closed subcategory. Let S be either

(1) Sadm all E-admissible morphisms in M, or
(2) Sinfl all E-inflations in M, or
(3) Sdefl all E-deflations in M,

then S is an exact presentation. If the ambient exact category E is clear, we will use the following
notation:

(1) modadmM = modSadm
M, (2) HM := modSinfl

M, (3) effM = modSdefl
M

Proof. (1) The proof is an easy adaptation of [90, Prop. 3.5].
(2), (3) We just need to see that HM and effM are extension-closed in modadmM but this follows
from the horseshoe lemma and [49, Cor. 3.2]. �

Corollary 3.16. If E is an exact category with enough projectives P. Then

P : E → modadm P, E 7→ Hom(−, E)|P
is an exact equivalence (i.e. equivalence which is an exact functor and its quasi-inverse is also an
exact functor). If P is idempotent complete, then modadm P is a resolving subcategory in mod∞ P.

Now, we need the following observation:

Lemma 3.17. ([50, Lemma 21, 22]) Let E be an exact category.

(a) E-inflations is closed under direct summands iff
E is weakly idempotent complete iff
E-deflations are closed under direct summands.

(b) E-admissible morphisms are closed under direct summands if and only if E is idempotent
complete.

This can be used to:

Example 3.18. If M⊆ E is a contravariantly finite generating subcategory and Sadm the class of
admissible morphisms on M. Then Sadm has weak kernels in Sadm and modadmM has enough

projectives given by add(M̃). We have that the functor E 7→ Hom(−, E)|M restricts to a fully
faithful functor Φ: E → modadmM.
By the previous Lemma and Lemma 3.4: If E is idempotent complete then (M, Sadm) is a suitable
presentation.

Example 3.19. If the exact structure of E restricts to M to an abelian structure, then every
E-admissible has a kernel in M which is given by an E-inflation and so the class of E-admissible
morphism on M coincides with all morphisms in M and this is suitable (this presents the abelian
category mod1M).

Here is a little warning.

Remark 3.20. Given a fully exact subcategory F ⊆ E , then there might be many more E-admissible
morphisms on F than there are F-admissible ones. Even if F is homologically exact- just consider
the case above: F = P(E) is semi-simple, only projections onto summands are F-admissible.

Remark 3.21. Let us summarize the discussion from before:
We have 1) ⇒ 2) ⇒ 3) ⇒ 4) with

1) Exact categories with enough projectives
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2) Exactly presented categories, projectively determined by M̃
3) Exactly presented categories
4) Exact categories

We do not know a small exact category which is not exactly presented.
An example fulfilling 3) but not 2) is given by categories of effaceable functors on an exact category.
An example fulfilling 2) but not 1) is given by mod1M (i.e. finitely presented additive functors in
ModM) where M does not have weak kernels (then this category has not enough projectives).

3.0.1. Universal Property. Now, we take F exactly presented by (M, S) and an additive functor
f : M→ B such that f(s) has a cokernel for all s ∈ S. Then we can define a functor

f : F → A, f(coker Hom(−, s)) = coker f(s)

Lemma 3.22. In the above situation

(1) Assume that A is weakly idempotent complete. If f : M→ E with E an exact structure on A
and if f(s) admissible for all s ∈ S, the f : F → E is right exact.

(2) In the situation of (1); If all morphisms in s ∈ S there exist a weak kernel t ∈ S such that
(f(t), f(s)) is exact in the middle then f : F → E is exact.

Proof. (1) Assume F1 � F2 � F3 is exact in F . We pick si ∈ S such that
coker HomM(−, si) = Fi, i = 1, 2, 3. We now consider the Hom(−, si) as projective
presentations of Fi in ModM. We can assume by the horseshoe Lemma (using that we
assume S is homotopy-closed) that these projective presentations are degree-wise split. As
f is an additive functor, we obtain that (f(s1), f(s2), f(s3)) is a morphism of two split exact
sequences in E . As A is weakly idempotent complete and f(si) are E-admissible we can
apply the snake lemma and we obtain a right exact sequence f(F1)→ f(F2)� f(F3) on
the cokernels.

(2) We repeat the same steps as in (1) but now with one longer projective presentations. The
exactness of the outer sequences implies the exactness of the middle sequence in F . Then
apply the snake lemma.

�

Lemma 3.23. (Universal property) Let F be suitably presented by (M, S). For every functor
f : M→ E which maps S to E-admissible morphisms, the right exact functor f : F → E with
f(coker(HomM(−, s))) = coker f(s) for all s ∈ S is (up to isomorphism of functors) the unique right
exact functor F with F ◦ Y = f where Y : M→ modadmM, M 7→ HomM(−,M) is the Yoneda
embedding.

Proof. Let F be a right exact functor with F ◦ Y = f . Then as F is right exact and Hom(−, s)
admissible for all s ∈ S (because F is suitably presented). It follows that
F (coker Hom(−, s)) = coker f(s) = f(coker Hom(−, s)). �

Remark 3.24. Observe that we do not need that F is suitably presented by (M, S) to show that f
is right exact. But for the unique characterization we assume (even though it is a bit stronger than
necessary).

3.1. Results for admissible morphisms. Let us come to the Yoneda embedding, recall from
Lemma 3.13.

Remark 3.25. Let M be an additively closed subcategory in an idempotent complete exact
category E , then the Yoneda embedding Y : M→ modadmM reflects admissibility if and only if
Sadm is suitable.
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Definition 3.26. Let E be an exact category and M⊆ E be an additively closed subcategory and
we denote by S the class of E-admissible morphisms in M. Then we define the following full
subcategory of modSM

effM = {F = coker HomE(−, d)|M | d deflation }

and call this the subcategory of M-effaceable functors.
We say that M satisfies the Auslander formular if effM is a two-sided percolating subcategory
(definition of [90]) and the quotient modSM/effM is equivalent as an exact category to E .

Lemma 3.27. Let M be a contravariantly finite generator in E, let Sadm be all E-admissible
morphisms in M. Let inc : M⊆ E be the inclusion functor and L = inc: modadmM→ E defined by
L(coker HomM(−, s)) = coker s. We denote by Φ: E → modadmM the functor
Φ(E) = HomA(−, E)|M.

(i) L is exact, Φ is left exact and kerL = effM
(ii) (L,Φ) are an adjoint pair, Φ is fully faithful, L is essentially surjective and L ◦ Φ ∼= idE
(iii) The subcategory effM is percolating in modadmM and the functor L factors over an

equivalence of exact categories

L′ : modadmM/ effM → E

Proof. (i) To see that L is exact we observe that we can find weak kernel of morphisms in
M which give middle exact sequences and so Lemma 3.22 (2) applies. Clearly, for an
s ∈ Sadm, we have: L(coker Hom(−, s)) = coker(s) = 0 if and only if s is an E-deflation.

We need to see that Φ maps deflations to admissible morphisms. So given an exact
sequence X � Y � Z in E we have a left exact sequence of functors
0→ Φ(X)→ Φ(Y )→ Φ(Z). So we need to see that if a is an inflation or a deflation then
coker Φ(a) in ModM is already in modadmM. Let a : X → Y , let p : MY � Y be a right
M-approximation, we pull back p along a, i.e. we have a commutative diagram

R MY

X Y

b

p

a

We claim in both cases (a inflation or deflation) we have a commutative diagram with right
exact rows

Φ(R) Φ(MY ) F

Φ(X) Φ(Y ) F

Φ(b)

p =

Φ(a)

Then let r : MR � R be a rightM-approximation, it follows br ∈ Sadm and F = coker Φ(br).
(ii) As M is a contravariantly finite generator, L is surjective and Φ is well-defined and fully

faithful. Furthermore, we have L ◦ Y = inc: M→ E and Φ|M = Y. For E in E we find an
E-admissible s : M1 →M0 in Sadm such that E = coker(s) and M0 → E, M1 → Im s are
M-approximations, this implies that we have a right exact sequence

Φ(M1)
Φ(s)−−−→ Φ(M0)� Φ(E), the apply L to conclude LΦ(E) ∼= E.

For the adjunction, let F ∈ modadmM and E ∈ E , we claim
HommodadmM(F,Φ(E)) ∼= HomE(L(F ), E).

Choose s ∈ Sadm such that Φ(M1)
Φ(s)−−−→ Φ(M0)� F is exact in modadmM. Now given

a morphism F → Φ(E), then the composition Φ(M0)→ Φ(M1)→ Φ(E) is zero. As Φ is
fully faithful, there is a unique morphism L(F ) = coker(s)→ E. Conversely, as F is the
cokernel of Φ(s), we have a unique morphism c : F → Φ(coker(s)) = ΦL(F ), so given an
a : L(F )→ E we just map it to Φ(a)c.
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(iii) The argument that effM is percolating is just the observation that [90, Prop 3.6, 3.17]
generalize to this set-up. By [90, Thm 2.12] we have the induced functor L′ such that
L′ ◦Q = L. As Q,L are exact, the same is true for L′. By the same argument as in
[90, Thm3.11], L′ is an additive equivalence. As LΦ = idE and L = L′Q, we see that QΦ is
the quasi-inverse of L′. We want to see that QΦ is exact, as it is already left exact, it is
enough to show that it preserves deflations. Let f : X � Y be an E-deflation. We take a
right M-approximation MY � Y and pull back f along it, to an object Z. Then we take
the M-approximation of MZ � Z. Now, we have a commutative diagramm

MZ MY

X Y

with all arrows are E-deflations. Now, Φ maps the right M-approximations to deflations
and QΦ maps the E-deflation MZ →MY to one in modadmM/ effM. This implies by the
diagonal MZ → Y is mapped under QΦ to a deflation and then by the obscure axiom it
follows that QΦ(f) is a deflation.

�

We look at the assignment of (exact equivalence classes of) pairs of exact categories together with a
subcategory.

E′ : [E ,M] 7→ [modSM, eff(M)]

As a reformulation we of (3) and (4) one gets:

Theorem 3.28. (Generator correspondence for exact categories) The assignment E′ gives a
bijection between

(1) Pairs of an exact category E together with a contravariantly finite generator M
(2) Pairs of an exact category F with a percolating subcategory eff satisfying

(i) F has enough projectives P
(ii) eff ⊆ ⊥P (= {X ∈ F | Hom(X,P ) = 0 ∀P ∈ P}) and eff is a torsion class
(iii) Ext1(eff,P) = 0

Proof. First of all, we need to see that E′ is well-defined, by Lemma 3.27, (3) we have that
effM is percolating and by Ex. 3.18 we have that F = modSM has enough projectives. For the
properties (ii) and (iii), we leave the reader to check that the proofs of [90, Prop. 3.6, Prop. 3.17
(3)] generalize to this more general situation.
Define F[F , eff] := [E = F/ eff, Q(P(F))] where Q : F → F/ eff is the localization with respect to the
percolating subcategory and P := P(F) are the projectives in F . We first show: Condition (ii) and

(iii) ensure that we always have that P ⊆ F Q−→ E is fully faithful.
A morphism P ′ → P in E with P, P ′ ∈ P is given by an equivalence class of pairs [f, s] with
f : X → P and s : X → P ′ is F-admissible such that ker(s), coker(s) ∈ eff.
First we use that we have a torsion pair (eff,G) and therefore we find an exact sequence
E � X � G with E ∈ eff, G ∈ G. As eff ⊆ ⊥P, we find a morphism g : G→ P such that
f : X � G→ P . By definition [f, s] = [g, i] where i : G� P ′ is the induced inflation, observe that
coker(i) = coker(s) =: E′ ∈ eff. So we look at the short exact sequence G� P ′ � E′ and apply
HomA(−, P ). Using also (iii) we conclude that HomA(P ′, P ) ∼= HomA(G,P ), this means that
g : G→ P factors over i : P ′ → P uniquely. This implies the functor is full and also faithful because
assume that a morphism p : P ′ → P fulfills Q(p) = 0, then there exists some s : X → P ′ with
ker(s), coker(s) in eff such that ps = 0, now, as s is admissible we have pi = 0 with
i : X/ coker(s) =: G� P ′. But now pi : G→ P is in the image of the isomorphism from before and
therefore p = 0.
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As localization with respect to percolating subcategory reflects admissibility (cf. [90, Thm 2.16] we
get: F-admissible morphism in P are precisely E-admissible morphisms in Q(P) =:M. This
bijection restricts to the following two classes:

(a) F-admissible morphisms p : P ′ → P such that coker(p) ∈ eff
(b) E-deflations P ′ → P with P, P ′ in M

That is clear by definition as the bijection follows from applying Q and Q is an exact functor.
Therefore we conclude that F = modF−adm P ∼= modSM where S are the E-admissible morphisms
in M. Under this equivalence, we have the objects in eff, i.e. the objects represented by morphisms
in class (a) are mapped to the objects represented by morphisms in M in class (b) which is the
category effM. This shows E′ ◦ F is the identity.
Now, we look at F ◦ E′. By the previous Lemma we have E ∼= modS A/ effM. We just need to see
that M∼= Q(P(modS A/ effM)). We define F := modS A and P = P(F). As the S are suitable
morphisms for M (cf. Example 3.18) we have that the Yoneda embedding Y : M→ F identifies M
with the projectives P and S with the F-admissible morphisms between the projectives. But as the

composition P ⊆ F Q−→ E is fully faithful (see before), the claim follows. �

All other instances of E′ in the history of idea section are specializations of the generator
correspondence.

Open question 3.29. If M is a contravariantly finite generator and E has enough projectives, do
we have an adjoint triple (j!, L,Φ) defining the right half of a recollement of exact categories (cf. in
[90], this exists for M = E). Then this should be used to find the right definition of faithfully
balancedness in this situation.

3.2. Using other morphisms. In joint work in progress (with Janina Letz, Marianne Lawson)
we conjecture the following:
Let E = (A, S) be an exact category. Let Sm be one of the following

(1) Let Sm be the F-inflations for a supstructure E ≤ F on A
(2) Let Sm be the class of all A-monomorphisms.

Then we define S ⊆ Mor(A) to be the class of all morphisms s which factor as s = ip with i in Sm
and p an E-deflation.
As all morphisms in S have a kernel in A which is an E-inflation and therefore in S again: In
particular S has weak kernels. As S contains all split admissible morphisms, by Lemma 3.4, we
conclude that S is closed under homotopy. It is also straightforward to see that the proof in
[90, Prop. 3.5] generalizes to show that modS A is extension-closed in mod1A. This means we have
S is suitable.

Conjecture 3.30. Let E = (A,S) be an exact category and S be a class of morphisms just described.

(1) eff(E) is a percolating subcategory in modS A
(2) E ∼= modadmA/ eff(E)→ modS A/ eff(E) is a fully exact subcategory.

We look at the commutative diagramm

modS A Kb(A)

modS A/ eff(E) Db(E)

i

where the functor i is maps F = coker Hom(−, s) to the 3-term complex with X−2 → X−1 → X0

defined as ker s→ X
s−→ Y .
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We claim that modS A/ eff(E) is an admissible exact subcategory in Db(E) (i.e. the exact structure of
the localization coincides with all composable morphisms which are part of a triangle). Then we look
at E ⊆ modS A/ eff(E) ⊆ Db(E) and conjecture that Db(E)→ Db(modS A/ eff(E)) is a triangle
equivalence.

This would provide a useful tool to embed an exact category within its derived equivalence class into
another exact category.
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CHAPTER 5

On faithfully balancedness in functor categories

1. Synopsis

This is a generalization of some results of Ma-Sauter [136] from module categories over artin
algebras to more general functor categories (and partly to exact categories). In particular, we
generalize the definition of a faithfully balanced module to a faithfully balanced subcategory and find
the generalizations of dualities and characterizations from Ma-Sauter.

2. Introduction

For an exact category E in the sense of Quillen and a full subcategory M we define categories
genEk(M) (and cogenkE(M)) of E (consisting of objects admitting a certain k-presentation in M). We
also consider the two functors Φ(X) := HomE(−, X)|M,Ψ(X) := HomE(X,−)|M.

We give the relatively obvious but technical generalizations of results in [136] related to these
categories and functors. If E is a functor category (of some sort) these functors have adjoints and
therefore stronger results can be found. We state here two of these:
Let P be an essentially small additive category. We denote by ModP the category of contravariant
additive functors P → (Ab) (and we set PMod := ModPop). We write modk P for the full
subcategory which admit a k-presentation by finitely generated projectives. We denote by
h : P → ModP, P 7→ hP = HomP(−, P ) the Yoneda embedding.
Cogen1-duality: Let k ∈ N0 ∪ {∞} and assume now M⊂ modk P. We shorten the notation
cogenk(M) := cogenkmodk P(M) ⊂ modk P.

We say M is faithfully balanced if hP ∈ cogen1(M) for all P ∈ P.

Lemma 2.1. (cf. Lem. 4.11) (cogen1-duality) If M is faithfully balanced, we denote by

M̃ = Ψ(hP) ⊂Mmodk, then Ψ defines a contravariant equivalence

cogen1
mod1 P(M)←→ cogen1

Mmod1
(M̃)

The symmetry principle states as follows:

Theorem 2.2. (cf. Thm. 4.16, Symmetry principle). Let E be an exact category with enough
projectives P and enough injectives I and k ≥ 1. The following two statements are equivalent:

(1) P ⊂ cogenkE(M) and Φ(I) = HomE(−, I)|M ∈ modkM for every I ∈ I
(2) I ⊂ genEk(M) and Ψ(P ) = HomE(P,−)|M ∈Mmodk for every P ∈ P

A nice special case: Assume additionally that E is a Hom-finite K-category for a field K and
M = add(M) for an object M ∈ E . Then the following two statements are equivalent:

(1) P ⊂ cogenkE(M)
(2) I ⊂ genEk(M)

Since: If we set Λ = EndE(M), then modkM, Mmodk can be identified with finite-dimensional (left
and right) modules over Λ and Φ(I) = HomE(M, I),Ψ(P ) = HomE(P,M) are by assumption
finite-dimensional Λ-modules.
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3. In additive categories

Here we want to extend Yoneda’s embedding to a bigger subcategory: Let C be an additive category
and M an essentially small full additive subcategory. A right M-module is a contravariant additive
functor from M into abelian groups. We denote by ModM the category of all right M-modules.
This is an abelian category. We have the fully faithful (covariant) Yoneda embedding M→ ModM
defined by M 7→ HomM(−,M). Clearly, we can extend this functor to a functor
Φ: C → ModM, Φ(X) := HomC(−, X)|M= (−, X)|M where the last notation is our shortage for the
Hom functor. The aim of this section is to define a subcategory M⊂ G ⊂ C such that Φ|G is fully
faithful.
We define a full subcategory of C as follows

genadd
1 (M) :=

{
Z ∈ C |

∃M1
f−→M0

g−→ Z, Mi ∈M, g = coker(f) is an epim.

(M,M1)→ (M,M0)→ (M,Z)→ 0

exact sequence of abelian groups ∀M ∈M

}

We observe that g = coker(f) and g an epimorphism is equivalent to that we have an exact sequence
of Cop-modules

0→ (Z,−)→ (M0,−)→ (M1,−)

Furthermore the second line in the definition is equivalent to an exact sequence in ModM
(−,M1)→ (−,M0)→ (−, Z)|M→ 0.

Dually, we define cogen1
add(M) := (genadd

1 (Mop))op where Mop is considered as a full additive
subcategory of Cop.

Lemma 3.1. (1) The functor genadd
1 (M)→ ModM defined by Z 7→ (−, Z)|M is fully faithful.

We even have for every Z ∈ genadd
1 (M), C ∈ C a natural isomorphism

HomC(Z,C)→ HomModM((−, Z)|M, (−, C)|M)

(2) The functor cogen1
add(M)→ ModMop defined by Z 7→ (Z,−)|M is fully faithful. We even

have for every Z ∈ cogen1
add(M), C ∈ C a natural isomorphism

HomC(C,Z)→ HomModMop((Z,−)|M, (C,−)|M)

Proof. We only prove (1), the second statement follows by passing to opposite categories. We
consider the functor Φ: C → ModM defined by Φ(X) := (−, X)|M. Since Z ∈ genadd

1 (M) we an
exact sequences

0→ (Z,C)→ (M0, C)→ (M1, C) of ab. groups

and Φ(M1)→ Φ(M0)→ Φ(Z)→ 0 in ModM. By applying (−,Φ(C)) to the second exact sequence
we obtain an exact sequence

0→ (Φ(Z),Φ(C))→ (Φ(M0),Φ(C))→ (Φ(M1),Φ(C)) of ab. groups.

Since Φ is a functor, we find a commuting diagram

0 // (Z,C) //

��

(M0, C) //

��

(M1, C)

��
0 // (Φ(Z),Φ(C)) // (Φ(M0),Φ(C)) // (Φ(M1),Φ(C))

By the Lemma of Yoneda, we have for every F ∈ ModM and M ∈M that
HomModM(Φ(M), F ) = F (M). This implies that the maps (Mi, C)→ (Φ(Mi),Φ(C)) are
isomorphisms of groups. and therefore, the induced map on the kernels is an isomorphism. �

Remark 3.2. If M is not essentially small, HomMMod(F,G) is not necessarily a set. But if one
passes to the full subcategory of finitely presented M-modules mod1M, this set-theoretic issue does
not arise: Observe that Z 7→ (−, Z)|M defines by definition a covariant functor

Φ: genadd
1 (M)→ mod1M,
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the same proof as before shows that this is fully faithful. Similarly, the functor Z 7→ (Z,−)|M defines
a fully faithful contravariant functor

Ψ: cogen1
add(M)→ mod1Mop.

4. In exact categories

This section is a generalization of results from [136]. For exact categories we have subcategories of
cogen1

add such that Ψ induces isomorphisms on (some) extension groups (cf. Lemma 4.3).

Given an exact category E with a full additive subcategory M, we define cogenkE(M) ⊂ E to be the
full subcategory of all objects X such that there is an exact sequence

0→ X →M0 → · · · →Mk → Z → 0

with Mi ∈M, 0 ≤ i ≤ k such that for every M ∈M the sequence

HomE(Mk,M)→ · · · → HomE(M0,M)→ HomE(X,M)→ 0

is an exact sequence of abelian groups.
We define genEk(M) to be the full additive category of E given by all X such that there is an exact
sequence

0→ Z →Mk → · · · →M0 → X → 0

with Mi ∈M, 0 ≤ i ≤ k such that for every M ∈M we have an exact sequence

HomE(M,Mk)→ · · · → HomE(M,M0)→ HomE(M,X)→ 0

of abelian groups.
If it is clear from the context in which exact category we are working, then we leave out the index E
and just write cogenk(M) and genk(M).

Remark 4.1. Observe that cogenkE(M) ⊂ cogen1
add(M), genEk(M) ⊂ genadd

1 (M) for k ≥ 1 and

therefore the functor Ψ: X 7→ (X,−)|M (resp. Φ: X 7→ (−, X)|M) is fully faithful on cogenkE(M)
(resp. on genEk(M)) by Lemma 3.1 and Remark 3.2.

Remark 4.2. Let k ≥ 1. We denote by modkM the category of M-modules which admit a
k-presentation (indexed from 0 to k) by finitely presented projectives. For F ∈ modkM the
Ext-groups ExtiMMod(F,G) with 0 ≤ i < k are sets.
If X ∈ cogenkE(M), then we have Ψ(X) = (X,−)|M ∈ modkMop(=:Mmodk).
If Y ∈ genEk(M), then we have Φ(Y ) = (−, Y )|M ∈ modkM.

Since we are now working in exact categories, we observe the following isomorphisms on extension
groups:

Lemma 4.3. Let k ≥ 1.

(a) If X ∈ cogenkE(M), then the functor Z 7→ Ψ(Z) = (Z,−)|M induces a well-defined natural
isomorphism of abelian groups

ExtiE(Y,X)→ ExtiMMod(Ψ(X),Ψ(Y )), 0 ≤ i < k

for all Y ∈
⋂

1≤i<k ker ExtiE(−,M).

(b) If Y ∈ genEk(M), then the functor Z 7→ Φ(Z) = (−, Z)|M induces a well-defined natural
isomorphism of abelian groups

ExtiE(Y,X)→ ExtiModM(Φ(Y ),Φ(X)), 0 ≤ i < k

for all X ∈
⋂

1≤i<k ker ExtiE(M,−).

Proof. (a) the proof is a straight forward generalization of [136, Lemma 2.4, (2)](using Rem.
4.1) and (b) follows from (a) by passing to the opposite exact category Eop. �
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We will later use the following simple observation:

Remark 4.4. Let E be an exact category, X be a fully exact category and M⊂ X an additive
subcategory. We say X is deflation-closed if for any deflation d : X → X ′ in E with X,X ′ in X it
follows ker d ∈ X . The dual notion is inflation-closed.
If X is deflation-closed then genXk (M) = genEk(M) ∩ X . If X is inflation-closed then

cogenkX (M) = cogenkE(M) ∩ X .

4.1. Inside functor categories. Let P be an essentially small additive category. We denote
by h : P → ModP, P 7→ hP = HomP(−, P ) the Yoneda embedding, we write hP for the essential
image of h.

4.1.1. Adjoint functors. Let now M be an essentially small full additive subcategory of ModP.
We consider the contravariant functor

Ψ: ModP →MMod,

X 7→ HomModP(X,−)|M= (X,−)|M
We also consider the contravariant functor

Ψ′ : MMod→ ModP
Z 7→ (P 7→ HomMMod(Z,Ψ(hP )))

We generalize [13, Lemma 3.3].

Lemma 4.5. The functors Ψ and Ψ′ are contravariant adjoint functors, i.e. the following is a
(bi)natural isomorphim

χ : HomModP(X,Ψ′(Z))→ HomMMod(Z,Ψ(X))

defined as follows: A natural transformation f ∈ HomModP(X,Ψ′(Z)), is determined by for every
P ∈ P, x ∈ X(P ),M ∈M a group homomorphism

fP,x(M) : Z(M) 7→ Ψ(hP )(M) = M(P )

then, we define a natural transformation χ(f) : Z → Ψ(X) = HomModP(X,−)|M for M ∈M as
follows

χ(f)(M) : Z(M)→ HomModP(X,M),

z 7→ (X(P )
fP,−(z)
−−−−→M(P ), x 7→ fP,x(M)(z))P∈P

Proof. We define χ′ : HomMMod(Z,Ψ(X))→ HomModP(X,Ψ′(Z)) as follows: For
g : Z → Ψ(X) = HomModP(X,−)|M we have for every M ∈M, z ∈ Z(M) a natural transformation
gM,z : X →M , i.e. for every P ∈ P a group homomorphism

gM,z(P ) : X(P )→M(P ), x 7→ gM,z(P )(x),

then we define χ′(g)(P ) : X(P )→ Ψ′(Z)(P ) = HomMMod(Z, (hP ,−)|M) as follows

x 7→ (Z(M)→M(P ), z 7→ gM,z(P )(x))M∈M.

Then χ′ is the inverse map to χ. �

Remark 4.6. Given an adjoint pair of contravariant functors Ψ and Ψ′, the natural isomorphisms

Hom(X,Ψ(Z))→ Hom(Z,Ψ′(X))

induce natural transformations α : id→ Ψ′Ψ (and α′ : id→ ΨΨ′) as follows

Hom(X,X)
Ψ(−)−−−→ Hom(Ψ(X),Ψ(X)) ∼= Hom(X,Ψ′Ψ(X)), idX 7→ αX

in this case we have triangle identities

idΨ(X) = (Ψ(X)
α′

Ψ(X)−−−−→ ΨΨ′Ψ(X)
Ψ(αX)−−−−→ Ψ(X))

idΨ′(Z) = (Ψ′(Z)
αΨ′(Z)−−−−→ Ψ′ΨΨ′(Z)

Ψ′(α′Z)
−−−−→ Ψ′(Z))
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In [183, section4] a tensor bifunctor is introduced

−⊗M − : ModM×MMod→ (Ab), (F,G) 7→ F ⊗M G

Now, we consider the covariant funtor

Φ: ModP → ModM, X 7→ HomModP(−, X)|M=: (−, X)|M
and the following covariant functor

Φ′ : ModM→ ModP, Z 7→ (P 7→ Z ⊗M Ψ(hP ))

Lemma 4.7. The functor Φ is right adjoint to Φ′, i.e. we have a (bi)natural maps

HomModP(Φ′(Z), X)→ HomModM(Z,Φ(X))

Remark 4.8. If F : C ↔ D : G is an adjoint pair of functors (with F left adjoint to G), then we have
a unit u : 1C → GF and a counit, c : FG→ 1D. Let Cu be the full subcategory of objects in X in C
such that u(X) is an isomorphism. Let Dc be the full subcategory of objects Y in D such that c(Y )
is an isomorphism. Then, the triangle identities show directly that F,G restrict to quasi-inverse
equivalences F : Cu ↔ Dc : G.

4.1.2. cogenk . Let k ∈ N0 ∪ {∞} and assume now M⊂ modk P. In this subsection we study

cogenk(M) := cogenkmodk P(M) ⊂ modk P.

Our aim is to give a different description of the categories cogenk(M) (cf. Lemma 4.9) and to
introduce faithfully balancedness which leads to the cogen1 duality (cf. Lemma 4.11).

We have the contravariant functor

Ψ: ModP →MMod, X 7→ HomModP(X,−)|M
and Ψ|cogenk(M) : cogenk(M)→Mmodk is fully faithful for 1 ≤ k <∞.

The natural transformation α : idModP → Ψ′Ψ, for X ∈ ModP is given by a morphism in ModP,
αX : X → Ψ′Ψ(X) = HomMMod(Ψ(X),Ψ(h−)) which is defined at P ∈ P via

X(P ) = HomModP(hP , X)→ HomMMod(HomModP(X,−)|M,HomModP(hP ,−)|M)

f 7→ [HomModP(X,−)
−◦f−−→ HomModP(hP ,−)]|M

We observe that αM is an isomorphism for every M ∈M (since

(Ψ′Ψ(M))(P ) = HomMMod(HomM(M,−),Ψ(hP ))

= Ψ(hP )(M) = HomModP(hP ,M) = M(P )

using Yoneda’s Lemma twice).

Lemma 4.9. For 1 ≤ k ≤ ∞ we have cogenkmodk P(M) equals

{X ∈ modk−P |αX isom. ,Ψ(X) ∈Mmodk,

ExtiMMod(Ψ(X),Ψ(hP )) = 0, 1 ≤ i < k,∀P ∈ P}

Proof. The proof is a straight forward generalization of [136, Lemma 2.2,(1)] (the functor
HomΓ(−,M) has to be replaced by applying HomMMod(−,Ψ(hP )) for all P ∈ P). �

Definition 4.10. We say M is faithfully balanced if hP ⊂ cogen1(M).

Lemma 4.11. (cogen1 duality) If M is faithfully balanced, we denote by M̃ = Ψ(hP) ⊂Mmodk,
then Ψ defines a contravariant equivalence

cogen1
mod1 P(M)←→ cogen1

Mmod1
(M̃)

and contravariant equivalences

cogenkmodk P(M)←→ cogen1
Mmod1

(M̃) ∩
⋂

1≤i<k
ker(ExtiMmodk

(−,M̃))
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Proof. Let k = 1. Since we have an adjoint pair of contravariant functors Ψ,Ψ′ it follows from
the triangle identities (cf. Remark 4.6): If αX is an isomorphism then also α′Ψ(X) and if α′Z is an

isomorphism then also αΨ′(Z). Now, since M is faithfully balanced we have that Ψ induces an

equivalence Pop ∼= M̃ = Ψ(hP) by Lemma 3.1. It follows from the definition of Ψ′ and a right

module version of Lemma 4.9 that cogen1(M̃) = {Z ∈Mmod1 | α′Z isom}.
The rest is a straightforward generalization of the proof of [136, Lemma 2.9]. �

4.1.3. genk . We study genk(M) = genModP
k (M) ⊂ ModP. We again give a different

description of these categories using tensor products of M-modules (cf. Lemma 4.13). This is the
main ingredient in the proof of the symmetry principle in the next subsection.

We have the covariant functor

Φ: ModP → ModM, X 7→ HomModP(−, X)|M

and Φ|genk(M) : genk(M)→ modkM is fully faithful. We have an induced covariant functor

ε = Φ′ ◦ Φ: ModP → ModP, X 7→ εX

defined for P ∈ P as

εX(P ) := Φ(X)⊗M Ψ(hP )

and a natural transformation ϕ : ε→ idModP , for X ∈ ModP this is given by a morphism
ϕX : εX → X which is defined at P ∈ P via

HomModP(−, X)|M⊗M(HomModP(hP ,−)|M)→ HomModP(hP , X) = X(P )

g ⊗ f︸ ︷︷ ︸
∈Hom(M,X)⊗ZHom(hP ,M)

7→ g ◦ f

Remark 4.12. Φ and is right adjoint functor of Φ′ between abelian categories therefore Φ is left
exact and Φ′ is right exact, ϕ is the counit of this adjunction. If M ∈M, then ϕM is an
isomorphism.

Lemma 4.13. For 1 ≤ k ≤ ∞ we have

genModP
k (M) =

{X ∈ ModP | ϕX isom. ,Φ(X) ∈ modkM, ToriM(Φ(X),Ψ(hP )) = 0, 1 ≤ i < k,∀P ∈ P}

Proof. Let X ∈ genk(M), then there exists an exact sequence Mk → · · · →M0 → X → 0 such
that Φ preserves its exactness, this implies Φ(X) ∈ modkM. Now, we apply ε = Φ′Φ and consider
the commutative diagram

Mk
// · · · // M0

// X // 0

εMk

ϕMk

OO

// · · · // εM0

ϕM0

OO

// εX

ϕX

OO

// 0

Now, since Φ′ is right exact and ϕMi is an isomorphism for 0 ≤ i ≤ k, we conclude that ϕX is an
isomorphism and the lower row is exact. This implies ToriM(Φ(X),Ψ(hP )) = 0, 1 ≤ i < k.
Conversely, if we take X ∈ ModP fulfilling the assumptions in the set bracket of the lemma. We can
apply Φ′ to the projective k-presentation of Φ(X), then we can find a diagram as before but this
time we know from the assumptions that the bottom row is exact. Furthermore, since ϕ∗ is an
isomorphism in all places of the diagram, we have that also the top row is exact. This implies
X ∈ genModP

k (M). �
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4.2. The symmetry principle. Now, we study these subcategories in more general exact
categories. For an exact category E with enough projectives P and an exact category F with enough
injectives I, we consider the covariant, exact, fully faithful functors

P : E → mod∞ P, X 7→ HomE(−, X)|P
I : Fop → mod∞ Iop, X 7→ HomF (X,−)|Iop

cf. [73, Prop. 2.2.1, Prop.2.2.8]

Remark 4.14. For an additive category M of E (resp. of F) we have:

P(genEk(M)) = ImP ∩ genModP
k (P(M)),

I((cogenkF (M))op) = I(genF
op

k (Mop)) = Im I ∩ genMod Iop
k (I(Mop))

This follows from remark 4.4 since P : E → ImP is an equivalence of exact categories and ImP is
deflation-closed in mod∞ P and mod∞ P is deflation-closed in ModP. The second statement follows
by passing to the opposite category.

As before, let Φ: E → ModM,Φ(X) = HomE(−, X)|M, Ψ: E →MMod,Ψ(X) = HomE(X,−)|M.
We have the immediate corollary:

Corollary 4.15. (of Lem. 4.13 and Rem. 4.14) (1) Let E be an exact category with enough
projectives P and M a full additive subcategory. Then the following are equivalent:

(1) X ∈ genEk(M)
(2) Φ(X) ∈ modkM and for every P ∈ P:

Φ(X)⊗M Ψ(P )→ HomE(P,X), g ⊗ f 7→ g ◦ f
is an isomorphism, ToriM(Φ(X),Ψ(P )) = 0, 1 ≤ i < k.

(2) If E is an exact category with enough injectives I and M a full additive subcategory. Then the
following are equivalent:

(1) X ∈ cogenkE(M)
(2) Ψ(X) ∈Mmodk and for every I ∈ I:

Φ(I)⊗M Ψ(X)→ HomF (X, I), g ⊗ f 7→ g ◦ f
is an isomorphism, ToriM(Φ(I),Ψ(X)) = 0, 1 ≤ i < k.

Theorem 4.16. (Symmetry principle). Let E be an exact category with enough projectives P and
enough injectives I and k ≥ 1. The following two statements are equivalent:

(1) P ⊂ cogenkE(M) and Φ(I) = HomE(−, I)|M ∈ modkM for every I ∈ I
(2) I ⊂ genEk(M) and Ψ(P ) = HomE(P,−)|M ∈Mmodk for every P ∈ P

Proof. We consider P, I as before defined for the category E . Then, it is straight forward from
the previous Lemma to see that (1) and (2) are both equivalent to for all P ∈ P, I ∈ I,
Ψ(P ) ∈Mmodk,Φ(I) ∈ modkM and

Φ(I)⊗M Ψ(P )→ HomE(P, I), g ⊗ f 7→ g ◦ f
is an isomorphism, ToriM(Φ(I),Ψ(P )) = 0, 1 ≤ i < k. Therefore (1) and (2) are equivalent. �
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Part 2

Derived methods





CHAPTER 6

Derived categories and functors for exact categories

This includes a joint result with Juan Omar Gomez.

1. Synopsis

By now, derived categories and derived functors for abelian categories are standard topics in a
course on homological algebra. This is a an introduction to derived categories of exact categories
assuming that the reader is familiar with the theory for abelian categories. Other sources which
include exact categories are [119], [126], [49].
Our treatment of derived functors is only shortly summarizing the results in [119].
What is new? We characterize when derived categories of exact categories are locally small (i.e.
Hom-classes are sets).

2. Why derived categories?

This is an attempt in trying to explain in a nutshell why derived categories have homological algebra
as their heart.
An exact category (in the sense of Quillen) is an additive category together with a collection of
kernel-cokernel pairs called short exact sequences fulfilling axioms such that Ext1

E = (taking
equivalence classes of short exact sequences) becomes an additive bifunctor. Using longer exact
sequences one can find higher Ext-functors Extn - for the moment we assume that these are all
set-valued functors (cf. next section).
Homological algebra for exact categories is the study of the bifunctors ExtnE and in particular the
conversion of short exact sequences into long exact sequences using higher Ext-groups.
Philosophically: Can we enlarge E to a category D such that these bifunctors become restrictions of
the Hom-functor and are connected by an auto-equivalence Σ: D → D as
ExtnE(X,Y ) = HomD(X,ΣnY )?
For every short exact sequence X � Y � Z in E representing σ ∈ Ext1

E(Z,X) = HomD(Z,ΣX) we
look at the sequences in D

X → Y → Z
σ−→ ΣX

and call these ’distinguished triangles with three objects in E ’. This wish list on such a category D
has been formalized in the notion of a triangulated category with initial data an additive category D
with an auto-equivalence Σ, called suspension, and a collection of distingished triangles such that a
list of axioms is fulfilled (cf. TR0-TR5 in [115, Def. 10.1.6]). As the long exact sequences have no
negative parts, we find another condition which the bounded derived category has to fulfill

Ext−nE (X,Y ) = Hom(X,Σ−nY ) = 0 ∀X,Y ∈ E , n ≥ 1.

The structure preserving functors between triangulated categories are called triangle functors.
’Structure preserving functors’ from exact categories into triangulated categories are called δ-functors
(in the sense of Keller [117] or one can view them as extriangulated functors in the sense of [37]):

Definition 2.1. ([117]) Let E be an exact category and D be a triangulated category. A δ-functor
E → D consists of a pair (F, δ) consisting of an additive functor F : E → D and an assignment δ
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mapping short exact sequences σ = (i, d) : X � Y � Z to a morphism δσ : F (Z)→ ΣF (X) fitting
into a distinguished triangle

F (X)
F (i)−−→ F (Y )

F (d)−−−→ F (Z)
δσ−→ ΣF (X).

We call a δ-functor E → D homological if δ induces natural isomorphisms
ExtnE(Z,X)→ HomD(F (Z),ΣnF (X)) for every n ∈ Z.

So, we hope for the following naive definition:
The bounded derived category should be the universal homological δ-functor into triangulated
categories. This means we have an homological δ-functor E → Db(E) such that every homological

δ-functor E → D factors as E → Db(E)
R−→ D. We also want R to be unique up to natural

isomorphism. Unfortunately, uniqueness is in general unknown. We call it a realization functor
for E (if it exists).
The existence of R can be proven when restricting to suitably enhanced triangulated categories
(filtered derived [40], Neeman enhanced [142] or algebraic due to [123], proven in [133]). Uniqueness
is usually not discussed, it requires restriction to triangle functors which are preserving the fixed
enhancement (for algebraic triangulated categories it follows from the construction, cf. [133]).

Remark 2.2. Why would one also look at D+(E), D−(E), D(E)?
The reason is that we can usually not define right and left derived functors on Db(E) but if we
extend our derived category we (often) can.
At the level of positive (resp. negative) derived categories we have an explicit method to calculate
(at least partially) right (resp. left) derived functor using Deligne’s right (resp. left) acyclic objects.
For example, injective objects are always right acyclic and injective coresolutions (if they exist) can
then be used to calculate right derived functors (as in the abelian case). We come back to this in
detail in the last section of this chapter.
Our motivation to look at D(E) is not so strong but if you want for example a triangulated category
with arbitrary set-valued coproducts then you would look at D(E) where E has arbitrary coproducts.

2.1. Explicit construction(s). Let us start with an exact category E with underlying additive
category A and ∗ ∈ {∅,+,−, b}.

2.1.1. Variant 1: As Verdier quotient. Given a full triangulated subcategory in a triangulated
category U ⊆ T there exists a triangle functor QU : T → T /S, called the Verdier localization,
which fulfills the following universal property: Every triangle functor T → R which annihilates the
objects of U factors uniquely over a triangle functor T /U → R.
There are two well-known issues

(1) T /U is defined by a localization and the Hom-classes may not always be sets.
(2) Let U ⊂ U ⊆ U⊕ with U the saturation (i.e. the closure of U under isomorphism in T ) and
U⊕ the thick closure (i.e. closure under direct summands and isomorphism in T ). Then
clearly these larger categories fulfill the same universal property and T /U = T /U = T /U⊕.
Therefore, some authors consider Verdier quotients with respect to thick subcategories.

Then take the homotopy category of the additive category K∗(A). This is a triangulated category
(cf. [115, Thm 11.3.8]).
The subcategory of E-acyclic complexes Ac∗(E) is a full triangulated subcategory (cf. [141], 1.1).

Definition 2.3. The (∗-)derived category of E is defined as the Verdier quotient

D∗(E) := K∗(A)/Ac∗(E)

Then problem (2) can be fully answered when looking at properties of the underlying additive
category. We say an additive category A is weakly idempotent complete (wic) (resp.
impotent complete (ic)) if every idempotent endomorphism e : A→ A has a kernel (resp. has
kernel and image and gives rise to a split exact sequence ker e→ A→ Im e).
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In [49], exact structure on an exact category is extended functorially to an exact structure on an
idempotent completion of the underlying additive category. This gives an exact functor

E → E ic

Similarly a weakly idempotent completion can be constructed. This gives exact functors

E → Ewic → E ic

In [141], the following (2c) has been proven (and (2a,b) is partly attributed to Thomason):

(2a) For ∗ = b.
Acb(E) is saturated if and only it is thick if an only if E is weakly idempotent complete.
For every exact category Db(E)→ Db(Ewic) is a triangle equivalence.

(2b) For ∗ = ±.
In this case we have both triangle equivalences D±(E)→ D±(Ewic)→ D±(E ic).

(2c) For ∗ = ∅.
Ac(E) is saturated if and only it is thick if an only if E is idempotent complete.
Then D(E)→ D(E ic) is a triangle equivalence.

Remark 2.4. Then Db(E) may not be idempotent complete: Balmer-Schlichting [31] showed that
the idempotent completion of a triangulated category has a natural triangulated structure and
Db(E ic) is triangle equivalent to (Db(E))ic.

2.1.2. Variant 2: As Localization of exact category of complexes with respect to a biresolving
subcategory. This is a recent construction of Rump [168, Thm 5], cf. also [170].
A full additive subcategory C in an exact category F is a biresolving subcategory if it is thick
(i.e. closed under direct summands and every C satisfies the 2-out of 3-property for short exact
sequences (i.e. for every F-short exact sequence X → Y → Z with two out of X,Y, Z in C the third
is also in C) and it is generating-cogenerating (i.e. for every X in F there is a F-deflation
d : C0 → X and an F-inflation i : X → C1 with C0, C1 ∈ C). (We slightly differ with this definition
from loc. cit, as there it is not assumed that C is closed under direct summands. )
Then the localization F/C is defined as follows: First consider [C] to be the ideal (i.e. subfunctor of
Hom) given by all morphisms factoring through C. We take Σ(C) ⊆ (F , ) the class of all morphisms
which become in the ideal quotient category F/[C] a monomorphism and also an epimorphism. Then
in loc. cit. it is shown that there exists a left and right calculus of fractions and

F/C := Σ(C)−1F
admits a structure of triangulated category, loc. cit Theorem 5.
Now we apply this as follows: We assume that E is weakly idempotent complete (in loc. cit this is
not assumed).
We take *-chain complexes Ch∗(E) in A. We see this as an exact category with short exact sequences
are degree-wise E-short exact sequences (cf. [49, Lem. 9.1]). We look at the full subcategory Ac∗(E)
of E-acyclic-complexes. This is a biresolving subcategory of the exact category Ch∗(E), cf.
[168, Example 2]. Then this gives the second definition of the derived category (cf. [170])

D∗(E) := Ch∗(E)/Ac∗(E)

Then one can show the following Lemma as a corollary, the canonical functor of the localization is
also the composition L : Ch∗(E)→ K∗(A)→ D∗(E). In [175, Tag 014Z], Lemma 13.12.1, it has been
explained how to construct a δ such that (L, δ) is a δ-functor (even though in loc. cit. the category
is abelian, the same arguments work for general exact categories). The construction goes as follows:

Given a short exact sequence σ : A•
a−→ B•

b−→ C• in Ch∗(E), one constructs a quasi-isomorphism (i.e.
morphism with acyclic cone) q : C(a)→ C where C(a) is the cone of a, then one has a standard
triangle in K∗(A) for the morphism a, and this gives a distinguished triangle in D∗(E). In particular,
we have in this triangle a morphism p : C(a)→ ΣA•, so we have a well-defined

δσ := p ◦ q−1 : C• → ΣA• ∈ D∗(E)
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Recall that a complex is numbered as follows by the integers · · · → Xn → Xn+1 → · · · . We also have
a shift on T : Ch(E)→ Ch(E), where T (X) is the shift of complexes to the right, i.e.
T (X•)n := Xn+1.
For a complex X concentrated in degree 0 we have the short exact sequence

ηX : TX � (X
1X−−→ X)� X with (X

1X−−→ X) is the 2-term complex concentrated in degrees 0, 1. We
have L ◦ T ∼= Σ ◦ L (we say L is shift invariant). Also, by definition δηX = 1L(X) (we say that L is
normed).

Lemma 2.5. Let E be weakly idempotent complete exact category. Then

(1) the canonical functor L : Ch∗(E)→ D∗(E) is a δ-functor which is shift invariant and
normed.

(2) Every shift invariant, normed δ-functor G : Chb(E)→ D factors uniquely as G ◦ L with
G : Db(E)→ D a triangle functor.

Proof. (1) has already been explained before the lemma.

(2) Let G = (G, δG) : Chb(E)→ D be a shift invariant δ-functor.
The property being normed can be replace by mapping split acyclic complexes to zero, this means
that G factors over a triangle functor Kb(A)→ D. As it maps E-short exact sequences to triangles,
the triangle functor maps acyclic complexes to zero (cf. same argument in [133, Lem 3.5]) and
therfore factors over a triangle functor G : Db(E)→ D. Assume now, we have a second triangle

functor H : Db(E)→ D with H ◦L = G ◦L. Now, L factors as LV ◦LK with LK : Chb(E)→ Kb(A) is
just the ideal quotient and LV : Kb(A)→ Db(E) is the Verdier quotient. By the universal property of
the Verdier quotient it is enough to see that H ◦ LV = G ◦ LV . But LK is full, so every morphism is
of the form LK(f) for some morphism and we see that HLV = GLV . �

Remark 2.6. One can also see the derived categories of exact categories as homotopy categories
associated to certain model categories (different choices might lead to the same homotopy
categories). Also derived functors can be constructed in this more general set-up. For example look
into [81] and [96].

2.2. Completions.

2.2.1. Countable envelope. Exact categories E always have a countable envelope Ẽ constructed in
[116], Appendix B:

First construct FE with objects are sequences X = (X0 i0X−→ X1 i1X−→ X2 → · · · ) of consecutively
composable inflations, and morphisms X → Y are sequences of (fp : Xp → Y p)p∈N0 such that
ipY f

p = fp+1ipX for all p ≥ 0. Then FE is an exact category with a sequence (j, e) is a short exact

sequence if and only if (jp, ep) are short exact sequences in E for all p ≥ 0. Then we define Ẽ as the
category with the same objects and morphisms Hom(X,Y ) = limp colimq Hom(Xp, Y q). By

construction we have a functor FE → Ẽ , we call a sequence (j̃, ẽ) an exact sequence if there exists an
exact sequence (j, e) in FE which maps via the natural functor to it. Observe that the underlying

additive category of Ẽ has countable coproducts (by taking only split inflations in a sequence of
inflations as before). We recall Keller’s results.

Theorem 2.7. ([116, Appendix B])

(a) Ẽ is an exact category wrt the exact sequences described before. The constant functor

E : E → Ẽ , X → (X = X = X · · · ) is a homologically exact functor (i.e. exact and inducing
isomorphisms on all Ext-groups).

(b) The following are equivalent:
(b1) E is locally small (i.e. has Hom-sets and not classes) and ExtnE are set-valued for all

n ≥ 1
(b2) Ẽ is locally small and ExtnẼ are set-valued for all n ≥ 1
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Proof. or where to find it: For (b) observe that (a) already implies (b2) ⇒ (b1). The other
implication is using that (b1) implies that FE has set-valued Extn for all n ≥ 1 and then use
[116, Lemma in B.3]. �

Remark 2.8. By the previous Lemma we have an induced fully faithful triangle functor
Db(E)→ Db(Ẽ) but we do not know if D(E)→ D(Ẽ) is faithful.

2.2.2. Completion of small exact categories. Small exact categories E have a completion
−→
E

(called a locally coherent exact category) with respect to filtered colimits, cf. [152] and Appendix in
Chapter 2.

E →
−→
E

Then E is a full homologically exact category of
−→
E . Also, in loc. cit, the author shows that

−→
E is a

so-called exact category of Grothendieck type which implies that it has enough injectives.

Remark 2.9. D(E)→ D(
−→
E ) might be not full (examples are given by [153]), a characterization

when this triangle functor is faithful is unknown.

The difference to the countable envelope is that we assume here that E is (essentially) small. If we
drop this assumption then we do not know much about the Ind-completion (but it can have not
enough injectives).

2.3. Passing between different boundedness levels.

Lemma 2.10. ([119]) By construction we have triangle functors Db(E)→ D+/−(E)→ D(E). They
are all fully faithful.

Let us consider two fixed exact categories E , E ′ and the following three statements

(Db) Db(E) and Db(E ′) are triangle equivalent.
(D+) D+(E) and D+(E ′) are triangle equivalent.

(D) D(E) and D(E ′) are triangle equivalent.

We are now looking at situations where one holds and another one not.

(a) If E 6= E ic = E ′ then (D), (D+) and not (Db) holds (cp. [141]).
(b) If E ⊆ E ′ is a coresolving subcategory of E ′, then we have (D+). It is finitely coresolving if

and only if (Db) holds. It is n-coresolving for some n ≥ 0 if and only if (D) holds.
This way, we find an instance where (D+) and not (Db) and also not (D) holds.

Reference [92]. Also: an instance where (Db) and not (D) holds.

This leaves only the following open: Does (Db) imply (D+)? I do not know.

Remark 2.11. When restricting to exact categories with certain similar properties, there are still
interdependences. For module categories of rings (cf. main theorem in [158]). This has been
generalized to functor categories [10]. The best explanation for this is given by Neeman’s theory of
approximable triangulated categories, cf. [143].

3. When is it a category?

In this text, we will work in the framework of ZFCU (Zermelo-Frankel, the axiom of choice and the
axiom of the universe). We fix an infinite universe U .

Let X be a set, we will say that X is: U-small if X ∈ U , U-class if X ⊂ U or U-large set if X 6⊆ U .
In general, we will drop U from the notation.
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We allow a category to have a class of objects and to have a class as morphisms between any two
objects. We say that a category is locally small if Hom(X,Y ) is a small set for every two objects
X,Y - usually in the literature: locally small categories are called categories.

As usual, we let Set denote the category of small sets with morphisms given by maps between them.

We will need a big version of this category, namely Ŝet, where we allow the objects to be classes as

well as the morphisms between them. We denote Ĝps, Âb . . . denote the ’big’ versions the categories
of groups, abelian groups, etc.

Let E be a (locally small Quillen-) exact category.

Theorem 3.1. The following are equivalent:

(1) ExtnE is set-valued for all n ≥ 0
(2) Db(E) is a locally small.

If E has countable coproducts then they are also equivalent to the following conditions:

(3) D−(E) is locally small
(3’) D+(E) is locally small.
(4) D(E) is locally small.

Remark 3.2. If we can proof that the inclusion of E into its countable envelope Ẽ induces a faithful
functor D(E)→ D(Ẽ), then we can drop the assumption that E has to have countable coproducts
because we could just replace E by its countable envelop (cp. subsubsection 2.2.1) .

Let us state a very easy corollary

Corollary 3.3. If E is an exact category. We denote by E ic its idempotent completion. Then: Db(E)
is a locally small if and only if Db(E ic) is locally small.

Proof. As E is homologically exact in E ic (cf. [31]), we conclude that every
ExtnEic((X, e1), (Y, e2)) is a summand of ExtnE(X,Y ). Then use Theorem 3.1. �

Corollary 3.4. For every locally coherent exact category E, the derived categories D∗(E) with
∗ ∈ {b,±, ∅} are locally small.

Proof. Locally coherent exact categories have enough injectives therefore all Extn are
set-valued. They have countable coproducts therefore the theorem directly applies. �

For the proof of Theorem 3.1 we observe the following:

Lemma 3.5. Let G be a triangulated category together with a homological functor F : G → Âb.
Consider the full subcategory C of G on the objects X such that F (ΣnX) ∈ Ab for all n ∈ Z. Then C
is a thick subcategory of G.

Proof. This is an immediate consequence of the fact that Ab is a closed under extensions. �

Then we have this easy corollary:

Corollary 3.6. Let T be a triangulated category, and C ⊆ T be a full locally small subcategory and
assume that C is closed under all shifts. Then ThickT (C) is also locally small.

Proof. Let D be the full subcategory of ThickT (C) on the objects X such that HomT (X,C)
and HomT (C,X) are small sets for any C ∈ C. Note that D is closed under arbitrary shift by the
hypothesis on C. By Lemma 3.5, it follows that D is thick, and since it contains C we deduce that
D = ThickT (C). �
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Proof of Theorem 3.1. (n) implies (1) for n ∈ {2, 3, 3′, 4}: Follows directly since for all X,Y
in E we have ExtnE(X,Y ) ∼= HomDb(E)(X,Σ

nY ) for all n ∈ Z where Ext0
E(X,Y ) = HomE(X,Y ) and

Ext<0
E (X,Y ) = 0, cp [126, Prop. 4.2.11]. As Db(E)→ D∗(E) is fully faithful for ∗ = ±, ∅, the other

implications also follow.
(1) implies (2): Just take T = Db(E) and C = add(E [n], n ∈ Z). Then, by definition C is locally small
if and only if (1) in the Theorem 3.1 is fulfilled. Since ThickDb(E)(C) = Db(E), it follows (2) from the
previous Corollary.
Now assume that E has countable coproducts, let A be the underlying additive category. Then,
every object X in K−(A) fits into a triangle⊕

n≤0

σ≥nX →
⊕
n≤0

σn≥0X → X
+1−−→

where σ≥nX is the (brutal) truncation of a complex X is defined as · · · 0→ Xn → Xn+1 → · · · (see
e.g. [126, Ex. 4.2.2]). By [126, Lemma 1.1.8], the Verdier quotient functor commutes with
countable coproducts and maps this distinguished triangle to a distinguished triangle in D−(E).
(2) implies ((3) and (3’)): This means the extension-closure of Db(E) in D−(E) is the whole
triangulated category and therefore Corollary 3.6 implies the claim. The argument for D+(E) is
analogue using brutal truncation in the other direction.
((3) and (3’)) implies (4): Now, we look at the unbounded homotopy category K(A). Brutal
truncation yields a distinguished triangle

σ≥0X → X → σ<0X
+1−−→

Then passing to the Verdier quotient we can look at the smallest additive subcategory of D(E)
containing D+(E) and D−(E) and call this category C = D−(E) ∨D+(E). If D+(E) and D−(E) are
locally small, then C is also locally small by Lemma 3.7. Clearly C is closed under all shifts. The
previous triangle shows that C is a thick generator for D(E) and therefore D(E) is also a locally small
category.

�

Lemma 3.7. Let E be an exact category with countable coproducts. Assume that D+(E) and D−(E)
are locally small. Then for every X ∈ D−(E), Y ∈ D+(E) we have that HomD(E)(X,Y ) and
HomD(E)(Y,X) are sets.

Proof. For X in D−(E) we find a distinguished triangle (see above):⊕
n≤0

σ≥nX →
⊕
n≤0

σn≥0X → X
+1−−→

Then apply Hom(−, Y ) and apply Hom(Y,−) with Y ∈ D+(E). The rest is obvious (use the five
terms of the long exact sequences with Hom(X,Y ) and resp Hom(Y,X) in the middle,
Hom(

⊕
Xi, Y ) ∼=

∏
i Hom(Xi, Y ) and Hom(Y,

⊕
iXi) ∼= Hom(Y,Xi) implies that the other four

terms are small abelian groups). �

Remark 3.8. As far as we know there is no characterization of all higher Ext-functors in an exact
category being set-valued. Nevertheless there is the following list of examples where this is fulfilled.

(a) If E is essentially small. One reference for this [126], Lemma 4.2.17 together with Prop.
4.3.4.

(b) If E has enough projectives or enough injectives (more generally of Kb(E) has enough
K-projectives or enough K-injectives). A reference for this [126], Cor. 4.3.2, p.123.

(c) If E has a small generator or a cogenerator.

We give some examples of categories to see that (1) can not be weakened.
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Example 3.9. We will look at representations of quivers where we allow the vertices and arrows to
be a proper classes and representations are to be understood as in vector spaces over some field K
and of finite total dimension. Furthermore, we will always impose the relations that the composition
of any two composable arrows is zero. These are abelian categories. Let’s construct some examples.
We fix a proper class M (i.e. this is not a set).

(1) We look at Q with two vertices 1 and 2 and arrows am : 1→ 2 for each m in M . Then this
gives an abelian category with Hom-sets but Ext1(S1, S2) is not a set since we find for every
m in M a short exact sequence

0→ S2 → Im → S1 → 0

with Im is the representation with am = idK and an = 0 for all n 6= m. These are pairwise
non-isomorphic.

(2) Now we look at a quiver with vertices 1, 2 and vm,m ∈M and arrows
bm : 1→ vm, cm : vm → 2 for every m ∈M and the relations cmbm = 0 for all m ∈M . Then
this gives an abelian category with Hom and Ext1 are set-valued. But for every m ∈M we
have an exact sequence

0→ S2 → Jm → Lm → S1 → 0

with Jm 2-dimensional given by bn = 0 for all n ∈M and cm = idK , cn = 0 for n 6= m and
Lm 2-dimensional given by bm = idK, bn = 0 for n 6= m, cn = 0 for all n ∈M . Again

these are pairwise non-isomorphic, so Ext2(S1, S2) is not a set.
(3) Fix an integer t ≥ 1. Now look at the quiver with vertices 1, 2 and v1,m, . . . , vt,m for every

m ∈M and arrows
a1,m : 1→ v1,m, a2,m : v1,m → v2,m, . . . , at,m : vt−1,m → vt,m, at+1,m : vt,m → 2. Again we
impose ai+1,mai,m = 0 for 1 ≤ i ≤ t and m ∈M . With a similar argument as in the

previous cases one shows that Extt+1(S1, S2) is not a set. But Hom and Exti are set-valued
for 1 ≤ i ≤ t.

4. Keller’s approach to deriving additive functors between exact categories

Or, as much as we could verify of it. We summarize the construction of [119], in a simple language.
If E = (A,S) and F = (B,S ′) we look at the class Sf := {(i, d) ∈ S | (f(i), f(D)) ∈ S ′} which we call
f -exact sequences. If (i, d) ∈ Sf , we call i an f -inflation and d an f -deflation.

Definition 4.1. Let E = (A,S) an exact category. Let X be a class of kernel-cokernel pairs on A.

We call an object X ∈ A right X−acyclic if every X
i−→ Y

d−→ Z with (i, d) ∈ S fulfills (i, d) ∈ X .
We call CX the full subcategory of A of right X -acyclic objects.

Definition 4.2. Let Spbf be the class of all σ ∈ S such that there exists a commutative diagram

X Y ′ Z ′

X Y Z

=

with σ⊕ (X1
1−→ X1 → 0) in the upper row and an f -exact short exact sequence σf ∈ Sf in lower row.

We define the category of right f-acyclics as the full subcategory C := CSpbf of A.

This will later be used to show that this notion is the one mentioned in the literature.

Lemma 4.3. The following are equivalent for X ∈ E = (A,S).

(1) X is right f -acyclic
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(2) Every morphism M → X in K+(A) with M an E-acyclic complex factors as M →M ′ → X
with M ′ an E-acyclic and f -exact complex (i.e. the corresponding short exact sequences are
all in Sf ).

Proof. Assume f : M → X is a chain map with M = (Mn, dn) acyclic and X in degree 0. Then
such a map is given by a morphism h : N = Im d0 → X. Therefore, it always factors over the
push-out of Im d0 �M1 � Im d1 along h. This means we may assume wlog that M is a short exact
sequence σ : X � Y � Z (in degrees 0, 1, 2) and the morphism M → X is the identity on X in
degree 0 and zero in all other degrees.
Assume (2): If this now factors over an f -exact short exact sequence σ : X ′� Y ′ � Z ′ then we find

that σ′ pulls back to σ ⊕ (X1
1−→ X1 → 0).

Assume (1): If σ ⊕ (X1
1−→ X1 → 0) is a pull back of σf ∈ Sf , then we have that M → X factors over

σ → σ ⊕ (X1
1−→ X1 → 0)→ σf =: M ′. �

Remark 4.4. Recall in Chapter 1 we showed: If f is left or right exact or if f is fully faithful with
extension-closed essential image, then Sf is already an exact structure.

Lemma 4.5. Assume that Ef = (A,Sf ) is an exact substructure of E. Then an object X in A is
right f -acyclic if and only if the natural morphism

Ext1
Ef (Y,X)→ Ext1

E(Y,X)

is an isomorphism for all Y ∈ A. In particular, C is extension- and inflation-closed in E.

Furthermore, Given an E-short exact sequence X
i−→ Y

d−→ Z with X,Y, Z in C then it is f -exact (i.e
(i, d) ∈ Sf )

Proof. This is easy to see. �

Definition 4.6. If Ef = (A,Sf ) is an exact substructure of E , we say f has enough right f -acyclics
if C is cogenerating in E (i.e. every object X ∈ E there exists an inflation X → C with C ∈ C). Then
it is a coresolving subcategory and i : D+(C)→ D+(E) is a triangle equivalence and we have a
triangle functor

rf : D+(E)
i−1

−−→ D+(C) f−→ D+(F)

In general, we do not see why C should be extension-closed in E nor why it should satisfy condition
(C2) from [119] (this is claimed in [119, Lemma 15.3]). As this is not proven in loc. cit. one should
treat it as a conjecture.
There are two strategies how one can pass to an extension-closed subcategory C2 ⊆ C1 ⊆ C i = 1, 2.
Either X ∈ C1 are all objects such that every E-short exact sequence X � Y � Z is also f -exact, or
one looks at the maximal exact substructure Ef,max ≤ E making the functor f exact and then
X ∈ C2 are all objects such that all E-short exact sequences X � Y � Z are already Ef,max-short
exact sequences. The advantage of C2 is that we can generalize the previous Lemma imediately and
conclude that C2 is extension- and inflation-closed.

Example 4.7. Observe that the full subcategory on E-injectives I = I(E) is contained in C2. So if E
has enough injectives then it also has enough right f -acyclics (using the subcategory C2).

4.1. rf = Rf . We explain now why this notion of right f -acyclic coincides with the one defined
in [119] and then conclude rf is the right derived functor Rf of f .
Generally, given a triangle functor F : T → T ′ and a fixed Verdier quotient Q : T → T /M =: D (we

think of this as a derived category). We will choose F : K+(A)
K+(f)−−−−→ K+(B)→ D+(F) and

Q : K+(A)→ D+(E). Keller constructs (following roughly Deligne) a (possibly zero) triangulated
subcategory U of T such that U/(U ∩M) is a triangulated subcategory of T /M such that F |U
factors over a triangle functor U/U ∩M→ T ′ (and this triangle functor is isomorphic to the
restriction of Deligne’s Rf):
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Definition 4.8. A triangulated subcategory U of T is called right cofinal (wrt M) if every
morphism M → X with M ∈M, X ∈ U factors as M →M ′ → X with M ′ ∈ U ∩M.

In this case, the induced triangle functor U/(U ∩M)→ D is fully faithful (cf. [119, 10.3]).
Now let kerF be the thick subcategory of T with objects T ∈ T such that F (T ) ∼= 0.
This definition differs from [119, Lem. 14.1], explanation see below:

Definition 4.9. We say X ∈ T is F -split if every morphism M → X in T with M ∈M factors as
M →M ′ → X with M ′ ∈M∩ kerF .
We call U be the full subcategory of T with F -split objects.

Remark 4.10. The characterization of F-split objects in [119, 14.1, (iii)] does not seem to give a
triangulated subcategory. We use Lipman’s stronger definition ([135], Def. (2.2.5), Ex. 2.2.8(D)) as
in that case the F-split objects are shown to be a triangulated subcategory.

Lemma 4.11. (cf. [135, Lemma 2.2.5.1]) U is a triangulated subcategory of T .

Observe, that M∩ kerF ⊆M∩ U because given X ∈M∩ kerF and M → X a morphism with

M ∈M we can consider the factorization over M ′ = X
1X−−→ X, to see that X ∈ U . In particular, U

is right cofinal in T .
But also by definition X ∈ U ∩M ⊆ kerF because now we can take 1X : X → X and it has to factor
over M ′ ∈ kerF ∩M as X ∈ U . This means 1F (X) = F (1X) ∼= 0 and therefore F (X) ∼= 0. By the
universal property of the Verdier quotient, F factors over a triangle functor U/(U ∩M)→ T ′.

Then we just cite the following result as we do not remind the reader of Deligne’s definition of the
derived functor.

Lemma 4.12. ([119, section 14]) The triangle functor U/U ∩M→ T ′ coincides with Deligne’s
RF |U/M∩U .

We call CDel := U ∩ A ⊆ K+(A) the category of right F-acyclics (i.e. these are the F-split stalk
complexes in the homotopy category). Then:

Corollary 4.13. (of Lemma 4.3) CDel = C
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CHAPTER 7

Tilting theory in exact categories

1. Synopsis

We define tilting subcategories in arbitrary exact categories to achieve the following. Firstly: Unify
existing definitions of tilting subcategories to arbitrary exact categories. We discuss standard results
for tilting subcategories: Auslander correspondence, Bazzoni description of the perpendicular
category.
Secondly: We treat the question of induced derived equivalences separately - given a tilting
subcategory T , we ask if a functor on the perpendicular category induces a derived equivalence to a
(certain) functor category mod∞ T over T . If this is the case, we call the tilting subcategory ideq
tilting. We prove a generalization of Miyashita’s theorem (which is itself a generalization of a
well-known theorem of Brenner-Butler) and characterize exact categories with enough projectives
allowing ideq tilting subcategories.
In particular, this is always fulfilled if the exact category is abelian with enough projectives.

2. Introduction

Tilting theory (= categories with tilting objects) is originally defined for categories of finitely
generated modules over artin algebras (Brenner-Butler) and tilting modules were still assumed of
pd ≤ 1. Then this was generalized to arbitrary projective dimension by [87], Chapter 3 - here you
also find a detailed account of the beginning of tilting theory (starting with BGP reflection functors).
Afterwards this was generalized in several directions ( [180], [137], [57], [6], [58], [88], [7] Chapter
5, [158] - referred to (by us) as: infinite or big tilting or tilting in triangulated categories). The
different developments at that time (2007) were captured in the handbook of tilting theory [7]. Since
then, many more generalizations were found, e.g. the later discussed recent works [185], [138], [169].
For exact categories: The first occurrence in [13] is tilting objects in exact substructures of mod Λ
for an artin algebra Λ. In [126], Chapter 7, a tilting object in an exact category is defined as a
self-orthogonal object which generates the bounded derived category of the exact category as a thick
subcategory. In [185], the authors define tilting subcategories for extriangulated categories with
enough projectives and enough injectives. The literature on infinite or big tilting in exact categories
will not be considered here (this includes [169]). An alternative definition of tilting in exact
categories can be found in [138] which covers big and small tilting in exact categories (as far as we
can see: Here is an additional axiom (T3) required in loc. cit. which we are not using).

Our motivation is to generalize and unify the following classical and recent definitions and results
(which we only sketch as follows):

(A) Tilting modules over artin algebras induce derived equivalences ([87] Chapter 3, [158]).
(B) Relative tilting modules over artin algebras induce derived equivalences ([13], [45]).
(C) Tilting bundles over projective varieties over a field induce derived equivalences ([28], [39]).
(D) Zhang-Zhu [185] introduce tilting subcategories for extriangulated categories with enough

projectives and enough injectives. They prove a generalization of a result called
Auslander-correspondence.
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To include (C),(D): We must drop the assumption that the exact category has enough projectives
and we have to generalize from tilting modules to tilting subcategories. Our definition can be found
as Definition 5.1. Furthermore, we shortly discuss standard results from tilting theory:
1. Bazzoni’s description of the perpendicular category cf. Corollary 5.5. This gives a description of
the perpendicular category of a tilting subcategory which is practical to find examples (see e.g.
special tilting).
2. Auslander correspondence cf. subsection 5.1.1. This means a characterization of the subcategories
which arise as perpendicular categories of tilting subcategories.
As this topic has so many precursors, we discuss compatibility with other definitions of tilting (this
does not claim completeness due to the amount of literature on the subject) in section 6.
To generalize (A),(B): We need to find a tilting functor which induces in (A) and (B) a triangle
equivalence as claimed.
We introduce in section 7 the notion ideq tilting, which means that the tilting functor induces a
triangle equivalence on the bounded derived categories. We prove, if for a an n-tilting subcategory
T , the category mod∞ T has finite global dimension, then T is ideq tilting (cf. Prop. 7.8)- this
generalizes (C). We prove the following results as generalizations of (A) and (B) respectively:

Theorem 2.1. (cf. Thm 7.14) Let E be an exact category with enough projectives P. Then the
following are equivalent:

(1) E is equivalent as an exact category to a finitely resolving subcategory E of mod∞ P, i.e. E
is resolving and for every F ∈ mod∞ P there is a finite exact sequence
0→ En → · · · → E0 → F → 0 with some Ei ∈ E for some n ≥ 0.

(2) There is an n ∈ N0 and an n-tilting subcategory of E which is ideq n-tilting.
(3) For every n ≥ 0, every n-tilting subcategory of E is ideq n-tilting.

Corollary 2.2. (cf. Cor. 7.34) Let P be an idempotent complete, additive category. Let E be an
exact substructure of mod∞ P, with enough projectives Q. Then for every n ≥ 0, every n-tilting
subcategory of E is ideq n-tilting.

To prove the first theorem, we prove a Miyashita Theorem (generalization of Brenner Butler’s
theorem) cf. Theorem 7.13. This describes the image of the perpendicular category of an ideq tilting
subcategory T under the tilting functor (X → HomE(−, X)|T ).

As standing assumption: We will always assume that the exact category is idempotent complete.
To introduce definitions of subcategories and recall results from the literature, we start in section 2
with preliminaries on subcategories of exact categories and in section 3 we give a quick introduction
to the bounded derived category.
The author is supported by the Humboldt Professorship of William Crawley-Boevey and would like
to thank him for helpful discussions.

3. Some definitions of subcategories

Let A be an idempotent complete category. Let E = (A,S) be throughout this section be an exact
category in the sense of Quillen (it consists of an additive category A together with a class of
kernel-cokernel pairs S, referred to as short exact sequences which satisfy the axioms of [49], Def.
2.1).
For a kernel-cokernel pair (i, d) ∈ S we call i an inflation and d a deflation. We will denote by
P(E) the projective objects in E and by I(E) the injectives. Since this is common practice, we will
also often denote the underlying additive category A again by E - we think the reader can handle
this level of ambiguity.

Definition 3.1. If E = (A,S) is an exact category and X a full subcategory which is closed under
extensions. Then we call X fully exact subcategory if we consider it together with the exact
structure S|X (i.e. the short exact sequences in S where all three terms lie in X ). We will write
P(X ) for the Ext-projectives in X .
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3.1. Subcategories generated by or orthogonal to a subcategory. We call a morphism
f : X → Y in E admissible if it factors as f = d ◦ i for an inflation i and a deflation d. We say

X
f−→ Y

g−→ Z with f, g admissible is exact at Y if Im f = ker g and ker g → Y → Im g is an exact
sequence in E . A sequence of composable morphisms is exact if every morphism is admissible and
the sequence is exact at every intermediate object (for short exact sequences we sometimes leave out
the zeros in the beginning and end). We call a sequence

Xn
fn−→ Xn−1

fn−1−−−→ · · · → X0
f0−→ X−1

f−1−−→ 0

right exact if there is an exact sequence

0→ Z → Xn
fn−→ Xn−1

fn−1−−−→ · · · → X0
f0−→ X−1

f−1−−→ 0

We say a (co- or contravariant) functor F : E → (Ab) into abelian groups is exact on the right exact
sequence if F maps all short exact sequences

ker fi → Xi → Im fi, −1 ≤ i ≤ n
to short exact sequences in abelian groups.
Let X be a full additive subcategory of E and an integer n ≥ 0 and a subset I ⊂ N0, we define the
following full subcategories of E

genn(X ) = {M ∈ E | ∃ right exact Xn → · · · → X0 →M → 0, Xi ∈ X
HomE(X,−) exact on it for every X ∈ X}

presn(X ) = {M ∈ E | ∃ right exact Xn → · · · → X0 →M → 0, Xi ∈ X}
Resn(X ) = {M ∈ E | ∃ exact 0→ Xn → · · · → X0 →M → 0, Xi ∈ X}

X⊥I = {M ∈ E | ExtiE(X,M) = 0 for all i ∈ I,X ∈ X}

We write X⊥≥n := X⊥[n,∞) ,X⊥ := X⊥≥1 . We define gen∞(X ) (resp. pres∞(X )) analogously to
genn(X ) (resp. presn(X )) with infinite resolutions.
We define gen(X ) := gen0(X ), pres(X ) := pres0(X ) and observe gen(X ) = pres(X ) is equivalent to X
is contravariantly finite in pres(X ). Also, we set

Res(X ) :=
⋃
n≥1

Resn(X )

We have obvious inclusions

Resn(X ) ⊂ presn(X ) ⊃ genn(X ), Res(X ) ⊂ pres∞(X ) ⊃ gen∞(X )

We denote the dual notions with cogenn(X ), copresn(X ), n ≤ ∞ and Coresn(X ),Cores(X ), I⊥X
respectively.
Observe that these categories depend on the exact structure S, so if there is the possibility of
confusion, we will endow them with an index E (or S).

Definition 3.2. Let X be an object in E . We say pdE X ≤ n (resp. idE X ≤ n) if Extn+1
E (X,−) = 0

(resp. Extn+1
E (−, X) = 0).

For a subcategory X we define

pdE X := sup{pdE X | X ∈ X} ∈ N0 ∪ {∞}
and analogously idE X . We call P≤n the full subcategory of all objects X with pdE X ≤ n and P<∞
the subcategory of all objects X with pdE X <∞. The subcategories I≤n, I<∞ are defined dually.

Remark 3.3. We would like to know the common definition of an exact category E with
”E = P<∞” since we use it so frequently.
If the exact category has the Jordan-Hölder property and only finitely many E-simples, then
gldim E = maxS simple pdS. Therefore, in that case E = P<∞ is equivalent to gldim E <∞.
The finitistic dimension conjecture holds for E if

gldim(P<∞) <∞.
So, also in this case, E = P<∞ is equivalent to gldim E <∞.
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(As far, as we know this conjecture is open for E = mod Λ where Λ is an artin algebra. But is known
to fail in some other abelian categories.)

We observe the following lemma.

Lemma 3.4. Let E be an exact category and X a full, self-orthogonal subcategory.

(a) Then we have Res(X ) ⊂ X⊥ and Res(X ) is an extension-closed subcategory.
(b) Let n ≥ 1. If pdE X ≤ n, then we have presn−1(X ) ⊂ X⊥ and presm(X ) is extension-closed

for all n− 1 ≤ m ≤ ∞.

Proof. ad (a) Since X⊥ is inflation-closed it follows Res(X ) ⊂ X⊥. To see that Res(X ) is
extension closed one can use literally proof of the horseshoe lemma (replacing the projectives with
X ), cf. [49], Thm. 12.8.
ad (b) Given an exact sequence 0→ Z → Xn−1 → · · · → X0 → S → 0 with Xi ∈ X , we see by
dimension shift that S ∈ X⊥ using pdE X ≤ n. This proves presn−1(X ) ⊂ X⊥ and therefore

presm(X ) ⊂ X⊥, n− 1 ≤ m ≤ ∞. Again by the horseshoe lemma as in loc. cit it follows that
presm(X ) is extension closed.

�

3.2. Thick subcategories. Recall that a full subcategory L of E is called thick, if it is closed
under summands and for every short exact sequence A→ B → C in S the following holds: If any
two objects of A,B,C are in L, then the third is also in L.
We denote by Thick(X ) the smallest thick subcategory of E that contains X . By definition, we have
Res(X ) ⊂ Thick(X ) and Cores(X ) ⊂ Thick(X ).

Example 3.5. The categories P<∞ and I<∞ are thick subcategories of E .

Definition 3.6. Let E be an exact category and X a full subcategory. We call X inflation-closed
if for every inflation i : X → Y with X,Y in X one also has coker i in X . Dually, one defines
deflation-closed.

Proposition 3.7. ([19], Prop. 3.5 and Prop. 3.6, Thm 1.1) Let E be an exact category and X a
fully exact subcategory which has enough projectives P = P(X ).
Assume X is an inflation-closed subcategory. Then we have

(1) Thick(X ) = Cores(X ),
(2) Coresn(P) = Coresn(X ) ∩ ⊥X and therefore also Cores(P) = Cores(X ) ∩ ⊥X ,
(3) X is covariantly finite in Cores(X )

Example 3.8. Let E be an exact category. We denote by P = P(E) the projectives. Then, P fulfills
the dual conditions of Prop. 3.7 and therefore

Thick(P) = Res(P)

are all objects which admit a finite projective resolution. If E has enough projectives, then
P<∞ = Res(P).

3.2.1. Thick subcategories in triangulated categories. Let C be a triangulated category. We call a
full subcategory thick if it is closed under summands and a triangulated subcategory.
Let X be an additive subcategory of C, we write Thick∆(X ) for the smallest thick subcategory of C
containing X .

3.3. Resolving subcategories.

Definition 3.9. Let E be an exact category. Let X be a full subcategory.
We say X is resolving if it is extension closed, deflation-closed and pres(X ) = E .
We say X is coresolving if it is extension closed, inflation-closed and copres(X ) = E .
We say X is
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(*) finitely resolving if it is resolving and Res(X ) = E ,
(*) n−resolving if it is resolving and Resn(X ) = E ,
(*) uniformly finitely resolving if it is n-resolving for some n ≥ 0.

Dually one defines finitely coresolving, n-coresolving and uniformly finitely coresolving.

Example 3.10. Let E be an exact category with enough projectives and X be any additive
subcategory. Then ⊥X is a resolving subcategory. Dually, if E has enough injectives and X is an
additive subcategory, then X⊥ is a coresolving subcategory.

3.4. Functor categories. Let X be an additive category. If X is essentially small we can
define the category ModX of right X -modules as the category of contravariant additive functors on
X to abelian groups (if X is not essentially small the class of all natural transformations between
two X -modules is not necessarily a set). This is an abelian category with enough projectives and
injectives. The projectives are summands of arbitrary direct sums of representable functors
HomX (−, X) for some X ∈ X which we call the finitely generated projectives. Similarly, one can
define the category X Mod := ModX op of left X -modules. We define full subcategories

mod∞X ⊂ modn−X ⊂ ModX , n ∈ N0

via F ∈ modn−X if there is a projective n-presentation (indexed by 0 up to n) by finitely generated
projectives, i.e. there is an exact sequence

HomX (−, Xn)→ · · · → HomX (−, X0)→ F → 0,

we define mod∞−X analogue with an infinite sequence as above and we call modX := mod0−X the
finitely generated X -modules, mod1X as the finitely presented X -modules. All these are fully exact
subcategories of ModX .

Definition 3.11. Let f : X1 → X0 be a morphism in X , we say that f admits a weak kernel if
there exists a morphism g : X2 → X1 such that

HomX (−, X2)
g◦−→ HomX (−, X1)

f◦−→ HomX (−, X0)

is exact in ModX . We say that X admits weak kernels if every morphism in X admits one.

Theorem 3.12. ([16], Prop. 2.1) The category mod1X equals mod∞X if and only if X admits
weak kernels. In this case mod∞X is abelian.

Remark 3.13. It is common practice to ignore the assumption X essentially small because as soon
as one looks at mod1X the class of all natural transformations between two finitely presented
X -modules is a set.

3.5. Embedding exact categories with enough projectives into a functor category. If
E is an exact category with enough projectives P, then we the Yoneda embedding induces by
composition with the restriction-on-P functor a functor

P : E → mod∞ P, E 7→ HomE(−, E)|P
We write ImP for the essential image. For us, the main observation is the following:

Proposition 3.14. ([73] Prop. 2.2.1, Prop. 2.2.8) The functor P is fully faithful and induces
isomorphisms on all higher extension groups, ImP is extension closed.
If E is idempotent complete, then ImP is a resolving subcategory of mod∞ P.

We observe also the following obvious lemma.

Lemma 3.15. Given two exact categories E and E ′ with enough projectives P and P ′ respectively.
Then the following are equivalent:

(1) E and E ′ are equivalent as exact categories.
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(2) There is an equivalence Ψ: P → P ′ of additive categories with the property: A morphism f
in P is admissible in E if and only if Ψ(f) in P ′ is admissible in E ′.

(3) There is an additive equivalence Φ: E → E ′ with Φ(P) = P ′.

Proof. (2) implies (1): Given Ψ as in (2). We extend Ψ to an equivalence Ψ: E → E ′. For an
(in E) admissible f : P1 → P0 we map coker(f) to coker Ψ(f) (and then check that this is
well-defined and gives an equivalence of categories).
Conversely, if Ψ: E → E ′ is an equivalence of exact categories it maps admissible morphsims to
admissible morphisms, projectives to projectives. Then it restricts to an equivalence as in (2).
(3) implies (1): An additive equivalence preserves kernel-cokernel pairs. Kernel-cokernel pairs are
short exact sequences in E (resp. E ′) if and only if Hom(P,−) are exact on them for all P ∈ P (resp.
P ′). Therefore Φ is an equivalence of exact categories. �

Corollary 3.16. Let E be an exact category with enough projectives P. The following are equivalent:

(a) P : E → mod∞ P is an equivalence.
(b) The E-admissible morphisms in P are precisely those such that ker HomP(−, h)(∈ Mod−P)

lies in mod∞ P.

Proof. Clearly, we have (b) implies (a) and (a) implies (b) by the previous Lemma. �

Lemma 3.17. Let E be an exact category with enough projectives P. Then the following are
equivalent:

(1) ImP is finitely resolving in mod∞ P.
(2) For every morphism f : P1 → P0 in P admitting an infinite sequence of successive weak

kernels in P (i.e. HomP(−, f) is part of a projective resolution by finitely generated
projectives of an object in mod∞ P) there exists a complex in E

0→Mn →Mn−1 → · · · →M2 → P1
f−→ P0

depending on f such that

0→ P(Mn)→ P(Mn−1)→ · · · → P(M2)→ P(P1)→ P(P0)

is exact in mod∞ P.

Proof. (2) implies (1): If M ∈ mod∞ P, we choose f : P1 → P0 admitting a weak kernel such
that M ∼= cokerP(f). Then choose the complex as in (2), to obtain that M ∈ Res(ImP), and
therefore ImP is finitely resolving. Conversely, let f : P0 → P1 be a morphism as in (2). This implies
Z = ker HomP(−, f) ∈ mod∞ P. Assume (1), i.e. Res(ImP) = mod∞ P. This means there exists an
exact sequence

0→ P(Mn)→ · · · → P(M2)→ Z → 0

in mod∞ P with Mi ∈ E . Since P is fully faithful, the claim follows. �

4. The derived category of an exact category

We recall from Buehler [49], section 9: Let A be an idempotent complete additive category. One can
define the category of chain complexes Ch(A) and the homotopy category K(A), whose objects equal
those if Ch(A) but the morphisms are the quotient group given by chain maps modulo chain maps
homotopic to the zero map. K(A) has the structure of a triangulated category induced by strict
triangles in Ch(A). A chain complex

A = (· · · d
n−1

−−−→ An
dn−→ An+1 dn+1

−−−→ · · · ) ∈ Ch(A)

is called left bounded if An = 0 for n << 0, right bounded if An = 0 for n >> 0 and bounded if
An = 0 for |n| >> 0. We denote by K+(A),K−(A) and Kb(A) the full subcategories of K(A) whose
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objects are the left bounded, right bounded and bounded chain complexes respectively. By definition
Kb(A) = K+(A) ∩K−(A). The subcategories K∗(A) with ∗ ∈ {+,−, b} are triangulated
subcategories but not closed under isomorphism in K(A) unless A = 0.
Now, let us assume that E = (A,S) is an exact category. A chain complex A = (A•, d•) in Ch(A) is
called acyclic if every differential factors as dn : An → Zn+1A→ An+1 such that
ZnA→ An → Zn+1A is an exact sequence (i.e. in S).
Neeman proved that the mapping cone of a chain map between acyclic complexes is acyclic. This
implies that the full subcategory Ac(E) = AcS(A) of K(A) given by acyclic complexes is a
triangulated subcategory of K(A). If A is idempotent complete then Ac(E) is closed under
isomorphism, every null-homotopic chain complex is acyclic and Ac(E) is a thick subcategory of
K(A). We define Ac∗(E) := Ac(E) ∩K∗(A) for ∗ ∈ {+,−, b}. If A is weakly idempotent complete
then the categories Ac∗(E) are thick subcategories of K∗(A) for ∗ ∈ {+,−, b}.
Given any triangulated category C and thick subcategory T the Verdier quotient

C/T

is defined via a localization (cf. [126], section 3.2, Prop. 3.2.2). It is again a triangulated category
and the canonical functor C → C/T is an exact functor.
As explained in [49], since A is idempotent complete, Ac∗(E) is a thick subcategory of K∗(A) for
∗ ∈ {±, b, ∅}. The derived category of an exact category E = (A,S) is defined as the Verdier
quotient

D(E) := K(A)/Ac(E)

Similarly, we define the bounded/left bounded derived category as the Verdier quotients

D∗(E) := K∗(A)/Ac∗(E), ∗ ∈ {b,±}

For more details and basic properties we refer to [126], Chapter 4 and [49], section 10.

Let E be an exact category with enough projectives P. We define Kb,−(P) as the full subcategory of
K−(P) given by all complexes X such that there exists an n ≥ 1 such that dn−1 and d−n are
admissible and the truncated complexes
τ≤(−n)X = (· · · → X(−n)−1 → X(−n) → ker d(−n) → 0 · · · ),
τ≥nX = (· · · 0→ coker dn−1 → Xn+1 → Xn+2 → · · · )
are acyclic, i.e. in Ac(E) ∩K−(P). Observe, that this depend on the ambient exact category E , even
though the notation suggests otherwise.

Lemma 4.1. ([126], Cor. 4.2.9) Let E be an exact category with enough projectives P. Then, there
are triangle equivalences

(1) K−(P)→ D−(E)
(2) Kb,−(P)→ Db(E)

Definition 4.2. Let E be an exact category and X a fully exact subcategory. We write D∗(X ),
∗ ∈ {b,+,−} for its derived categories. There always exists an exact functor D∗(X )→ D∗(E)
induced by the inclusion X → E (because this is an exact functor).

Theorem 4.3. [92] If E is an exact category and X is a resolving or coresolving subcategory.

(i) If X is resolving, the inclusion X → E induces a triangle equivalence

D−(X )→ D−(E)

if X is coresolving on D+().
(ii) If X is finitely resolving or finitely coresolving, the inclusion induces a triangle equivalence

Db(X )→ Db(E).

(iii) If X is uniformley finitely resolving or uniformly finitely coresolving, it induces a triangle
equivalence

D(X )→ D(E).
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Remark 4.4. If E is an exact category with enough projectives and X a resolving subcategory, then
the exact functor X → E induces a commuting diagram of exact functors

D−(X ) // D−(E)

Db(X ) //

OO

Db(E)

OO

where the vertical arrows are the induced triangle functors by construction. By Lemma 4.1 they are
fully faithful. By Theorem 4.3,(i), the upper horizontal functor is a triangle equivalence. This
implies that the lower horizontal functor is fully faithful, too.

5. Tilting theory in exact categories

We define tilting subcategories and go through the list of results (cf. introduction) that we demand
for tilting theory (i.e. induced derived equivalence, Aulsander correspondence, Bazzoni-like result
and Brenner-Butler theorem).

5.1. Tilting subcategories.

Definition 5.1. Let E = (A,S) be an exact category and T ⊂ E a full subcategory. We call T a
tilting subcategory if

(T1) T is self-orthogonal and T ⊥ has enough projectives which are given by P(T ⊥) = T
(equivalently: T is closed under taking summands in E and T ⊂ T ⊥ ⊂ gen(T ))

(T2) T ⊥ is finitely coresolving, i.e. it is coresolving and Cores(T ⊥) = E .

By Prop. 3.7, if we assume (T1), we can replace (T2) by an equivalent:

(T2’) Thick(T ⊥) = E .

We call T n-tilting if it is tilting with Coresn(T ⊥) = E . We call an object T in E tilting if add(T )
is a tilting subcategory. Assumption (T1) implies T and T ⊥ are closed under summands and we
have a well-defined fully faithful exact functor into infinitely presented T -modules
fT : T ⊥ → mod∞ T , X 7→ HomE(−, X)|T since T = P(T ⊥) and T ⊥ has enough projectives.
Assumption (T2) implies that the inclusion T ⊥ ⊂ E induces a triangle equivalence Db(T ⊥)→ Db(E).
Assumption (T1) and (T2) imply that the inclusion T → E gives rise to a triangle equivalence

Kb,−(T ) ∼= Db(T ⊥)→ Db(E).

Here is another way to express (T2) but we will need the assumption that the exact category has
enough injectives.

Lemma 5.2. Let T be an additive subcategory in an exact category E. Then: Cores(T ⊥) = E (resp.
Coresn(T ⊥) = E) implies E =

⋃
n≥0 T ⊥≥n+1 (resp. pdE T ≤ n).

If E has enough injectives , then the converse is true.

Proof. Observe that A ∈ Coresn(T ⊥) implies Exti(T,A) = 0, i ≥ n+ 1 for every T ∈ T , i.e.
A ∈ T ⊥≥n+1 . If E has enough injectives and A ∈ T ⊥≥n+1 , then we have by dimension shift
Ω−nA ∈ T ⊥. So, the injective coresolution of A truncated at the n-th cosyzygy shows that
A ∈ Coresn(T ⊥). �

Corollary 5.3. Assume that T is a tilting subcategory of an exact category E and n ≥ 0. Then the
following are equivalent:

(1) T is n-tilting
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(2) pdE T ≤ n

Proof. By Lemma 5.2, we have the implication (1) implies (2). Assume (2), we claim:
Cores(T ⊥) ⊂ Coresn(T ⊥). Let A ∈ Cores(T ⊥), then there exists an exact sequence

0→ A→ X0 → · · · → Xs → 0, Xi ∈ T ⊥, 0 ≤ i ≤ s

Wlog. assume that s > n− 1. Let Zi = Im(Xi → Xi+1), Z−1 := A. Applying Hom(T,−), T ∈ T ,

gives by dimension shift ExtjE(T,Zn−1) ∼= Extj+1
E (T,Zn−2) ∼= · · · ∼= Extj+nE (T,A) = 0 for all j ≥ 1

since pdE T ≤ n. So, Zn−1 ∈ T ⊥. �

Lemma 5.4. Let T be an additive category of an exact category E. If T fulfills (T1) and pdE T ≤ n,
then we have

T ⊥ = genn−1(T ) = presn−1(T ) = gen∞(T ) = pres∞(T ).

Proof. The assumption T ⊥≥n+1 = E together with T self-orthogonal implies by an easy
dimension shift argument that presn−1(T ) ⊂ T ⊥. Now, by assumption (T1) we have T ⊥ ⊂ gen∞(T )

since T = P(T ⊥) and T ⊥ has enough projectives. Since gen∞(T ) ⊂ presn−1(T ) trivially and
genn−1(T ) and pres∞(T ) are intermediate between these two, the claim follows. �

For infinitely generated tilting modules, the perpendicular category of a tilting module of finite
projective dimension has been described in [35], Theorem 3.11. In [182], Theorem 1.1, this
description has been proven for relative tilting modules over artin algebras. Therefore, we call the
generalization to tilting subcategories in exact categories Bazzoni’s description.

Corollary 5.5. ( Bazzoni’s description) Let T be an additive category of an exact category E which
is closed under taking summands and assume pdE T ≤ n, then (T1) is equivalent to the following:

(T1’) T ⊂ T ⊥ ⊂ presn(T )

and also to

(T1”) T ⊂ T ⊥ ⊂ add(presn(T ))

where for a full subcategory M of E: add(M) denotes the full subcategory of all summands of finite
direct sums of objects in M.
Furthermore, in this case we have presn−1(T ) = presn(T ) = T ⊥.

Proof. The implication ”(T1) implies (T1’)” is given by Lemma 5.4 using the inclusions
pres∞(T ) ⊂ presn(T ) ⊂ presn−1(T ). Also loc. cit. proves the statement presn−1(T ) = presn(T ).

The implication ”(T1’) implies (T1”)” is trivial since T ⊥ = add(T ⊥).
Assume (T1”), i.e. pdE T ≤ n and T ⊂ T ⊥ ⊂ add(presn(T )). To see (T1), it is enough to prove
T ⊥ ⊂ gen(T ). Observe that presn−1(T ) ⊂ T ⊥ is fulfilled by Lemma 3.4, (b). Let X ∈ T ⊥, then there

exists an L ∈ E such that X ⊕ L ∈ presn(T ) - in particular L ∈ T ⊥ and there is an exact sequence

0→ Xn+1 → Tn
fn−→ · · · f1−→ T0 → X ⊕ L→ 0

with Ti ∈ T . Let Xi := Im(fi), X ⊕ L := X0. For every j ≥ 1, T ∈ T we have
Extj(T,Xi) ∼= Extj+1(T,Xi+1). This implies X1 ∈ T ⊥ since Extj(T,X1) ∼= Extn+j(T,Xn+1) = 0 by
assumption. Therefore T0 → X ⊕ L is a deflation in T ⊥. This implies that the composition with the
projection onto the summand T0 → X ⊕ L→ X is a deflation in T ⊥ - (since projections onto
summands are deflation in every exact category and the composition of two deflations is a deflation).
Therefore, (T1) is fulfilled. �

Example 5.6. (1) If E is an exact category with enough projectives P, then P is a tilting
subcategory. In fact, this is the only 0-tilting subcategory.

(2) If T is a subcategory of an exact category E which fulfills (T1), then
E ′ = Cores(T ⊥) = Thick(T ⊥) is a thick subcategory and T is a tilting subcategory of E ′.
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(3) A counterexample: Let T be a skelletally small additive category. Let E = modn−T be the
category of n-finitely presented T -modules (i.e. for n = 0 finitely generated, n = 1 finitely
presented, etc.). Assume that E does not have enough projectives. E is a fully exact
category of the abelian category Mod T which contains the finitely generated projectives
PT := {HomT (−, T ) | T ∈ T }. We have P⊥T = E (so (T2) is fulfilled) but since E does not
contain enough projectives, (T1) is not fulfilled and it is not a tilting subcategory.

So, in our definition if you have a ring R which is not left coherent, i.e. E = Rmod1 is
not abelian, then R is not a tiliting module in E . But R is always a tilting module in
Rmod∞ by example (1).

Lemma 5.7. Let E be an exact category and T an n-tilting subcategory. Then, all objects in
T ⊂ P<∞ (i.e. all objects in T have finite projective dimension) and the following are equivalent:

(1) E = P<∞
(2) T ⊥ ⊂ P<∞
(3) T ⊥ = Res(T )
(4) Kb(T ) = Db(T ⊥)
(5) E = Thick(T )
(6) Kb(T ) = Db(E)

Proof. Since pdE T ≤ n for all T ∈ T , T consists of ojects with finite projective dimension.
This implies Thick(T ) ⊂ P<∞. Therefore (5) implies (1) trivially. Now assume (1). Then it follows
T ⊥ = Res(T ) = ThickT ⊥(T ). This implies by (T2’) that

E = Thick(T ⊥) = Thick(ThickT ⊥(T )) ⊂ Thick(T ).

This means (1) and (5) are equivalent. The equivalences of (5) and (6) and the one of (3) and (4)
follow from [126], Lemma 7.1.2 . The equivalence of (4) and (6) follows from the definition of a
tilting subcategory. The implications (1) implies (2), (2) implies (3) are clear. �

Out of curiosity, we also prove the following more general statement:

Lemma 5.8. If E is an exact category and T is an n-tilting subcategory, then

Thick(T ) = P<∞

In particular, T is also an n-tilting subcategory of P<∞.

Proof. Since T is n-tilting, we have T ⊂ P<∞. Since P<∞ is a thick subcategory of E , it
follows that Thick(T ) ⊂ P<∞.
Now, let X ∈ P<∞. There exists an exact sequence

0→ X → X0 → · → Xn → 0

with Xi ∈ T ⊥ by the axiom (T2). By Lemma 5.4 we have T ⊥ = pres∞(T ), so we can apply Lemma
6.5 to find a short exact sequence 0→ Z → L→ X → 0 with Z ∈ T ⊥ and L ∈ Cores(T ). This
implies L ∈ Thick(T ) ⊂ P<∞ and Z ∈ P<∞. Now clearly, T ⊥ ∩ P<∞ = P<∞(T ⊥) ⊂ Thick(T ) since
T ⊥ has enough projectives given by T . This implies Z ∈ Thick(T ) and therefore also X ∈ Thick(T ).
Since T ⊥ ∩ P<∞ has still enough projectives given by T we have (T1) trivially true. Secondly, since
ThickE(T ) = P<∞, we have ThickP<∞(T ) = P<∞ and therefore (T2)’ holds. �

Open question 5.9. Using the later theorem 6.3 we can conclude that for exact categories with
enough projectives n-tilting subcategories in E are precisely n-tilting subcategories in P<∞.
Is this true for all exact categories?
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5.1.1. The Auslander correspondence. Our definition has this trivial version of the Auslander
correspondence as a consequence:

Theorem 5.10. (trivial Auslander correspondence) Let E be an exact category. The assignments
T 7→ T ⊥ and X 7→ P(X ) are inverse bijections between

(1) the class of T (n-)tilting subcategory of E
(2) the class of X finitely coresolving subcategory (with Coresn(X ) = E) which have enough

projectives P = P(X ) and which are of the form X = P⊥

Nevertheless, condition (2) can be reformulated in a more elegant way once we assume extra
conditions on the exact category. This are the occurrences in the literature:

(*) [25], Theorem 5.5, original version for tilting modules in mod Λ for an Artin algebra Λ.
(*) [126], Theorem 7.2.18 in the case of a strongly homologically finite exact category E with

enough projectives which are of the form P = add(P ) for one object P .
(*) [185], Theorem 4.15, for an extriangulated category with enough projectives and enough

injectives.

Here, we use that the different definitions of tilting are special cases of our definition (cf. section 5:
Definitions of tilting). For example, the latest version of the Auslander correspondence is the
following:

Theorem 5.11. (Auslander correspondence) ([185], Theorem 4.15) Let E be an exact category with
enough projectives and enough injectives. The assignments T 7→ T ⊥ and X 7→ ⊥X ∩ X are inverse
bijections between

(1) the class of T (n-)tilting subcategory of E
(2) the class of X finitely coresolving subcategory (with Coresn(X ) = E) which are covariantly

finite and closed under summands.

Open question 5.12. Can the previous result be proven only with the assumption that the exact
category has enough projectives?

6. Definitions of tilting

In this section we look at our definition in exact categories with extra assumptions and compare this
to existing definitions of tilting. Also, we discuss the relationship to tilting in triangulated
subcategories in subsection 6.1.

Proposition 6.1. If E is an exact category with enough injectives and T a full subcategory then T
is n-tilting if and only if it fulfills the following two conditions:

(i) pdE T ≤ n
(ii) T ⊂ T ⊥ ⊂ presn(T )

Furthermore, in this case we have P(E) ⊂ Coresn(T ).

Proof. Follows from Lem. 5.5, Lem. 5.2 and from Prop. 3.7. �

Remark 6.2. This recovers the definition of n-tilting subcategories given in [185] (for exact
categories with enough projectives and injectives).

Theorem 6.3. (and definition) Let E be an exact category with enough projectives and let T be a full
additive subcategory. We define:

(t1) T is self-orthogonal and closed under summands.
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(t2) pdE T ≤ n
(t3) P(E) ⊂ Coresn(T )

Then: T is n-tilting if and only if T fulfills (t1), (t2), (t3).

Proof. Assume T is n-tilting. (T1) implies (t1), (t2) follows from Lemma 5.2, (2), (a) and (t3)
from Prop. 3.7, (2) with X = T ⊥.
Conversely, assume T fulfills (t1), (t2), (t3). It is straight forward to see that
presn(T ) ⊂ presn−1(T ) ⊂ T ⊥ by dimension shift using (t1) and (t2).
We claim: For every X ∈ E there is an exact sequence X → L→ Z in E such that L ∈ presn(T ) and
Z ∈ Cores(T ). This short exact sequence implies X ∈ Cores(T ⊥). Using dimension shift and
pdE T ≤ n one can see X ∈ Coresn(T ), so (T2) follows.
The claim follows using the beginning of a projective resolution of X

Pn → · · · → P0 → X → 0

with Pi ∈ P. Recall by (t3) we have Pi ∈ Cores(T ), this implies that we can use Lemma 6.4 below to
obtain the short exact sequence.
Now, assume X ∈ T ⊥ and consider again the short exact sequence X → L→ Z with L ∈ presn(T )
and Z ∈ Cores(T ). Since T ⊥ is inflation-closed we have Z ∈ T ⊥. Now, it is easy to see that
T ⊥ ∩ Cores(T ) = T , so Z ∈ T . Therefore we have Ext1

E(Z,X) = 0 which implies that the sequence
splits and we conclude that X ∈ add(presn(T )). Thus we proved T ⊥ ⊂ add(presn(T )). By Corollary
5.5 we conclude that (T1) is fulfilled. �

Lemma 6.4. Let E be an exact category and T a full additive subcategory which is self-orthogonal
and n ≥ 1. Assume that we have an exact sequence

Xn−1
fn−1−−−→ Xn−2 → · · · → X0

f0−→ X → 0

with Xi ∈ Cores(T ). Then, there exists an exact sequence

Tn−1
gn−1−−−→ Tn−2 → · · · → T0

g0−→ L→ 0

with Ti in T and an exact sequence X → L→ Z with Z ∈ Cores(T ).

The main ingredient to prove this is the following: The push out of an admissible morphism along an
inflation is again admissible with the same kernel and cokernel as the admissible map that we pushed
out ([49], Prop. 2.15)

Proof. We choose a short exact sequence Xn−1 → Tn−1 → Zn−1 with
Tn−1 ∈ T , Zn−1 ∈ Cores(T ). Then take the push out

Xn−1
fn−1 //

��

Xn−2

��
Tn−1

hn−1 // Yn−2

since Cores(T ) is closed under extensions (by Lem 3.4 (a)) we have Yn−2 ∈ Cores(T ) since
coker(Xn−2 → Yn−2) = Zn−1. By construction hn−1 admissible in E with kernel and cokernel of hn−1

coincide with those of fn−1. This means we constructed an exact sequence

Tn−1 → Yn−2 → Xn−3 → · · · → X0 → X → 0

Now, we pick a short exact sequence Yn−2 → Tn−2 → Zn−2 with Tn−2 ∈ T , Zn−2 ∈ Cores(T ). Then
we push out the admissible morphism Yn−2 → Xn−3 along the inflation Yn−2 → Tn−2 and proceed
with the same method as before. Once Y0 is constructed, choose the exact sequence Y0 → T0 → Z0

with T0 ∈ T , Z0 ∈ Cores(T ) and take the push out of the deflation Y0 → X along the inflation
Y0 → T0. This gives another deflation T0 → L such that Im(T1 → Y0) = ker(T0 → L) and an
inflation X → L with coker(X → L) = Z0 ∈ Cores(T ). �
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For an earlier lemma, we need the following modification of the previous lemma: Firstly, observe
that we can replace Cores(T ) by copres∞(T ) as long as we know that copres∞(T ) is
extension-closed. Secondly, if in the proof fn−1 is an inflation, then we construct in the proof an
exact sequence with gn−1 an inflation. Thirdly, by passing to the opposite exact category, we have
the following dual statement:

Lemma 6.5. Let E be an exact category and T a full additive subcategory which is self-orthogonal,
pdE T <∞ and n ≥ 1. Assume that we have an exact sequence

0→ X → X0 → · · · → Xn−1 → 0

with Xi ∈ pres∞(T ). Then, there exists an exact sequence

0→ L→ T0 → · · · → Tn−1 → 0

with Ti in T and an exact sequence Z → L→ X with Z ∈ pres∞(T ).

Observe that in the previous Lemma: The condition pdE T <∞ is needed to assure pres∞(T ) is
extension-closed - cf. Lem. 3.4.

Remark 6.6. In particular, this generalizes the usual definition of tilting modules of finite projective
dimensions over an artin algebra (cf. Happel [87]). Furthermore, it includes the generalization of
Auslander and Solberg (cf. [13]) to so-called relative tilting modules (i.e. tilting objects in a
different exact structure on the category of finitely presented modules over an artin algebra.

Inclusion of perpendicular categories defines a partial order on all tilting subcategories on an exact
category. The previous theorem has the following application to this partial order. Here, given a
fully exact subcategory X ⊂ E we write ResX ,m(−) (resp. CoresX ,m(−)) for the category Resm(−)
(resp. Coresm(−)) inside the fully exact category X .

Proposition 6.7. (and definition) Let E be an exact category and T an n-tilting subcategory. Let T̃
be another full subcategory which is self-orthogonal and closed under summands. Then the following
are equivalent:

(a) T̃ is a m-tilting subcategory for some m ≥ 0 of E and T̃ ⊥ ⊂ T ⊥.

(b) T̃ is a m-tilting subcategory for some m ≥ 0 of E and T̃ ⊂ T ⊥.

(c) T̃ is a m-tilting subcategory for some m ≥ 0 of T ⊥.

(d) There is an m ≥ 0 such that T̃ ⊂ ResT ⊥,m(T )(⊂ T ⊥) and T ⊂ CoresT ⊥,m(T̃ ).

In this case, we write T̃ ≤ T .

Before, we give the proof. Let us note the following easy corollary:

Corollary 6.8. Let E be an exact category and let T be an n-tilting subcategory and T̃ be an

m-tilting subcategory for some m ≥ 0, n ≥ 0. If T̃ ⊆ T , then T̃ = T .

Proof. (of Cor. 6.8) The inclusion implies Ext>0(T , T̃ ) = 0 = Ext>0(T̃ , T ), therefore

T̃ ≤ T ≤ T̃ and since ≤ is a partial order, they are equal. �

Proof. We are going to show the equivalences of 1. (c) and (d), 2. (a) and (b) and then 3. (b)
and (c).
1. The equivalence is a direct consequence of Theorem 6.3 since T ⊥ is an exact category with
enough projectives.
2. Clearly (a) implies (b). So let us assume (b) and let X ∈ T̃ ⊥ and T ∈ T . Since T̃ ⊥ has enough

projectives given by T̃ , we find short exact sequences (in E) setting X := X0

0→ Xi → T̃i → Xi−1 → 0
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with T̃i ∈ T̃ and Xi ∈ T̃ ⊥ for all i ≥ 1. Then we have ExtjE(T,Xi−1) ∼= Extj+1(T,Xi) for all

j ≥ 1, i ≥ 1 implying ExtjE(T,X0) ∼= Extj+nE (T,Xn) = 0 since pdE T ≤ n.

3. Assume (b). Since (b) is equivalent to (a), we have T̃ ⊥ ⊂ T ⊥. This implies that the perpendicular

category of T̃ inside T ⊥ coincides with the perpendicular category T̃ ⊥ inside E . This implies (T1).

It is straight forward to see that CoresT ⊥,m(T̃ ⊥) = Coresm(T̃ ⊥) ∩ T ⊥ holds and therefore (T2).

Assume (c). Since the equivalence to (d) implies T ⊂ Coresm(T̃ ) one can deduce T̃ ⊥ ⊂ T ⊥ (take an

exact sequence 0→ T → T̃0 → · · · → T̃s → 0, T ∈ T , T̃i ∈ T̃ , take X ∈ T̃ ⊥ and apply HomE(−, X) to

the sequence to conclude Ext>0
E (T,X) = 0). This implies that the perpendicular category of T̃ in T ⊥

and in E coincide, therefore (T1) is fulfilled. To show (T2), observe that T̃ ⊂ Resm(T ) implies (since

pdE T ≤ n) that there is a t ≥ 0 such that pdE(T̃ ) ≤ t. Furthermore since T ⊥ is coresolving and

T ⊥ ⊂ Coresm(T̃ ) we conclude that T̃ ⊥ is coresolving. This already implies that E = Corest(T̃ ⊥), to
see this: Let X0 ∈ E , then there are short exact sequences 0→ Xi → Zi → Xi+1 → 0 in E with

Zi ∈ T̃ ⊥, i ≥ 0. Let T̃ ∈ T̃ , then one has by dimension shift ExtjE(T̃ ,Xt) ∼= Extj+t(T̃ ,X0) = 0 for all

j ≥ 1 since pd T̃ ≤ t. �

Of course one has the dual result for cotilting subcategories (passing to opposite categories gives a
poset isomorphism between m-tilting subcategories for some m in E and m-cotilting subcategories
for some m in Eop).

Remark 6.9. The previous proposition can be used to obtain the following (one-sided) mutation:

Given an n-tilting subcategory T =M∨X with X ⊂ gen(M), define Y = Ω−MX and T̃ =M∨Y. If

T̃ is self-orthogonal (or equivalently: Y ⊂ cogen(M),X = ΩMY), then T̃ is m-tilting for some m

and T̃ ≤ T .
Just observe: T̃ ⊂ ResT ⊥,1(T ) ⊂ T ⊥ and T ⊂ CoresT ⊥,1(T̃ ). Therefore (d) in the previous
Proposition applies.

Let E be an exact category and n ≥ 0. Let n− tilt(E) be the class of n-tilting subcategories.

Corollary 6.10. (of Thm. 6.3) Let E be an exact category with enough projectives P and X a
resolving subcategory of E. Then one has

n− tilt(X ) = {T ∈ n− tilt(E) | T ⊂ X}.

In particular, we also have n− tilt(E) ∼= {T ⊂ n− tilt(mod∞ P) | T ⊂ ImP}, T ′ 7→ P(T ′) where
P : E → mod∞−P, X 7→ HomE(−, X)|P .

Proof. This is clear from the Theorem 6.3. The second statement follows since P is fully
faithful, exact and ImP is a resolving subcategory of mod∞ P. �

One of the obvious questions is when can one restrict to tilting objects and when is it necessary to
study more general tilting subcategories? In short, at least if you have enough projectives and a
Krull-Schmidt category then the category of projectives should tell you the answer. More detailed,
we have:

Theorem 6.11. If E is a Krull-Schmidt, Hom-finite, exact category with enough projectives.

(1) If there is a tilting object T , then we have |P(E)| = |T | <∞.
(2) If |P(E)| <∞ and there is a tilting category T , then we have |T | = |P(E)| <∞.

Proof. (of Thm 6.11) Let Γ := EndE(T ). Since P = P(E) ⊂ cogen1
E(T ), we have by [171],

Lemma 2.1 that HomE(−, T ) : P → Γ−Mod is full and faithful. For every P, P ′ ∈ P we have
0 = ExtiE(P

′, P ) ∼= ExtiΓ(HomE(P, T ),HomE(P
′, T )) by [171], Lemma 3.3. Let Q be the direct sum

of all indecomposable projectives appearing in a minimal projective resolution of T . When we apply
HomE(−, T ) to the projective resolution of T and the exact sequence in (3), we conclude that
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HomE(Q,T ) is a tilting Γ-module. Since tilting modules are maximal rigid, we have
add(HomE(Q,T )) = add(HomE(P, T )). This implies |P| = |Q| = |Γ| = |T |. �

6.1. Tilting in triangulated categories. In this subsection we compare our definition of a
tilting subcategory with the definition of a tilting subcategory in the bounded homotopy category of
projectives and in the bounded derived category.

Definition 6.12. In a triangulated category C one defines T ∈ C to be tilting if Hom(T,ΣiT ) = 0
for i 6= 0 and the smallest thick subcategory that contains T is C. Similarly we call a full additive
subcategory T of C tilting if

(Tr1) Hom(T,ΣiT ′) = 0 for i 6= 0 for all T, T ′ in T and
(Tr2) Thick∆(T ) = C

We recall the following Lemma which we want to use:

Lemma 6.13. ([126], Lemma 7.1.2) Let X be a self-orthogonal subcategory in an exact category E.
We consider E ⊂ Db(E) as stalk complexes in degree zero. Then the following are equivalent for an
object X ∈ E:

(1) X ∈ Thick(X )
(2) X ∈ Thick∆(X )

In particular, we have Thick(X ) = E if and only if Thick∆(X ) = Db(E).

Lemma 6.14. If E is an exact category and T a full additive subcategory. Then the following are
equivalent:

(1) T ⊂ E ⊂ Db(E) already lies in Kb(P(E)) and gives rise to a tilting subcategory in Kb(P(E)).
(2) T is self-orthogonal and Thick(P(E)) = Thick(T ) ⊂ E
(2’) T is self-orthogonal and P(E) ⊂ Cores(T ), T ⊂ Res(P(E))

Of course, in the situation that E has enough projectives and T = add(T ) contravariantly finite then
(2’) is equivalent to T being n-tilting (for some n).

Proof. We have for a self-orthogonal subcategory T ⊂ E : T ⊂ Kb(P(E)) if and only if
T ⊂ Thick(P(E)) = Res(P(E)) by Lem. 6.13 ([126], Lem 7.1.2). In this case, we have T
self-orthogonal in E if and only if T fulfills (Tr1) in Kb(P(E)). Furthermore, we also have by loc.cit.:
Thick(T ) = Thick(P(E)) ⊂ E if and only if Kb(P(E)) = Thick∆(P(E)) = Thick∆(T ) ⊂ Db(E).
We now observe that for a self-orthogonal category T we have P(E) ⊂ Thick(T ) implies
P(E) ⊂ Cores(T ) by [126], Lem. 7.1.6. , this finishes the proof. �

Lemma 6.15. If E is an exact category and T a full subcategory. Then, the following are equivalent

(1) T is a tilting subcategory in E and Thick(T ) = E.
(2) T is self-orthogonal and Thick(T ) = E
(2’) T is a tilting subcategory in Db(E)

Proof. Clearly, (1) implies (2). Assume (2), then T ⊥ = Res(T ) by [126], Prop. 7.10. This
implies that T = P(T ⊥) and that T ⊥ has enough projectives, so (T1). Also Thick(T ) = E implies
Cores(T ⊥) = Thick(T ⊥) = E , so (T2) and T is tilting. The equivalence of (2) and (2’) follows from
Lem. 6.13. �

Remark 6.16. Lemma 6.15, (2) recovers the definition of tilting from [126], Chapter 7 as a special
case of our definition.
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7. Induced triangle equivalences

Definition 7.1. Let T be a tilting subcategory in an exact category E . From now on, we call the
functor

fT : T ⊥ → mod∞ T , X 7→ HomE(−, X)|T
the tilting functor of T . Furthermore, since T ⊥ is finitely coresolving in E and Im fT is resolving
in mod∞ T , we have an exact functor

FT : Db(E)
∼=−→ Db(T ⊥)

∼=−→ Db(Im fT )→ Db(mod∞ T )

which we call the derived tilting functor of T .

Derived tilting functors are exact and fully faithful by remark 4.4

Definition 7.2. Let T be a (n-)tilting subcategory in an exact category E . We say that T is ideq
(n-)-tilting if FT is a triangle equivalence (i.e. essentially surjective). We call T m-ideq (n-)tilting if
Im fT is m-resolving.

Remark 7.3. If Im fT is finitely resolving in mod∞ T then FT is a triangle equivalence. By Lemma
3.17, Im fT is finitely resolving iff for every morphism f : T1 → T0 in T which admits a sequence of
successive weak kernels in T we find a complex in T ⊥

0→Mm →Mm−1 → · · · →M2 → T1 → T0

such that the induced sequence of restrictions of representable functors
0→ Hom(−,Mm)|T→ · · · → Hom(−,M0)|T→ HomT (−, T1)→ HomT (−, T0) in mod∞ T is exact.

Remark 7.4. If T is m-ideq n-tilting for some n,m ≥ 0, then we have induced triangle equivalences
also on the unbounded derived category

FT : D(E) ∼= D(T ⊥)
fT−−→ D(Im fT ) ∼= D(mod∞ T )

Example 7.5. Assume that T is a tilting subcategory such that every map f : T1 → T0 in T admits
a kernel in T ⊥ (the monomorphism on ker f does not have to be an inflation), then T is 2-ideq
tilting (just use the kernel of the map).
An instance of this is the following: Assume that T is 1-tilting with T contravariantly finite in E
(then: T ⊥ = gen(T ) = pres(T )) and assume every morphism in T factors over a deflation in E (for
example if E is abelian). Then every morphism in T has a kernel in T ⊥.

7.1. Ideq tilting from equality with P<∞. Let us first observe the obvious:

Lemma 7.6. Let E be an exact category with enough projectives P and m ≥ 0. Then, the following
are equivalent:

(1) E = P<∞ (resp. gldim E ≤ m <∞)
(2) Every resolving subcategory is finitely resolving (resp. is m-resolving ).

Proof. (2) implies (1): P is a resolving subcategory, it is finitely resolving, i.e. Res(P) = E ,
(resp. m-resolving, i.e. Resm(P) = E) if and only if P<∞ = E (resp. gldim E ≤ m <∞).
(1) implies (2): If X is resolving then P ⊂ X . Therefore Res(P) ⊂ Res(X ), Resm(P) ⊂ Resm(X ). �

Which brings us to this naive question:

Open question 7.7. Is the previous lemma still true if we drop the assumption that E has enough
projectives?

Proposition 7.8. Let E be an exact category and T a tilting subcategory. If mod∞ T = P<∞ (resp.
gldim(mod∞ T ) ≤ m <∞), then T is ideq tilting (resp. m-ideq tilting) .
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Another common triangle equivalence considered uses perfect complexes:

Definition 7.9. For an exact category E with enough projectives P, we call
Db
perf (E) := Kb(P) = Thick∆(P) ⊂ Db(E) the triangulated subcategory of perfect complexes.

Observe, that Db
perf (E) = Db(E) is equivalent to E = P<∞ by Lemma 5.7 since P is a 0-tilting

subcategory.

Lemma 7.10. If E is an exact category with E = P<∞, and T tilting subcategory then we have an
induced triangle equivalence

Db(E)→ Db
perf (mod∞ T )

Proof. Since E = P<∞ implies T ⊥ = P<∞ and since we have the additive equivalence
P(T ⊥)→ P(mod∞ T ), T 7→ HomT (−, T ) we obtain induced triangle equivalences

Db(E) ∼= Db(T ⊥) ∼= Kb(P(T ⊥))→ Kb(P(mod∞ T )) ∼= Db
perf (mod∞ T )

�

We also have the following:

Proposition 7.11. Let E be an exact category and T an m-ideq n-tilting subcategory. Then we have:

gldim E ≤ gldim(mod∞ T ) + n, gldim(mod∞ T ) ≤ gldim E +m

The proof follows directly from the following Lemma (and its dual statement).

Lemma 7.12. Let E be an exact category and X be a fully exact category. If we have Resn(X ) = E
for some n ∈ N, then we have

gldimX ≤ gldim E ≤ gldimX + n

Proof. The first inequality is clear since ExtiX = (ExtiE)|X . For the second, wlog.

gldimX = s ≤ ∞, let E,L ∈ E , we claim Ext
>(s+n)
E (L,E) = 0. By assumption, exists an exact

sequence 0→ Xn → · · · → X0 → E → 0 with Xi ∈ X , 0 ≤ i ≤ n. We apply Hom(X,−) with X ∈ X
and obtain Ext>sE (X,E) = 0. Now, we take the exact sequence 0→ Yn → · · · → Y0 → L→ 0 with

Yi ∈ X , 0 ≤ i ≤ n, and apply Hom(−, E) and obtain Ext
>(s+n)
E (L,E) = 0. �

7.2. Ideq tilting in exact categories with enough projectives. The following is the most
important result for this question (it is a generaliztion of Miyashita’s theorem [137], Thm 1.16):

Theorem 7.13. (Generalized Miyashita-Thm) Let E be an exact category with enough projectives P
and let T be an n-tilting subcategory which is essentially small. We consider the contravariant
functor

ΨT : E → T Mod, X 7→ HomE(X,−)|T
and the covariant functor

ΦT : E → Mod−T , X 7→ HomE(−, X)|T .

Let T̃ := ΨT (P) and T := ΦP(T ). Then we have:

(1) T̃ is an n-tilting subcategory of T mod∞ and T is an n-tilting subcategory of mod∞ P.

(2) ΨT restricts to an equivalence P ∼= T̃ op and ΦP to one T ∼= T .

(3) The category ⊥T̃ := {M ∈ mod∞ T | TorT>0(M, T̃ ) = 0} is a resolving subcategory of

mod∞ T with Resn(⊥T̃ ) = mod∞ T .
(4) The functor Φ = ΦT : ModP → Mod T , X 7→ HomModP(ΦP(−), X)|T has a left adjoint

Φ′ : Mod T → ModP, X 7→ (P 7→ X ⊗T ΨT (P )). They restrict to inverse equivalences
between
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(i) {M ∈ ModP | Ext>0
ModP(T ,M) = 0} and {N ∈ Mod T | TorT>0(N, T̃ ) = 0}

(ii) T ⊥(⊂ mod∞ P) and ⊥T̃ (⊂ mod∞ T ).
(5) We have a commutative triangle of exact functors (restricted to these subcategories)

T ⊥
ΦP

~~||||||||
ΦT

  BBBBBBBB

T ⊥
Φ

// ⊥T̃

In particular, T is n-ideq n-tilting and we have an induced triangle equivalence
Db(mod∞ P)→ Db(mod∞ T ).

Before we prove the previous theorem, let us state this Theorem as a corollary.

Theorem 7.14. Let E be an exact category with enough projectives P. Then the following are
equivalent:

(1) E is equivalent as an exact category to a finitely resolving subcategory of mod∞ P
(2) There is an n ∈ N0 and an n-tilting subcategory of E which is ideq n-tilting.
(3) For every n ≥ 0, every n-tilting subcategory of E is ideq n-tilting.

Proof. It is straight-forward to see that (1) is equivalent to P is ideq 0-tilting. To prove the
equivalences we show for a given n-tilting subcategory T , we have: T is ideq n-tilting if and only if
P is ideq 0-tilting. For this it is enough to show (using Theorem 7.14) that we have a commutative
diagram of triangle functors

Db(E)

&&MMMMMMMMMM

xxqqqqqqqqqq

Db(mod∞ P) // Db(mod∞ T )

where Db(E)→ Db(mod∞ P) is the derived functor of ΦP and Db(E) ∼= Db(T ⊥)→ Db(mod∞ T ) is
the derived functor of ΦT |T ⊥ and Db(mod∞ P)→ Db(mod∞ T ) is the triangle equivalence induced

by the equivalence T ⊥ → ⊥T̃ . But this follows immediately from loc. cit. (5). �

We can prove the even stronger corollary of Theorem 7.14.

Definition 7.15. We define Tilt(E) :=
⊕

n≥0 n− tilt(E). The relation ≤ from Lemma .. defines a
poset structure on this set.
Let E be an exact category. We say E is tilting connected if in the poset Tilt(E) is non-empty and
for every two element T and T ′ there is a finite sequence T0 = T , T1, . . . , Tr = T ′ with Ti ≤ Ti+1 or
Ti ≥ Ti+1, 0 ≤ i ≤ r − 1.

Example 7.16. If E has enough projectives P then E is tilting connected since P is a globales
maximum.
If the injectives I in E happen to be an n-tilting subcategory then E is tilting connected since I has
to be a global minimum.

Open question 7.17. Are exact categories are always tilting connected?

Corollary 7.18. Let E be an exact category and T an n-tilting subcategory. Then the following are
equivalent:

(1) T is ideq n-tilting
(2) Every m-tilting subcategory L with L ≤ T or T ≤ L (i.e. L comparable to T ) is ideq

m-tilting.
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In particular, every connected component in Tilt(E) is either ideq tilting (i.e. every n-tilting
subcategory in it is ideq n-tilting) or it is not ideq tilting.

The proof of the main result uses an auxiliary preprint of the author [171] in which some technical
results are explained.

Proof. (of Theorem 7.13)

(1) We want to see that T̃ satisfies (t1),(t2) and (t3): Since T is an n-tilting subcategory of E
we have by (t2) for every T ∈ T an exact sequence

0→ Pn → · · · → P0 → T → 0

with Pi ∈ P. We apply ΨT to it and obtain a complex

0→ ΨT (T )→ ΨT (P0)→ · · · → ΨT (Pn)→ 0

Since T fulfills (t1), it follows that this is exact, so T̃ fulfills (t3).
Now, by (t3) for T we have for every P ∈ P an exact sequence

0→ P → T0 → · · · → Tn → 0,

we apply again ΨT and again by (t1) for T we get an exact sequence

0→ ΨT (Tn)→ · · · → ΨT (T0)→ ΨT (P )→ 0

which shows that T̃ fulfills (t2). Furthermore, P ⊂ cogen∞E (T ) implies by [171], Lemma

3.3. that Exti(ΨT (P ),ΨT (P ′)) = 0 for P, P ′ ∈ P and 0 < i <∞, so (t1) holds for T̃ .
The second claim follows since ΦP is exact, fully faithful and preserves extension groups
and maps projectives to projectives.

(2) Since P ⊂ cogen1
E(T ) it follows that ΨT restricted to P is fully faithful by [171], Lemma

2.1. Since ΦP is fully faithful, the second claim is clear.

(3) By the properties of Tor the category ⊥T̃ contains the projectives, is extension closed and
deflation-closed, so it is resolving.

The last statement follows when we consider the first n terms of a projective resolution
of X ∈ mod∞ T

0→ Ωn → Tn−1 → · · · → T0 → X → 0

with Ti ∈ P(mod∞ T ). We claim that TorT>0(Ωn, T̃ ) = 0. By dimension shift

TorTi (Ωn, T̃ ) = TorTi+n(X, T̃ ) = 0 since pd T̃ ≤ n.
(4) It is standard to see that these functors form an adjoint pair (it should be seen as a

Hom-Tensor adjunction), cf. [171], Lemma 3.7.
(i) This is a straight forward generalization of the orginal result [137], Thm 1.16. We

just mention it for completeness.
(ii) We want to see that both functors restrict to functors as claimed and that they are

both fully faithful.
By Lemma 5.5 and [171], Lem. 3.13, Rem. 3.14 we have

T ⊥ = genmod∞ P
∞ (T ) = presmod∞ P

∞ (T )

= {X ∈ mod∞ P | ϕX isom,Φ(X) ∈ mod∞−T ,TorT>0(Φ(X), T̃ ) = 0}

therefore, the functor Φ restricts as claimed and is fully faithful since gen∞(T ) ⊂ gen1(T )
(again using [171], Lemma 1.1.)

We are going to proof the following claim:
(*) presmod∞ P

∞ (T ) = presModP
∞ (T )
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proof of (*): Given an exact sequence · · · → Tm → · · · → T0 → X → 0 in ModP with Ti ∈ T , we
claim X ∈ mod∞ P. Now, we see this as a quasi-isomorphism of complexes (with terms
in ModP)

T∗ : · · · // Tm

��

// · · · // T1
//

��

T0
//

��

0

X : · · · // 0 // · · · // 0 // X // 0

Since T∗ is a complex in mod∞ P, we find by [49], Thm 12.7, a quasi-isomorphism
P∗ → T∗ with P∗ is a complex · · · → Pm → Pm−1 → · · · → P0 → 0, P−n = 0 for all
n > 0 with terms in P, here a quasi-isomorphism means that the mapping cone of
P∗ → T∗ is acyclic. Since composition of quasi-isomorphisms are quasi-isomorphsims,
we have a quasi-isomorphism P∗ → X which means that the mapping cone which is a
complex · · · → P1 → P0 → X → 0 is exact and therefore X ∈ mod∞ P.

Let Y ∈ ⊥T̃ . Since Y ∈ mod∞ T , e.g. there exists an exact sequence

· · · → Φ(Tm)→ · · · → Φ(T0)→ Y → 0

with Φ(Ti) ∈ P(mod∞ T ) = Φ(T ). Applying Φ′ and using that Φ′Φ(T ) ∼= T for all T ∈ T
yields a complex

· · · → Tm → · · · → T0 → Φ′(Y )→ 0

with Ti ∈ T . Since TorT>0(Y, T̃ ) = 0 and Φ′ is right exact, this complex is exact. This

implies by (a) that Φ′(Y ) ∈ T ⊥ = genmod∞ P
∞ (T ). Therefore, Φ′ restricts as claimed. To see

that it is fully faithful, we also have the consequence that applying Φ is again exact on this
complex

· · · → Φ(Tm)→ · · · → Φ(T0)→ Φ(Φ′(Y ))→ 0

By the triangle identity of the adjunction, this implies that the unit Y → ΦΦ′(Y ) is an
isomorphism.

Now, an adjunction with unit and counit isomorphisms (i.e. fully faithful left and right
adjoint) is an equivalence of categories.

(5) It follows from the definition that Φ ◦ ΦP = ΦT . Since ΦP preserves all extension groups, it
is clear that ΦP restricts to a functor as claimed, for Φ this has been proven in (4).

�

Example 7.19. If E is an abelian category with enough projectives, then every n-tilting
subcategory is ideq n-tilting. For example, let P be essentially small, then E = ModP is an abelian
category with enough projectives given by summands of arbitrary direct sums of P, i.e.
P(ModP) = Add(P). It implies that the functor P : E → mod∞(Add(P)) is an exact equivalence.

Example 7.20. Let E := P(mod∞ P) ⊂ mod∞ P. We consider E as a fully exact subcategory of
mod∞ P, then it is a resolving subcategory. Since the category E is semi-simple, it has a unique
tilting subcategory T = P(E) = E which is a 0-tilting subcategory. Now, it follows from Thm. 7.14
that gldim(mod∞ P) = m <∞ (resp. mod∞ P = P<∞) if and only if Resm(E) = mod∞ P (resp.
Res(E) = mod∞ P) if and only if E is m-ideq 0-tilting subcategory (resp. ideq 0-tilting) of itself.

7.3. Conjectural generalizations to ideq tilting in arbitrary exact categories. Here, we
come accross the following unresolved question:

Open question: Is there an analogue of Rickard’s Morita theory for functor categories as follows:

Conjecture 7.21. (Strong Rickard conjecture) Let X ,Y be two essentially small idempotent
complete additive categories. Then the following equivalent:

(0) D(Mod−X ) and D(Mod−Y) are triangle equivalent.
(1) D−(ModX ) and D−(ModY) are triangle equivalent.
(2) D−(mod∞X ) and D−(mod∞ Y) are triangle equivalent.
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(3) Db(mod∞X ) and Db(mod∞ Y) are triangle equivalent.
(4) Kb(X ) and Kb(Y) are triangle equivalent.
(5) There is a tilting subcategory T of Kb(X ) such that T ∼= Y as additive categories.

If we do not assume X and Y to be small, then (2),(3),(4), (5) are still equivalent. Furthermore,
every triangle equivalence in (0)-(3) restricts to a triangle equivalence as in (4).

For X and Y of finite type and idempotent complete, part of the conjecture is Rickard’s Morita
theorem for derived categories of rings (cf. [158], Thm 6.4, Prop. 8.1 - for example (3) implies (4) is
proven in loc. cit only for right coherent rings - yet (4) implies (3) is proven for arbitrary rings). An
alternative proof can be found in [126]. For more general small additive categories partial answers
are given by Keller [118], Corollary in 9.2 and Asadollahi-Hafezi-Vaheed [9], Thm 3.21.
For our purpose, we need the following weaker statement:

Conjecture 7.22. (Rickard-Lemma) Let X , Y be small idempotent complete additive categories. If
Kb(X ) and Kb(Y) are triangle equivalent, then there exists a triangle equivalence
Db(mod∞X )→ Db(mod∞ Y) which restricts to a triangle equivalence Kb(X )→ Kb(Y).

For add Λ with Λ an arbitrary ring, the existence is proven in [158] after Prop 8.1. One proof of the
Rickard-Lemma should be as follows:
Let T ⊂ Kb(Y) be the image of X under the assumed triangle equivalence. We define
Add(Y) := P(ModY). Then one shows that T ⊂ K(Add(Y)) fulfills (P1),(P2),(P3) in [9] and the
acyclic complexes in K(Add(Y)) coincide with the T -acyclic complexes in loc. cit (since Thick∆(T )
in Kb(Y) equals Kb(Y))). Therefore, [9], Thm 3.21 can be applied to obtain a triangle equivalence
K−(Add(X )) ∼= K−(Add(T ))→ K−(Add(Y)) which restricts to a triangle equivalence
Kb(X )→ Kb(Y). Then, arguments of [158] should generalize to intrinsic characterizations of the
subcategory inclusions Kb,−(X ) ⊂ K−(X ) ⊂ K−(Add(X )) - these imply the claimed restricted
triangle equivalence Db(mod∞X )→ Db(mod∞ Y). Unfortunately, these results are not easy to
puzzle together, so we leave this as a conjecture.

Corollary 7.23. (of Rickard-Lemma) Assume that the Conjecture 7.22 holds. Let E be an exact
category. Then for every n-tilting and m-tilting subcategories T and T ′ which are small there exists
a triangle equivalence Db(mod∞ T )→ Db(mod∞ T ′)

Proof. We have the two derived tilting functors

Db(mod∞ T ) Db(E) //oo Db(mod∞ T ′)

Now, the thick subcategory of Db(E) that T and T ′ generate is equal to

Thick∆(T ) = Thick∆(P<∞) = Thick∆(T ′)
by Lemma 5.8. This implies that derived tilting functors restrict to triangle equivalences

Kb(T ) Thick∆(P<∞) //oo Kb(T ′)

Then the claim follows from the conjecture 7.22. �

Remark 7.24. If we could prove the stronger statement that every triangle equivalence
Kb(T )→ Kb(T ′) can be extended to a triangle equivalence as in the previous corollary, then we
would obtain that the existence of one ideq n-tilting subcategory is equivalent to that all m-tilting
are ideq m-tilting for all m ≥ 0. This extension property for arbitrary triangle equivalences
Kb(X )→ Kb(Y) would imply the following conjecture.

Conjecture 7.25. (Generalization of Thm. 7.14) Let E be an exact category and assume that there
exists an n ≥ 0 such that there is at least one n-tilting subcategory. Then the following are equivalent:

(a) There is an n ≥ 0 and an n-tilting subcategory which is ideq n-tilting
(b) For every m ≥ 0 every m-tilting subcategory is ideq m-tilting.
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(c) There is a triangle equivalence Db(E)→ Db(mod∞ S) for some idempotent complete additive
category S which restricts to a triangle equivalence Thick∆(P<∞)→ Kb(S).

Remark 7.26. If every triangle equivalence Db(E)→ Db(mod∞ S) for some idempotent complete
additive category S restricts to a triangle equivalence Thick∆(P<∞)→ Kb(S), then the previous
conjecture says for an exact category with at least one n-tilting subcategory: n-tilting = ideq
n-tilting for every n ≥ 0 is equivalent to E is bounded derived equivalent to a category mod∞ S.

7.4. When is the image of the tilting functor the perpendicular of a cotilting
subcategory? Enomoto characterized in [73], Thm 2.4.11 when an exact category E is equivalent
to the perpendicular category ⊥C of an m-cotilting subcategory C inside a functor category mod∞ P
(Clearly a perpendicular category of a cotilting subcategory is a finitely resolving subcategory).
Observe that a necessary condition is that such an E has enough projectives and enough injectives.
Here Enomoto’s notion of higher kernels in an additive category plays a crucial role.

Definition 7.27. (cf. [73], Def. 2.4.5) Let C be an additive category and n ≥ 1, then we say that C
has n-kernels if for every f : C1 → C0 in C there is a complex 0→ Cn+1 → · · · → C2 → C1

f−→ C0 in
C such that

0→ HomC(−, Cn+1)→ · · · → HomC(−, C0)

is exact in mod∞ C.
If C is additionally an exact category, we say that C has 0-kernels if every morphism f in C can be
factored as f = id for a deflation d and a monomorphism i. We say C has (−1)-kernels if it is
abelian.

Example 7.28. If T is (n-)tilting and has m-kernels for some m ≥ 1, then T is (m− 1)-ideq
(n-)tilting (check the definitions).

Proposition 7.29. ([73], Pro. 2.4.6) Let C be essentially small additive category with weak kernels
and n ≥ 1. Then: mod∞ C = P≤n+1 if and only if C has n-kernels.

Theorem 7.30. (Enomoto’s Theorem, [73], Thm 2.4.11) Let E be an idempotent complete, exact
category and T a tilting subcategory and m ≥ 0. We write fT : T ⊥ → mod∞ T for the tilting functor
X 7→ HomE(−, X)|T . The following are equivalent:

(1) T has weak kernels and is (m− 1)-ideq tilting and T ⊥ has enough injectives
(2) There is an m-cotilting subcategory C in mod∞ T with ⊥C = Im fT
(3) T ⊥ has enough injectives and (m− 1)-kernels
(4) T ⊥ has enough injectives and there is a category T ⊂M ⊂ T ⊥ which has (m− 1)-kernels

In this case, Im fT = ⊥C with C = fT (I(T ⊥)) is m-cotilting.

All examples that I know of this situation follow from Auslander’s notion of a dualizing R-variety.

Definition 7.31. (and Lemma) Let R be a commutative ring such that there is a duality D on finite
length R-modules (e.g. if R is a field). Let A be an additive R-category such that HomA(X,Y ) is a
finite length R-module for all X,Y in A. Then, D: Mod-A → AMod, F 7→ F ◦D is a duality (if A is
essentially small). A is called a dualizing R-variety if the F 7→ F ◦D defines a duality between
finitely presented left and right A-modules, i.e. a contravariant equivalence
D: mod1A → Amod1 : D.
In this case, mod1A = mod∞A is an abelian category with enough injectives and projectives and
Aop is also a dualizing R-variety.

Corollary 7.32. (of Miyashita’s and Enomoto’s Theorem) Let E be an exact category with enough
projectives P. Let T be an n-tilting subcategory of E and assume that there is a duality (i.e.

contravariant equivalence) D: mod∞ T → T mod∞ : D. Let T̃ = ΨT (P) ⊂ T mod∞ be the n-tilting

subcategory of Thm. 7.13, then C := D T̃ ⊂ mod∞ T is an n-cotilting subcategory and we have

⊥T̃ = ⊥C
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7.5. Ideq tilting in relative homological algebra. We look at exact substructures with
enough projectives on exact catgeories of the form mod∞ P with P essentially small. Recall, if
E = (A,S) is an exact category with underlying additive category A and class of short exact
sequences S, then an exact substructure is an exact category E ′ = (A,S ′) with S ′ ⊂ S.

We prove the following:

Theorem 7.33. Let P be an idempotent complete, additive category. Let E be an exact substructure
of mod∞ P, with enough projectives Q := P(E). Then, Q is 2-ideq 0-tilting subcategory of E.

As a trivial corollary of Theorem 7.14 and the previous Theorem, we obtain:

Corollary 7.34. Let P be an idempotent complete, additive category. Let E be an exact substructure
of mod∞ P, with enough projectives Q := P(E). Then for every n ≥ 0, every n-tilting subcategory of
E is ideq n-tilting.

We prove two lemmata for the proof.

Lemma 7.35. In the previous situation. The functor P : mod∞ P → mod∞Q, X 7→ Hom(−, X)|Q
has a left adjoint functor Φ′ : mod∞Q → mod∞ P given by the restriction functor Φ′(X) = X|P .
Furthermore, Φ′ is exact.

Proof. We consider Q ⊂ mod∞ P ⊂ ModP. Then there is an adjoint pair of functors
Φ: ModP → ModQ : Φ′ with Φ(X) = HomModP(−, X)|Q (cf. [171]). By loc. cit. Cor.3.15, we have
for X ∈ genmod∞ P

∞ (Q) = mod∞ P (by assumption) we have P(X) = Φ(X) ∈ mod∞Q and
Φ′(X)(P ) = X(P ). Therefore, the restriction functor is the left adjoint if it is well-defined. We
claim: If X ∈ mod∞Q, then X|P∈ mod∞ P.
We apply the restriction functor to a projective resolution of X. This gives a right bounded complex
Q∗ in mod∞ P with terms in Q which is quasi-isomorphic to the restricted stalk complex of X. Now,
by [49], Thm 12.7, there exists a quasi-isomorphism P∗ → Q∗ with P∗ a right bounded complex of
projectives in mod∞ P. Since compositions of quasi-isomorphisms are quasi-isomorphisms, the
quasi-isomorphism P∗ to the stalk complex X|P gives a projective resolution. �

Lemma 7.36. Let E be an idempotent complete exact category with enough projectives given by Q.
If the functor P : E → mod∞Q, X 7→ Hom(−, X)|Q has an exact left adjoint, then we have
Res2(ImP) = mod∞Q.

Proof. Let X ∈ mod∞Q. We choose a projective presentation

HomQ(−, Q1)
Hom(−,f)−−−−−−→ HomQ(−, Q0)→ X → 0 and denote Ω2 = ker(Hom(−, f)). We claim that

the unit Ω2 → PΦ′(Ω2) is an isomorphism (then Ω2 ∈ Im(P) and since the projectives are in ImP,
the claim follows).
First of all, we observe that any object Z ∈ Im(P) fulfills that the unit is an isomorphism on Z - this
follows from the triangle identity of the adjunction.
In particular, this holds for the projectives which lie in Im(P). Since P ◦Φ′ preserves kernels (since P
preserves kernels and Φ′ is exact) we can deduce from the commutative diagram

0 // Ω2 //

��

HomQ(−, Q1) //

��

HomQ(−, Q0)

��
0 // P ◦ Φ′(Ω2) // P ◦ Φ′(HomQ(−, Q1)) // P ◦ Φ′(HomQ(−, Q0))

that the unit Ω2 → P ◦ Φ′(Ω2) is an isomorphism. �

Example 7.37. In the special case, A = Λ-mod for an artin algebra Λ, then the definition of a
relative tilting object has been given in [13], the derived equivalence had been proven in [45]. The
proof in loc. cit. claims, we have an equivalence of additive categories and therefore, we have an
equivalence on Kb,−(−) of those - but this triangulated category depends not just on the additive
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category but on the ambient exact category and therefore a further explanation for the triangle
equivalence (as given here, is helpful for the understanding).

8. Examples

We plan to write an extended separate article on this topic. Therefore, we restrict to very view
examples. This is my favourite construction of tilting subcategories:

Example 8.1. (special tilting)

Lemma 8.2. Let E be an exact category with enough projectives P. Let n ≥ 1 and M be full
self-orthogonal subcategory, closed under summands with pdEM≤ 1 and assume that

P ⊂ cogenn−1(M).

Let Ω−nMP denote the full subcategory of E consisting of objects X such that there exists an exact
sequence

0→ P →M0 → · · · →Mn−1 → X → 0

with Mi ∈M, P ∈ P and HomE(−,M) exact on it. We define Tn :=M∨ add(Ω−nMP). Then Tn is
an n-tilting subcategory and

T ⊥n = genn−1(M)

Proof. The proof of the dual of Lem. 8.3 in [136] also carries through to show (t1), (t2) and
(t3) (of Thm 6.3). �

Definition 8.3. Let E ,M be as in the previous lemma. If M⊂ P, then we call
Tn =M∨ add(Ω−nMP) the M-special tilting subcategory.

Example 8.4. (Tilting modules for infinitely presented modules over rings) Let R be an
associative unital ring. We set RMod := Mod−(proj− R),R mod∞ := mod∞−(proj− R) where
proj− R denotes the category of finitely generated projective left R-modules. This notation is
justified by the observation that the category of all left R-modules is equivalent to Mod−(proj− R),
just consider the following functor

RMod −→ Mod−(proj− R)

M 7→
(
P 7→ HomR(P,M)

)
It is an equivalence with quasi-inverse given by F 7→ F (R). Let now E := Rmod∞. This is an exact
category with enough projectives. Let T be an object in E and Γ = EndE(T )op. We have add(T ) has
weak kernels if and only if Γ is left coherent but we do not need to assume this here.
Then T is n-tilting in E if and only if it satisfies (t1),(t2) and (t3) (cf. Theorem 6.3). By Thm 7.14
we have an induced equivalence on bounded derived categories Db(Rmod∞)→ Db(Γ mod∞). This is
also implied by Rickard’s Morita theory for derived categories ([162], Thm 6.4 and Prop. 8.1).

On endomorphism rings of generators one can always find a special 1-tilt:

Let R be a ring and M be a left R-module and Q be a projective left R-module such that there is an
epimorphism Qn →M for some n ≥ 1. Let E = M ⊕Q and Γ = EndR(E)op. Then,
P = HomR(Q,E) is a projective right Γ-module.
Take the short exact sequence

0→ K = ker(f)→ Qn+1 → E → 0

and apply the functor HomR(−, E)

0→ Γ
F−→ Pn+1 → T1 := coker(F )→ 0.

We set T = P ⊕ T1. Then, it is straight forward to see:

Corollary 8.5. T ∈ mod∞ Γ is a the special 1-tilting module for M = add(P ). In particular,
gen(T ) = gen(P ).
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CHAPTER 8

An application of tilting theory to infinite type A quiver
representations

1. Synopsis

Let Q be an infinite quiver, we look at those whose category of finitely presented quiver
representations rep+(Q) over a field K is an hereditary abelian category with enough projectives
which is Hom- and Ext-finite (i.e. these take values in finite-dimensional K-vector spaces). The
easiest class of examples of such infinite quivers are quivers Q which are tree-shaped quivers with
finitely many branching points. The abelian categories rep+(Q) are always one-sided
Auslander-Reiten categories, cf. [34]. The purpose of this chapter is to start studying tilting
subcategories in rep+(Q) for Q an infinite quiver with sufficient finiteness conditions. The obvious
first example are quivers of type A∞.

We prove the following theorem using tilting theory:

Theorem 1.1. (cf. Theorem 4.9) Let Q and Q′ be two quivers of type A∞. Then, there exists a
triangle equivalence

Db(rep+(Q))→ Db(rep+(Q′))

if and only if one of the following three cases holds

(a) Q and Q′ have a left infinite path
(b) Q and Q′ have a right infinite path
(c) Q and Q′ have no infinite path

In each of the cases the derived equivalence is obtained by composing at most two derived
equivalences induced from a tilting subcategory.

The same question can be asked for the other infinite Dynkin types. We give an idea how to answer
this in section 5.

2. Preliminaries

We remark that in our situtation tilting subcategories are maximal self-orthogonal:

Remark 2.1. Let A be an exact category and assume gldimA <∞. Let T be a tilting subcategory
and T ⊆ S with S selforthogonal in A. Then we have T = S, the proof goes as follows:
Since Ext>0(T ,S) = 0 implies S ⊂ T ⊥ and because gldim T ⊥ ≤ gldimA <∞ and T ⊥ wep. given by
T it follows that Ext>0(S, T ⊥) = 0 and therefore S ⊂ P(T ⊥) = T .

Lemma 2.2. Assume that T is a 1-tilting subcategory in an abelian category A. Then the category
of finitely presented functors mod1 T has enough projectives, i.e. equals mod∞ T and is abelian.

Proof. We show first the inclusion mod1 T ⊆ mod∞ T : Let f : T1 → T0 be a morphism in T , we
denote by f ′ : T1 → Im f the induced morphism to the image. We have Im f ∈ gen∞ T (using

pres T = gen T = gen∞ T , using [172], Lem 4.4). So we find an exact sequence T ′2
g−→ T ′1

h−→ Im f → 0
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with T ′i ∈ T such that HomA(T, T ′2)→ HomA(T, T ′1)→ HomA(T, Im f)→ 0 for all T in T . Let us
form the pullback of h along f ′ in the abelian category A

ker f ker f

kerh H T1

kerh T ′1 Im f

i

j h̃

f ′

h

One can observe that the second row is even split exact (but we are not going to use this). Now, we
look at the induced morphism g′ : T ′2 → Im g = kerh. Using the bicartesian commutative diagram we

conclude f ′h̃jg′ = 0 and so by the universal property of the kernel there is a unique morphism
t : T2 → ker f such that it = h̃jg′. Now we check that it : T ′2 → T1 is a weak kernel of f . For that it
suffices to see that for every T in T the map Hom(T, T ′2)� Hom(T, ker f) is surjective. Let T be an
object in T and s : T → ker f a morphism. Using the bicartesian commuting square, we see that

T → ker f → H → T ′1
h−→ Im f is zero, so it has to factor uniquely over a morphism T → kerh. But

as g′ is a right T -approximation of kerh, it follows that there exists a morphism s′ : T → T ′2 with
ts′ = s.
As every morphism has a weak kernel, the claim follows, cf. e.g. [126, Lemma 2.1.6].

�

There is also the following other case when we can conclude that mod∞ T is abelian.

Lemma 2.3. If T is a contravariantly finite subcategory of an abelian category A, then T has weak
kernels. In particular mod∞ T = mod1 T is abelian with enough projectives.

Proof. Let f : T → T ′ be a morphism in T . Take Tf → ker f a right T -approximation. Then,
consider the composition g : Tf → ker f → T . It is straightforward to see that g is a weak kernel of
f . �

That a tilting subcategory is contravariantly finite is an extra property. It is equivalent to that we
have a torsion class associated to it:

Definition 2.4. A pair (R,F) of full subcategories in an abelian category A is a torsion pair if:

(TP1) Hom(R,F ) = 0 for all R ∈ R, F ∈ F ,
(TP2) For each Z ∈ A exists a short exact sequence 0→ X → Z → Y → 0 with X ∈ R, Y ∈ F .

We recall the following

Corollary 2.5. (of [36, Prop.1.2]) If R is a torsion class in an abelian category A, then the R is
contravariantly finite in A.

Proof. By [36, Prop. 1.2], the inclusion i : R → A has a right adjoint R : A → R. Then, for
Z ∈ A, the counit εZ : iR(Z)→ Z of the adjunction is a right R-approximation. �

Lemma 2.6. Let T be a 1-tilting subcategory in an abelian category. Then the following are
equivalent:

(1) T ⊥ is a torsion-class.
(2) T ⊥ is contravariantly finite in A.
(3) T is contravariantly finite in A.
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Proof. Assume T ⊥ is a torsion class, then T ⊥ is contravariantly finite in A by the previous
lemma. Since T is contravariantly finite in T ⊥ (since T ⊥ has enough projectives given by T ) it
follows that T is contravariantly finite in A. So we have (1) implies (2) implies (3)
Conversely, assume (3), i.e. that T is contravariantly finite in A. Define R = T ⊥ and
F = {F ∈ A | Hom(T, F ) = 0 ∀ T ∈ T }. Let R ∈ R, F ∈ F and f : R→ F be a morphism. By
definition, there exists an epimorphism p : T → R with T ∈ T and f ◦ p = 0. This implies f = 0 and
(TP1).
Now let Z ∈ A be arbitrary. By assumption, there exists a right T -approximation fZ : TZ → Z, in
particular X = Im(fZ) ∈ R. Let Y := coker(fZ). We consider the short exact sequence

0→ X
j−→ Z → Y → 0 and apply Hom(T,−) with T ∈ T . We look at Hom(T,X)→ Hom(T,Z) and

want to see that this map is surjective. So, given g : T → Z, we use that there is an h : T → TZ such

that fZ ◦ h = g. Since fZ : TZ
q−→ X

j−→ Z factors over its image as fZ = j ◦ q, it follows g = j(qh) and
therefore Hom(T,X)→ Hom(T,Z) is surjective. This implies that Y ∈ F and therefore (TP2). �

Definition 2.7. We say that an object X in A is noetherian if it satisfies the ascending chain
(acc) condition, i.e. whenever there is a chain of subobjects of X

X0 ⊆ X1 ⊆ X2 ⊆ · · ·

then it eventually stabilizes.
Let C be a small category, then one says Mod C (also denoted by Rep C) is noetherian if every
finitely generated C-module X fulfills the (acc) for chains of finitely generated submodules.

Lemma 2.8. Let k be a field. Let A be an abelian Hom-finite k-category and T a 1-tilting
subcategory with countably many indecomposables in it. If every object in A is noetherian, then T is
contravariantly finite in A.

Proof. Let X be in A. We choose a numbering of the indecomposables of T , e.g. Tn, n ∈ N. We
define Xn ⊆ X to be

∑
f∈HomA(

⊕n
i=1 Ti,X) Im f . By assumption there is an N ∈ N such that XN = Xn

for all n ≥ N . This means that every morphism T → X, T ∈ T must factor over XN . We observe
XN ∈ pres(T ) = gen(T ) = T ⊥. Since T ⊥ is an exact category with enough projectives given by T
there is a projective cover T → XN , with T ∈ T and this is clearly a right T -approximation. �

3. Representations of strongly locally finite infinite quivers

Here we follow [34]. We fix a strongly locally finite quiver Q, this means every vertex has
finitely many arrows arriving and starting at it and for every two (possibly equal) vertices there are
only finitely many paths from one to the other.
A representation (over an always fixed field K) of Q is an assignment of a K-vector space Vi to every
vertex i ∈ Q0 and a linear map Vi → Vj to every arrow a : i→ j in Q1. This defines the objects in an
abelian category Rep(Q). For every vertex x ∈ Q0 one defines a Q-representation Px with top Sx
(the one-dimensional representation supported at x) and let P := projQ = add{Px : x ∈ Q0} be the
category of finitely generated projectives in Rep(Q). A quiver is called noetherian if every object in
P defined as above satisfies the ascending chain property (definition of [69]). In [127] this is called
left noetherian and it is shown that this implies that Rep(Q) is a locally noetherian abelian category
in loc. cit. Theorem 1.1.

Lemma 3.1. Let Q be an infinite quiver. If the underlying graph is a (possibly infinite) tree with
only finitely many branching points, then the quiver is noetherian.

Proof. Since Q is a strongly locally finite quiver and its underlying graph is a tree with only
finitely many branch points, it follows that the graph of P (Q)v has finitely many branch points for
any v ∈ Q. We get that P (Q)v is barren (in the sense of [69]) and thus Q is notherian by
[69, Theorem 3.6]. �
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We define

rep+(Q) := mod1 P
as the finitely presented Q-representations, this is an extension-closed subcategory of Rep(Q).

Lemma 3.2. ([34, Lem 1.14]) Let K be a field. Then rep+(Q) is hereditary abelian and is a
Hom-finite K-category with finite-dimensional Ext1-groups.

Corollary 3.3. In particular P has weak kernels and rep+(Q) = mod∞ P has enough projectives
which are given by P.

Following [34, Cor 2.2] an abelian Krull-Schmidt category C is a right Auslander-Reiten
category if every indecomposable non-projective is ending term of an almost split sequence and all
indecomposable projectives have a simple top. It is called a left Auslander-Reiten category if its
opposite is a right Auslander-Reiten category.
We call a quiver of the form • → • → · · · a right infinite path and its opposite a left infinite
path. We call a quiver · · · → • → • → · · · a double infinite path.

Theorem 3.4. ([34], Thm 3.7, Cor. 3.8) Let Q be a strongly locally finite quiver. Then

(1) rep+(Q) is left Auslander-Reiten if and only if Q has no right infinite path.
(2) rep+(Q) is right Auslander-Reiten if and only if Q has no left infinite path or else Q is a

left infinite path or double infinite path.
(3) rep+(Q) is Auslander-Reiten if and only if Q has no infinite path or Q is a left infinite path.

Observe that: Q having no right infinite path is equivalent to rep+(Q) coinciding with the category
of finite dimensional Q-representation (i.e. Q-representations V such that dimK

⊕
i∈Q0

Vi <∞).

We will also use the following definition.

Definition 3.5. Let A be a left (and/or right) abelian Auslander-Reiten category. A weak slice in
A is an additively closed subcategory X such that the indecomposables in X fulfill the following:

(1) The indecomposables in X are all in the same component of the Auslander-Reiten quiver
and they are a full representing system of the τ±-orbits.

(2) The full subquiver of the Auslander-Reiten quiver defined by the indecomposables of X is
path-closed (i.e. if there is a path given by a sequence of arrows X1 → X2 → · · · → Xn in
the Auslander-Reiten quiver with X1, Xn in X , then all Xi are in X ).

(3) Given an almost split sequence M � L� N with one summand of L in X , then either M
or N are in X .

We say a weak slice is a slice if it defines a 1-tilting subcategory of A.

Ringel showed in [159], section 4.2: If A is also hereditary exact and X is a slice then the
subcategory X is selforthogonal (i.e. there are no non-split n-extensions between any two objects in
X for all n ≥ 1).

3.1. Reflection at a set of sinks. Let Q be a strongly locally finite quiver and a ⊂ Q0 a
subset consisting of sinks (this can be a single vertex or it may also be an infinite set). We write
µa(Q) for the quiver (Q′0, Q

′
1) with Q′0 = Q0 and

Q′1 = {α : i→ j | j /∈ a} ∪ {α∗ : a→ i | α : i→ a, a ∈ a}.
To distinguish the finitely generated projective µa(Q)-representations from those for Q, we denote
them by P x, x ∈ (µa(Q))0 = Q0.
We define the reflection functor

Sa : Rep(Q)→ Rep(µa(Q))
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as follows, for a Q representation M and every a ∈ a we have a linear map Mα : Mi →Ma for every
α : i→ a. This induces a linear map from the direct sum

0→ Na →
⊕

α∈Q1 : α : i→a
Mi →Ma

where we call Na the kernel of this map. We define (Sa(M))x = Mx for x /∈ a and (Sa(M))a = Na for
every a ∈ a. On all arrows α in Q′1 not ending at an a ∈ a, we define (Sa(M))α = Mα. An arrow
α∗ : a→ i in Q′1 with a ∈ a, corresponds by definition to an arrow α : i→ a in Q1, therefore we we

can define Sa(M)α∗ : Na →
⊕

β : j→aMj
prα−−→Mi.

It is clear that this functor restricts to finite-dimensional quiver representations. It is not
immediately clear that Sa would restrict to the subcategory of finitely represented quiver
representations.
We look at the special tilting subcategory in rep+(Q) with respect to M = add{Px | x /∈ a}. For
a ∈ a, the following is the M-approximation of Pa

0→ Pa →
⊕

α∈Q1 : α : i→a
Pi.

Let Ra be the cokernel, Ta =M∨ add{Ra | a ∈ a}. Observe that:

Lemma 3.6. The reflection functor restricts to an equivalence of categories

Ta → P(rep+(µa(Q)))

mapping Px 7→ P x for x /∈ a and Ra 7→ P a for a ∈ a.
We have the following commutative diagram

Rep(Q)

Φ

''NNNNNNNNNNN
Sa // Rep(µa(Q))

Mod Ta

∼=

OO

with Φ(M) = HomRep(Q)(−,M)|Ta.

In particular, we can restrict Sa to T ⊥a = gen Ta ⊆ rep+(Q), i.e. to a functor

Sa : T ⊥a → mod∞−Ta ∼= rep+(µa(Q))

But every indecomposable not in gen Ta is a simple Sa, a ∈ a and Sa(Sa) = 0 which is finitely
presented. Therefore, we have a well-defined reflection functor

Sa : rep+(Q)→ rep+(µa(Q))

which can be identified with the tilting functor of the tilting category Ta.

Proof. By definition we have that Sa(Px) = P x for x /∈ a, and Sa(Ra) = P a for a ∈ a.
As both categories are Krull-Schmidt categories, it is enough to show that Sa induces isomorphisms
on Hom-spaces of indecomposables. For M in Ta, x /∈ a we have natural isomorphisms

Homrep+(Q)(Px,M) ∼= Mx
∼= Homrep+(µa(Q))(Sa(Px), Sa(M))

For x = a ∈ a, we apply Homrep+(Q)(−,M) to the short exact sequence
0→ Pa →

⊕
α : i→a Pi → Ra → 0

0→ Hom(Ra,M)→
⊕
α : i→a

Hom(Pi,M)→ Hom(Pa,M)

Now, by the first natural isomorphism this left exact sequence identifies naturally with

0→ Na →
⊕
α : i→a

Mi →Ma

In particular HomQ(Ra,M) ∼= Na
∼= Homµa(Q)(P a, Sa(M)). �
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Corollary 3.7. In particular, the reflection functor induces a triangle equivalence on the bounded
derived categories

S+
a : Db(rep+(Q))→ Db(rep+(µa(Q)).

We write S−a for the quasi-inverse of S+
a .

Here S−a can be constructed dually using the special cotilting subcategory associated to the set of
sources.

4. Representations of infinite quivers of type A-infinity

We call orientations of the following graph

1 2 3 · · ·

quivers of type A∞. For every such quiver, a ≤ b in N, we define the interval module Ea,b as the
indecomposable module with dimension vector (dimEa,b)i = 1 if a ≤ i ≤ b and zero else.

4.1. A-infinity.

4.1.1. Left infinite path. We first look at the following infinite quiver Q

1← 2← 3← · · ·

Let A = rep+(Q) be the category of finite-dimensional Q-representations. All indecomposables are
finite-dimensional interval modules, with projectives

Pn = E1,n, n ∈ N, set P := P(A) = add{Pn | n ∈ N}.

In this case, we have an Auslander-Reiten category with Auslander-Reiten quiver

E1,5 · · ·

E1,4

;;wwww

##GGGG

E1,3

;;wwww

##GGGG
E2,4

τoo · · ·

E1,2

;;wwww

##GGGG
E2,3

τoo

;;wwww

##GGGG

E1,1

;;wwww
E2,2

;;wwww
τoo E3,3

τoo · · ·

Let I = [a, b] with a ≤ b be an intervall in N. We define CI to be the full additive subcategory given
by objects whose composition factors are simples Si, a ≤ i ≤ b. Alternatively,
CI = add{Eij | a ≤ i ≤ j ≤ b}. This is a fully exact subcategory of A which is deflation-closed and
inflation-closed and even a Serre subcategory. Furthermore, it is an abelian subcategory with enough
injectives (indeomposable injectives: Ei,b, a ≤ i ≤ b), with enough projectives (indecomposable
projectives: Ea,j , a ≤ j ≤ b) and unique indecomposble projective injective Ea,b. It is obvious that CI
is equivalent to the quiver representations of the full subquiver (of Q) with vertices I. This is a
linear oriented quiver of type A.
Furthermore, every tilting subcategory fulfills T ⊥ = P<∞(T ⊥) since A = P<∞(A) by [172, Lemma
5.7].

Proposition 4.1. Let A be the exact category described before. Let T be full additive subcategory in
A closed under summands. The following are equivalent:

(1) T is a 1-tilting subcategory.
(2) |T ∩ P| =∞ and for every indecomposable E1,n ∈ T we have that T ∩ C[1,n] is a tilting

subcategory of C[1,n].
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(2’) |T ∩ P| =∞ and for every indecomposable Ea,b ∈ T we have that T ∩ C[a,b] is a tilting
subcategory of C[a,b].

Proof. (1) implies (2): Assume that T is 1-tilting (i.e. selforthogonal and P ⊂ Cores1(T )).
Since P ⊂ copres(T ), it follows that T contains infinitely many indecomposable projectives. First we
look at projectives E1,n ∈ T . Clearly T ∩ C[1,n] is selforthogonal in C[1,n]. The inclusion
P ⊂ Cores1(T ) implies for P = E1,m with m ≤ n that there is an exact sequence P � T0 � T1 in A
with Ti ∈ T . It is easy to see that HomA(−, T ) is exact on it for every T ∈ T . This means, we can
choose a minimal left T -approximation f : P → T ′0. Let m < m′ ≤ n be minimal with
E1,m′ ∈ T ∩ C[1,n], then clearly E1,m′ ∈ add(T ′0) and every other morphism P → T with T ∈ T
indecomposable, T /∈ C[1,n], must factor over P → E1,m′ . This implies that T ′0 ∈ C[1,n]. Let
L := coker f , then we have an induced monomorphism L→ T1, this means
L ∈ pres(T ) ∩ copres(T ) = T ⊥ ∩ ⊥T = T since T ⊥ = P<∞ (so: being left perpendicular on the
projectives in T ⊥ implies being projective). Since C[1,n] is closed under quotients, L ∈ T ∩ C[1,n].
(2) implies (2’): For general Ea,b ∈ T the claim follows since one can find a projective E1,n ∈ T with
Ca,b ⊂ C1,n and since this is well-known for tilting modules over linear oriented An quivers (since
restrictions of binary trees to a full subtree starting at branching point are binary trees).
(2’) implies (1): For any two indecomposable summands X,Y in T there exists a projective Ea,n ∈ T
such that X,Y ∈ C[1,n]. By assumption and since C[1,n] is extension-closed, it follows that

Ext1
A(X,Y ) = 0. Furthermore, for every projective P = E1,m /∈ T there is a projective E1,n ∈ T with

E1,j /∈ T for m < j < n. Since T ∩ C[1,n] is tilting in C[1,n] we have an exact sequence P � T0 � T1

for a Ti ∈ C[1,n] ∩ T . �

Remark 4.2. From the previous result it follows that weak slices only give tilting subcategories if
they contain infinitely many indecomposable projectives. (As in the representation finite case, they
are precisely the tilting subcategories with gldim mod∞ T = 1, the remaining ones fulfill
gldim mod∞ T = 2.)

4.1.2. Right infinite path. Let Q be the following quiver

1→ 2→ 3→ · · ·
Its Auslander-Reiten quiver has two components: the preprojective consisting only of the (infinite
dimensional) projectives

· · · → P3 → P2 → P1

and another component consisiting of all finite-dimensional modules.

· · · E1,5

E1,4

· · · E2,4 E1,3

E2,3 E1,2

· · · E3,3 E2,2 E1,1

τ

τ

τ τ

Lemma 4.3. Let T be a tilting subcategory. Then:

(0) P1 ∈ T
(1) For every Eij ∈ T we have that T ∩ C[i,j] is tilting in C[i,j].
(2) For Pn ∈ T we have T ∩ C≥n is tilting in C≥n.
(3) If gen(Pi) ∩ T contains infinitely many indecomposables, then Pi ∈ T and P` /∈ T for all

` > i.
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(4) Let Eij ∈ T . If Pi /∈ T then there is an Eaj, a < i or an Eib, b > j in T .

Proof. (0) As T is tilting there has to exist an exact sequence P1 � T0 � T1 with Ti ∈ T .
Then we find an inflation P1 � T ′1 where T ′1 ∈ add(T1) is the summand with top supported
at S1 = E1,1. As P1 is infinite-dimensional, at least one summand of T ′1 has to be P1 itself.

(1) Clearly add(T ) := T ∩ C[i,j] is still selforthogonal. The indecomposable projectives in C[i,j]

are Eit, t ≤ j and by assumption, the projective-injective Eij ∈ add(T ). We only show that
Eit ∈ Cores1(T ) for every t < j. There exist only finitely many indecomposables modules
Ea,b with Hom(Eit, Eab) 6= 0. Let Z := add{Eab | Hom(Eit, Eab) 6= 0}, then TZ := T ∩ Z
contains only finitely many indecomposables, so there is a minimal left TZ -approximation
f : Eit → T0 with T0 ∈ TZ . Since we have a monomorphism Eit → Eij and Eij ∈ TZ , it
follows that T0 ∈ C[i,j] and f is a monomorphism. Let R := coker f , since C[ij] is a wide
subcategory it follows that R ∈ C[ij]. Then we have for every T ∈ TZ an exact sequence

Hom(R, T )� Hom(T0, T )� Hom(Eit, T )

If we have an indecomposable T ∈ T , T /∈ TZ , then it holds Hom(Eit, T ) = 0. It follows that
R ∈ ⊥T and also that R ∈ T ⊥ (the last inclusion can be seen by applying Hom(T,−) to the
short exact sequence Eit� T0 � R). Now, T ⊥ is a full exact subcategory with enough
projectives given by T itself. So, for every Y ∈ T ⊥ there is an exact sequence

T 1 � T 0 � Y

with T i ∈ T , by applying Hom(R,−) one concludes Ext1(R, Y ) = 0 and therefore
R ∈ P(T ⊥) = T .

(2) For m > n we have an exact sequence 0→ Pm → T0 → T1 → 0 with Ti ∈ T .
Every non-zero homomorphism Pm → Eij or Pm → Pi with i < n factors through

Pm → Pn. By leaving out the summands we find a left T -approximation
0→ Pm → T ′0 → R→ 0. As in (1) we conclude that R ∈ T .

(3) Assume that Pi /∈ T , then i > 1. There exists a short exact sequence Pi� T0 � T1 with
Ti ∈ T . As Pi is infinite dimensional there exists an j < i such that Pj ∈ add(T0) and we
also assume that there is a summand Ejk ∈ add(T1). By assumption there exists Eis ∈ T
with s > k. Then Eis� Eik ⊕ Ejs � Ejk is a non-split short exact sequence contradicting
T being selforthogonal. This shows Pi ∈ T . Assume P` ∈ T with ` > i, there exists Eis ∈ T
with s ≥ ` but then Ext1(Eis, P`) 6= 0 contradicting T being selforthogonal.

(4) Observe that for Eab, Ecd ∈ T we have two binary trees, one in C[a,b] and one in C[c,d] then
these intervals [a, b] and [c, d] have to be either one contained in the other or they have to
be disjoint and if a ≤ b < c ≤ d, then c− b > 1. In all other cases we find a non-split
extension between Eab and Ecd.

Take Eij ∈ T and assume that Eab /∈ T for all [i, j] ⊆ [a, b] (this means that C[i,j] ∩ T is
a not a proper subtree of a C[a,b] ∩ T ). Then we want to see that Pi ∈ T . As T is maximal

selforthogonal, it is enough to see that Ext1(T , Pi) = 0. For that we look at the
indecomposables Ets with t < i ≤ s and we need to see that Ets /∈ T . But as we remarked
before, the next of these binary trees on the right has at least one distance from this one,
this implies the claim.

�

Definition 4.4. Let Γ0 = Γp0 ∪ Γf0 be the set of vertices of the Auslander-Reiten quiver where Γp0
denotes the vertices corresponding to the projectives and Γf0 the vertices corresponding to the
finite-dimensional modules.
A binary tree on Γ0 consists of T ∪ P with T ⊂ Γf0 ,P ⊂ Γp0 such that:

(i) P1 ∈ P.
(ii) If there are infinitely many Eijn ∈ T, n ∈ N then Pi ∈ P and P` /∈ P for all ` > i.
(iii) For every Eij ∈ T is Cij ∩ T a binary tree on the Auslander-Reiten quiver of Cij in the sense

of Hille and
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either Pi ∈ P, or
there is an Eaj , a < i or an Eib, b > j in T.

If also Ets ∈ T, then
either Eab ∈ T with a = min(t, i), b = max(s, j), or
[t, s] ∩ [i, j] = ∅ and |t− j| ≥ 2.

(iv) Given ` ∈ N assume there is no t < ` ≤ s with Ets ∈ T then P` ∈ P.

Remark 4.5. Given the set T fulfilling (iii), there is always a unique set P defined by the properties
(i)-(iv), such that the union is a binary tree.

Remark 4.6. As an indexing set we take always N ⊆ N with N = ∅ or N = [1, n] or N = N. We
have a two types of binary trees:

(a) If P is infinite, then we have an indexing set N and sequence of pairwise disjoint intervals
in ≤ jn, n ∈ N with jn < in+1 − 1 such that Cinjn ∩ T is a binary tree and every T is the
union of these.

(b) If P is finite with i = max{a | Pa ∈ P}, then there is a finite indexing set N and a sequence
in ≤ jn < i− 1, jn < in+1 − 1, n ∈ N such that Cin.jn ∩ T are binary trees and there is an
infinite nested sequence Ci,ts ⊂ Ci,ts+1 such that Ci,ts ∩ T is a binary tree. Again T has to be
the union of this finite sequence and the nested sequence of binary trees.

Theorem 4.7. Let T be a subcategory, then it is tilting if and only if the vertices give a binary tree
on the vertices of the Auslander-Reiten quiver as defined before.

We first remark the following

Proof. Let T be a tilting subcategory. By lemma 4.3, we have (i),(ii) and (iii) are fulfilled.
Properties (iv) follows since a tilting subcategory is maximal selforthogonal (see remark 2.1).
Conversely, consider T = add{X | X ∈ T ∪ P} with T,P fulfilling the properties (i)-(iv). Then we
have T is selforthogonal- this follows from the easy observation:

Ext1(Eij , P`) 6= 0⇔ i < ` ≤ j

We need to see that P ⊂ copres1(T ). If P` /∈ T , then ` ≥ 2 and there exists a Ets ∈ T with t < ` ≤ s
such that Ets is the root of one of the binary trees in T with also Pt ∈ P. In case that E`s ∈ T , we
have P`� E`s ⊕ Pt � Ets shows that claim. Else, as C[t,s] ∩ T is tilting in C[t,s], we have an exact
sequence E`s� Est ⊕ T0 � T1 with Ti ∈ C[t,s] ∩ T . Then, we look at the inflation P`� Pt ⊕ T0, the
push out along P` → E`s is just the inflation E`s� Est ⊕ T0, and both inflation have the same
cokernel in T . �

Remark 4.8. In this case, the notion of a slice is empty as all non-projective tilting subcategories
have indecomposables from both connected components of the Auslander-Reiten quiver. Assume
that we have Q′ another orientation differing in an interval [1, n]. Now for the interval [1, n] we can
realize any orientation of a type An quiver as a binary tree T in C[1,n], then define
P = {P1} ∪ {Pn+1, Pn+2, · · · }. Then take the corresponding tilting subcategory T and mod∞ T is
rep+(Q′).

4.1.3. Derived equivalences between different orientations.

Theorem 4.9. Let Q and Q′ be two quivers of type A∞. Then, there exists a triangle equivalence

Db(rep+(Q))→ Db(rep+(Q′))

if and only if one of the following three cases holds:

(a) Q and Q′ have a left infinite path.
(b) Q and Q′ have a right infinite path.
(c) Q and Q′ have no infinite path.
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One implication is an immediate corollary of the following result

Theorem 4.10. ([34], Thm 7.11) Let Q be a strongly locally finite infinite quiver, then Db(rep+(Q))
has (left/right) almost split triangles if and only if rep+(Q) has no (right/left) infinite path.

Therefore, it is enough to prove that if Q and Q′ in the previous conjecture both fulfill (a) (resp. (b)
, resp. (c)), then there exists a triangle equivalence as stated.

Proof. We show that in each of the cases (a), (b) and (c) a derived equivalence between
categories of finitely represented quiver representations of two different orientations can be obtained
by two tilting derived equivalences.

(a) Let Q′′ be the orientation given by one left infinite path and A = rep+(Q′′). Then we find
two slices for both orientations Q,Q′ and the corresponding tilting categories induce then
derived equivalence.

Db(rep+(Q))← Db(rep+(Q′′))→ Db(rep+(Q′))

(b) Let Q′′ be the orientation given by one left infinite path and A = rep+(Q′′). We do not find
slices in this case but we can find tilting subcategories which fulfill the same task, cf.
remark 4.8. Take the two tilting subcategories corresponding to the two different
orientations, their tilting functors give derived equivalences

Db(rep+(Q))← Db(rep+(Q′′))→ Db(rep+(Q′))

(c) Here we take A to be the one described below. We will look at another abelian category A
(see below) and find two tilting subcategories inducing derived equivalences

Db(rep+(Q))← Db(A)→ Db(rep+(Q′))

�

Let from now on A denote the category repb(∆) where ∆ is the quiver (of type A∞∞)

· · · ← (−3)← (−2)← (−1)← 0← 1← 2← 3 · · ·

and repb denotes the subcategory of all quiver representations of total finite dimension.
Observe that A is a hereditary abelian Auslander-Reiten category without non-zero projectives or
non-zero injectives. Its Auslander-Reiten quiver can be pictured as follows...

...
...

...
...

E−3,0 E−2,1 E−1,2 E0,3

· · · E−3,−1 E−2,0 E−1,1 E0,2 E1,3 · · ·

E−2,−1 E−1,0 E0,1 E1,2

· · · E−2,−2 E−1,−1 E0,0 E1,1 E2,2 · · ·

A slice has an associated quiver by just taking the full subquiver of the Auslander-Reiten quiver
with the vertices given by the slice. We say a slice does not contain a left (resp. right) infinite path if
the associated quiver does not contain a right (resp. left) infinite path.
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Lemma 4.11. Weak slices in the Auslander-Reiten quiver of A give tilting subcategories if and only
if the slice does not contain a left or right infinite path.

Proof. Let T be a the full additively closed subcategory of A with indecomposables given by
the vertices of a slice in the Auslander-Reiten category. Let us first see that a slice with an infinite
path can not be a tilting subcategory. If the slice does contain a left infinite path, we look at an
indecomposable in this path and apply τ−1 to it, call this X. Then X is not in pres(T ) and it is not
a subobject of an object in pres(T ), therefore (T2) is not fulfilled.
If the slice does not contain a left infinite path, we see pres(T ) as the additive closure of all
indecomposables of the slice and of all indecomposables on the right (i.e. after applying τ−n, n ≥ 1)
of it (as going-down arrows in the Auslander-Reiten quiver are all epimorphisms). Assume that the
slice contains a right infinite path, and let Y be τ of an indecomposable corresponding to a vertex of
the right infinite path. Then Y is not a subobject of an object in pres(T ).
From now on assume that the slice does not contain an infinite path. The description of pres(T ) as
above implies pres(T ) = T ⊥. As T is contravariantly finite, we want to see that the kernel of a right
T approximation of an object in pres(T ) is in T ⊥ (this implies (T1)). But this follows directly from
applying Hom(T,−) with T ∈ T to the short exact sequence.
Now, take any indecomposable object A in A, we want to see that A ∈ Cores1(T ⊥). Wlog. A is in a
τ -orbit of an indecomposable in T . We look at the right infinite arrow going-up (i.e. of
monomorphisms) starting at A in the Auslander-Reiten quiver. As the slice does not contain a right
infinite path, the right infinite path going-up starting at A will eventually meet a vertex in the slice.
This gives a monomorphism A→ T0 with T0 ∈ T . We look at the short exact sequence A� T0 � B
and as B ∈ pres(T ), (T2) follows. �

5. Other Dynkin types?

The same question as in Theorem 4.9 can be probably answered for the other infinite Dynkin types
only using sink/source reflections and results from [34]. Let us first pose the following question: An
infinite quiver is called strongly locally bounded (cf. [34]) if at every vertex there are only finitely
many arrows ending and starting and between any given two vertices there are only finitely many
paths.

Open question 5.1. Let Q,Q′ be two orientations of a graph, both strongly locally bounded
infinite quiver without an infinite path. Is there a finite sequence of sink/source mutations passing
from one to the other?

For the rest assume that the question has a positive answer for quivers of Dynkin type.

Theorem 5.2. (assuming: Yes in 5.1) Let Q and Q′ be two quivers of type D∞. Then we find the
same three triangle equivalence classes as in Theorem 4.9.

Proof. We sketch the argument as follows: Here, again that we have at least these three
equivalence classes follows from [34], combine Thm 5.22, Prop. 7.9, Thm 7.10. Inside (a) and (b) we
have that (single) sink/source reflection operate transitively, so they are all triangle equivalent.
Inside (c), we would need potentially infinite sequences of single sink/source reflections to pass
between two orientations (and that is not a valid argument). But by introducing mutation of
possibly infinite sets of sources/sinks (cf. subsection 2.1) we can overcome this problem and see that
all orientations without an infinite path will induce a triangle equivalence as in the theorem. �

Now, for an infinite quiver Q of type A∞∞ we define some numbers:
` := number of maximal left infinite paths in Q,
r := number of maximal right infinite paths in Q
So 0 ≤ r, ` ≤ 2, r + ` ≤ 2 and r = ` = 0 means either Q is a double infinite quiver or has no infinite
paths.
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In case r = ` = 1, there is a finite number c of arrows in one direction and infinitely in the other.

Theorem 5.3. (assuming: Yes in 5.1) Let Q and Q′ be two quiver of type A∞∞. Then, there exists a
triangle equivalence

Db(rep+(Q))→ Db(rep+(Q′))

if and only if one of the following three cases holds

(a) Q and Q′ are both double infinite paths.
(b) Q and Q′ have the same numbers `, r and (`, r) 6= (1, 1) and are not a double infinite path.
(c) Q and Q′ have the same numbers (`, r) = (1, 1) and c.

As before, we sketch the proof. To see that these orientations are pairwise non-derived equivalent:
Look at the description of the Auslander Reiten quiver components of Db(rep+(Q)) for all quivers of
type A∞∞ in [34, Thm. 5.17, Thm 7.9]. Here, in case (c), the number c appears as the number of
τ -orbits in the finite wing (cf, Thm 5.17, (4)) and therefore for different c they are pairwise
non-derived equivalent.
To see that in each case (a), (b), (c) we have the claimed triangle equivalences: First, observe that
the underlying graph automorphism σ which maps the vertices as σ(x) = (−x) induces an
isomorphism of categories rep+(Q) ∼= rep(σQ) and this induces a derived equivalence. Observe that
the numbers `, r and also in case (c) the number c are preserved. This shows e.g. that the two
double infinite paths in (a) are derived equivalent.
Once we take these isomorphims into account, one can see that in case (c) reflection functors at sinks
and sources operate transitively. In case (b) also, but we need reflection functors at infinitely many
sinks and sources.
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CHAPTER 9

Realization functors in algebraic triangulated categories

This chapter is joint work with Janina Letz, cf. [133].

1. Synopsis

Let T be an algebraic triangulated category and C an extension-closed subcategory with
Hom(C,Σ<0C) = 0. Then C has an exact structure induced from exact triangles in T . Keller and
Vossieck say that there exists a triangle functor Db(C)→ T extending the inclusion C ⊆ T .
What is new? We provide the missing details for a complete proof.

2. Introduction

Let T be a triangulated category and C a full additive subcategory with an exact structure. A
realization functor for C is a triangle functor Db(C)→ T extending the inclusion. There are various
constructions of a realization functor, all requiring an enhancement and restricting to certain
subcategories C. The first realization functor was constructed in [40] when C is the heart of a
t-structure in a filtered triangulated category; also see [156, Appendix]. A different construction
appears in [142].

In this chapter we work in algebraic triangulated categories; These include all stable module
categories and derived categories. Unlike the works mentioned above we consider exact subcategories
of T , not hearts of t-structures. There exist exact categories whose bounded derived category does
not admit a bounded t-structure; see [144].

The following result appears in [123, 3.2 Théorème]:

Theorem 2.1. Let T be an algebraic triangulated category and C an extension-closed full subcategory
with HomT (C,Σ−nC) = 0 for n ≥ 1. Then C has an exact structure induced from the triangulated
structure on T and there exists a realization functor.

The article [123, 3.2 Théorème] provides a sketch of the proof, referring to a construction later
appearing in [116]. The main goal of this chapter is to provide the missing details for a complete
proof of Theorem 2.1.

The non-negativity condition in Theorem 2.1 for C is necessary for our construction. It also appears
when the realization functor is a triangle equivalence. In fact, whenever the realization functor is
fully faithful, then C has to satisfy the non-negativity condition.

Theorem 2.1 can be considered the standard tool to realize an (algebraic) triangulated as a bounded
derived category of an exact category; we provide conditions for when the realization functor is an
equivalence in Section 3.4. Therefore, Theorem 2.1 is expected to be used in classifications of exact
subcategories of a triangulated category up to (bounded) derived equivalence.

Further, finding a realization functor is an alternative to tilting theory. Tilting subcategories in a
triangulated category were defined by Keller; see for example [122]. A subcategory C of T is tilting,
if C is endowed with the split exact structure, hence Db(C) = Kb(C), and the realization functor
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Kb(C)→ T exists and is a triangle equivalence. There exist realization functors that are equivalences
that are not induced by tilting theory; for example the inclusion of a small exact category into its
weak idempotent completion induces a triangle equivalence on their bounded derived categories; see
[141, 1.10].

In general it is not known whether a realization functor of a category C is unique. However, it is
unique with respect to the chosen enhancement. Theorem 2.1 is also central to the search for a
universal property defining the bounded derived category of an exact category; cf. [117] and for
derivators [150].

3. Realization functor

The bounded derived category of an exact category C is the Verdier quotient of the homotopy
category of the underlying additive category by the full subcategory of bounded C-acyclic complexes
Ac(C); see [141] and also [49, Section 10]. We fix a triangulated category T with suspension functor
Σ. A realization functor for an additive subcategory C of T with an exact structure is a triangle
functor Db(C)→ T extending the inclusion C → T .

3.1. Admissible exact subcategories. In this work we focus on subcategories C of the
triangulated category T that inherit their exact structure from the triangulated structure of T .

Definition 3.1. A full subcategory C is called non-negative if HomT (C,Σ<0C) = 0; this means
HomT (X,ΣnY ) = 0 for any X,Y ∈ C and n < 0. When C is additionally closed under extensions and
direct summands, we say C is admissible exact.

By [67], any extension-closed, non-negative subcategory C of a triangulated category T inherits an

exact structure from the triangulated structure: The short exact sequences L
f−→M

g−→ N in C are

precisely those that fit into an exact triangle L
f−→M

g−→ N
h−→ ΣL.

Remark 3.2. With the notation of ‘admissible exact’ we follow [40, Definition 1.2.5] and
[100, Section 2]; the former only considers ‘admissible abelian’, while the latter dropped ‘exact’. We
use admissible exact to avoid confusion with the notions of left/right admissible in the sense of
[41, §1].

The crucial condition of admissible exactness is the non-negativity. In fact, when C is non-negative,
then the smallest full subcategory closed under extensions and direct summands containing C is an
admissible exact subcategory.

Example 3.3. We equip an extension-closed subcategory C of an exact category E with the induced
exact structure; that is C is a fully exact subcategory of E . Then C is an admissible exact
subcategory of Db(E).

Example 3.4. The heart of any t-structure on a triangulated category is admissible exact. Any
intersection of admissible exact subcategories is admissible exact. Hence the intersection of two
hearts is admissible exact; this applies in particular for hearts that are mutations of each other; see
[53] for HRS tilting and [43] for the heart fan of an abelian category.

3.2. Weak realization functor. Next, we consider triangle functors Kb(C)→ T extending the
inclusion for any full subcategory C of T ; such a functor can be considered as a realization functor
for C with the split exact structure. We call such a functor a weak realization functor. Under
reasonable conditions on the exact structure a weak realization functor induces a realization functor.

Lemma 3.5. Let C ⊆ T be a full subcategory with an exact structure. We assume there exists a
weak realization functor F: Kb(C)→ T . If any exact sequence L→M → N in C fits into an exact
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triangle L→M → N → ΣL in T , then F induces a realization functor such that the following
diagram commutes

Kb(C) Db(C)

T
In particular, this holds when C is an admissible exact subcategory.

Proof. It is enough to show that F sends acyclic complexes to zero. For this it is enough to
show that complexes of the form

(· · · → 0→ L→M → N → 0→ · · · ) = cone(cone(L→M)→ N)

are send to zero when L→M → N is an exact sequence in C. But this holds by assumption. �

Remark 3.6. The above condition on F, that any exact sequence in C fits into an exact triangle in
T , means that C → T is a δ-functor as defined in [117].

In the sequel we construct a weak realization functor. However, we do not know of a general
criterion for the existence of a weak realization functor. Our construction requires some form of
non-negativity. In particular, a weak realization functor may even exist for C = T .

Example 3.7. Let k be a field and T = vect(k), the category of finite-dimensional k-vector spaces
with suspension Σ = id. We can view Kb(T ) as the category of finite-dimensional Z-graded k-vector
spaces vectZ(k) with suspension the shift of the grading. The forgetful functor from graded k-vector
spaces to ungraded k-vector spaces is a weak realization functor for C = T . As Db(T ) = Kb(T ) we
obtain the realization functor

Db(T ) = vectZ(k)→ vect(k) = T .

3.3. Existence. A Frobenius category is an exact category with enough projectives and with
enough injectives and the projectives and injectives coincide. Let E be a Frobenius category with P
the full subcategory of projective-injective objects. The ideal quotient q : E → E with respect to the
morphisms factoring through P has a natural triangulated structure by [87, I.2]. A triangulated
category is algebraic, if it is triangle equivalent to E for some Frobenius category; see [120, 3.6].

The key observation for the proof of Theorem 2.1 is the following result, which is stated in [123, 3.2].

Proposition 3.8. Let E be a Frobenius category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let C ⊆ E be a non-negative full subcategory and set
B := q−1(C). Then the functor B → C induces an equivalence of triangulated categories

Kb(B)/Kb(P)→ Kb(C) .

Note, that in the equivalence connects the Verdier quotient of the homotopy category and the
homotopy category of an ideal quotient. We postpone the proof to Section 4.

Remark 3.9. In the Proposition we show that the tilting subcategory B in Kb(B) is send to the
tilting subcategory C under the Verdier quotient functor Kb(B)→ Kb(B)/Kb(P). In general, Verdier
quotients need not preserve tilting subcategories.

Without the assumption that the subcategory C is non-negative the Proposition 3.8 is false in
general:

Example 3.10. Let k be a field and A = k[x]/(x2). Then E = mod A is a Frobenius category and
E = mod k is the category of finite-dimensional vector spaces which is a triangulated category with
Σ = id. We show below that Kb(modA)/Kb(projA) is not equivalent to Kb(mod k), that is that the
conclusion of Proposition 3.8 does not hold for C = E , which is not non-negative. Observe first that
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Kb(mod k) = Db(mod k) has no non-trivial thick subcategory. But on the other hand
Kb(modA)/Kb(projA) admits a non-trivial Verdier quotient

Kb(modA)/Kb(projA)→ Db(modA)/Kb(projA) ∼= E ;

see [48, Theorem 4.4.1]. In particular, the kernel of this Verdier quotient is a non-trivial thick
subcategory. Therefore they can not be triangle equivalent.

Proposition 3.11. Let E be a Frobenius category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let C ⊆ E be an admissible exact subcategory. Then
there exists a weak realization functor Kb(C)→ E.

Proof. Set B := q−1(C). By Proposition 3.8 there exists an equivalence of triangulated
categories

F: Kb(B)/Kb(P)→ Kb(C) .
There is also an equivalence

B: E → Db(E)/Kb(P) ;

this has been stated in [123, Example 2.3] with proofs provided in [108, Corollary 2.2] or
[126, Proposition 4.4.18]. Then the following composition involving the quasi-inverses of the above
functors yields the claim

Kb(C) F−1

−−→ Kb(B)/Kb(P)→ Kb(E)/Kb(P)
B−1

−−→ E . �

Proof of Theorem 2.1. By Proposition 3.11 there exists a weak realization functor, and it
induces a realization functor by Lemma 3.5. �

From Proposition 3.8 we can also deduce the following corollary.

Corollary 3.12. Let C be an admissible exact subcategory of E. Then B = q−1(C) is extension-closed
in E and the functor q : B → C sends exact sequences to exact triangles. In this case q induces a
triangle equivalence

Db(B)/Kb(P)→ Db(C) .

Proof. It is straightforward to check that Kb(P) and AcbB are Hom-orthogonal in Kb(B). Then
AcbB is a full subcategory of Kb(B)/Kb(P) by [113, Proposition 1.6.10]. So it is enough to show that
the equivalence from Proposition 3.8 restricts to an equivalence of the acyclic complexes
AcbB → AcbC.

The fully faithfullness of the restriction holds as AcbB is a full subcategory of Db(B)/Kb(P).
Essentially surjectivity holds as

Ext1
B(X,Y ) ∼= HomE(X,ΣY ) ∼= Ext1

C(X,Y )

for any X,Y ∈ B. �

3.4. Fully faithfulness and equivalence. Let C be an admissible exact subcategory of a
triangulated category T . In this section we discuss when a realization functor

R: Db(C)→ T
is fully faithful and even an equivalence. The realization functor R induces natural group
homomorphisms

Φn(X,Y ) := (ExtnC(X,Y )
∼=−→ HomDb(C)(X,Σ

nY )
R−→ HomT (X,ΣnY ))

for X,Y ∈ C and n ∈ Z. Here ExtnC are the groups of Yoneda extensions for n ≥ 0 and we set
ExtnC := 0 for n < 0. For the isomorphism see for example [126, Proposition 4.2.11]. These natural
morphisms have been considered in [55, Lemma 2.11] for hearts of t-structures and in [151, A.8] for
exact subcategories. The morphism Φn(X,Y ) is an isomorphism for n < 0 as C is non-negative, for
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n = 0 as C is full, and for n = 1 by [151, Corollary A.17]. Further, for n = 2 it is a monomorphisms
by [151, Corollary A.17]. The following result appears in [40, Remarque 3.1.17] and
[55, Lemma 2.11] when C is the heart of a bounded t-structure.

Lemma 3.13. Let C be an admissible exact subcategory of T and let R be a realization functor of C.
Then the following are equivalent

(1) R is fully faithful;
(2) Φn(X,Y ) is an isomorphism for all X,Y ∈ C and n ∈ Z;
(3) Φn(X,Y ) is surjective for all X,Y ∈ C and n ∈ Z;
(4) For every X,Y ∈ C, n ≥ 1 and every morphism f : X → ΣnY in T there exists a C-deflation

d : Z → X with f ◦ d = 0 in T ; and
(4op) For every X,Y ∈ C, n ≥ 1 and every morphism f : X → ΣnY in T there exists an

C-inflation i : Y →W such that Σni ◦ f = 0 in T .

Proof. The implication (1) =⇒ (2) is clear and the converse is an application of dévissage
using Db(C) = thickDb(C)(C); see for example [126, Lemma 3.1.8].

The implication (2) =⇒ (3) is clear and the converse is shown in [151, Corollary A.17].

A standard construction shows that (2) is equivalent to

(5) Every f : X → ΣnY in T with X,Y ∈ C and n ≥ 1 decomposes as

X = X0 → ΣX1 → Σ2X2 → · · · → ΣnXn = ΣnY

for Xi ∈ C;

see for example [55, Lemma 2.1] for the abelian case. Moreover, by induction over n this is also
equivalent to

(6) Every f : X → ΣnY in T with X,Y ∈ C and n ≥ 1 decomposes as X → ΣU → ΣnY for
some U ∈ C.

So it is enough to show that (4) and (6) are equivalent. For the backward direction it is enough to

observe that any morphism X → ΣU in T with X,U ∈ C induces an exact sequence U → Z
d−→ X in

C. For the forward direction let f : X → ΣnY be a morphism in T with X,Y ∈ C and n ≥ 1. Then
there exists a deflation d : Z → X such that f ◦ d = 0. We complete d to an exact sequence

U → Z
d−→ X in C. Then f factors through the induced morphism X → ΣU . This shows (6).

The equivalence of (2) and (4) holds by an analogous argument. �

Remark 3.14. The previous Lemma can be strengthened to yield an explicit description of the
image of Φn(X,Y ). That is, the subgroup Im(Φn(X,Y )) is the set of all morphisms f : X → ΣnY
with X,Y ∈ C such that there exists a C-deflation d : Z → X such that f ◦ d = 0.

For a subcategory C of a triangulated category T we denote by thickT (C) the smallest thick
subcategory of T that contains C.

Corollary 3.15. Let C be an admissible exact subcategory of T . A realization functor of C is an
equivalence of triangulated categories if and only if it is fully faithful and thickT (C) = T . �

Example 3.16. Let C be a fully exact subcategory of E . Then the induced functor
F: Db(C)→ Db(E) is a realization functor for C ⊆ Db(E). The functor F is fully faithful if and only if
the inclusion C ⊆ E induces isomorphism on the Ext-groups. For example, the latter condition is
satisfied by resolving subcategories; see [25, Section 2] and also [90, Definition 5.1].
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The functor F is an equivalence if additionally E is the smallest additively-closed subcategory closed
under the 2-out-of-three property containing C. For example, this is satisfied by finitely resolving
subcategories; cf. [92, Theorem 3.11(2)].

4. Proof of the main Proposition

For clarity we use different notations for the suspension in the stable category and the homotopy
category. We write Σ for the suspension or shift functor in E where E is a Frobenius exact category.
By construction, we have q(ΩnX) = Σ−nX for any X ∈ E where Ω is the syzygy functor. On the
other hand, for an additive category A we write Ch(A) for the category of chain complexes. In
Ch(A) and the homotopy category K(A), we denote the degree n shift of a complex X by X[n]; this
is the complex given by

X[n]` = X`+n and dX[n] = (−1)ndX .

For a map of complexes f : X → Y we write

∂(f) = dY f − f [−1]dX : X → Y [−1] .

The map f is a chain map if and only if ∂(f) = 0. Note, that a map of complexes need not commute
with the differential, while a chain map does.

Lemma 4.1. Let E be a Frobenius exact category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let C ⊆ E be a non-negative full subcategory and set
B := q−1(C). For any chain map f : q(X)→ q(Y ) in Ch(E) with X ∈ Ch+(B) and Y ∈ Ch−(B) there

exist chain maps g : X̂ → Y and s : X̂ → X with X̂ ∈ Ch+(B) and cone(s) ∈ Chb(P) such that
q(g) = f ◦ q(s).

Proof. First we construct an injective resolution I of X in the category of complexes. By
[116, 4.1, Lemma, b)], there exists a left bounded complex I0 of projective-injective objects and a
chain map j0 : X → I0 that is an inflation in each degree. We denote the cokernel of j0 by
q0 : I0 → Ω−1X. Continuing this process, we obtain a sequence of chain maps

Ω−1X Ω−2X Ω−3X

X I0 I1 I2 · · ·

j1 j2

h−1=j0

h0

q0

h1

q1 q2

We set h−1 := j0 and h` := j`+1q`. As X is left bounded we may assume that there exists an integer
s such that (I`)

≤s = 0 for all `; that is s is a universal lower bound. Since the maps j` are degreewise
inflations, every map from Ω−`X to a complex of projective-injective objects factors through j`.

We take a lift of f to a map of complexes f̂ : X → Y in Ch(E). This map need not commute with

the differential. However, as it is the lift of a chain map in E the map ∂(f̂) factors through a

complex of projective-injective objects. So there exists a map g0 : I0 → Y [−1] such that ∂(f̂) = g0j0.

For convenience we set q−1 := idX and g−1 := f̂ . We now inductively construct maps
g` : I` → Y [−`− 1] with ∂(g`−1) = g`j`q`−1.

We assume that we have constructed the maps for any integer ≤ ` for some ` ≥ 0. Then
0 = ∂(g`)j`q`−1 as j` and q`−1 are chain maps. As q`−1 consists of deflations in each degree, we get
0 = ∂(g`)j`. Hence ∂(g`) factors through q` and we obtain the commutative diagram

Ω−`X I` Ω−`−1X

Y [−`− 2] I`+1

j`

0

q`

∂(g`) j`+1

g`+1

By the non-negativity of C, we have

HomCh(E)(q(Ω
−`−1X), q(Y [−`− 2])) = HomCh(E)(Σ

`+1q(X), q(Y [−`− 2])) = 0 .
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Hence the map Ω−`−1X → Y [−`− 2] factors through j`+1. Note, that g`+1 need not be a chain map.
We continue this process until the map g`+1 is a chain map. As Y is right bounded and the I`’s have
a universal upper bound, this will happen eventually.

Let t be an integer such that Y ≥t = 0. We replace I` by the truncation (I`)
>t−`−1. This does not

effect the properties of the g`’s, as they are zero in the other degrees. To summarize, we have a
sequence of maps

X I0 I1 · · · In−1 In

Y Y [−1] Y [−2] · · · Y [−n] Y [−n− 1]

h−1

f̂=g−1

h0

g0 g1

hn−1

gn−1 gn

where each I` is a bounded complex of projective-injective objects, gn is a chain map and
∂(g`−1) = g`h`−1 and h`h`−1 = 0 for 0 ≤ ` ≤ n.

We take the total complex J of I0 → · · · → In. This means as graded module J =
⊕
Ii[i] with

differential
dJ |Ii[i] = dIi[i] + (−1)ihi[i] .

For convenience we use a nonstandard sign convention. We set

v :=
∑
i

gi[i] : J → Y [−1] .

This is a chain map, as

(vdJ)|Ii[i] = gi[i− 1]dIi[1] + (−1)igi+1[i]hi[i]

= (−1)i(gi[−1]dIi + gi+1hi)[i]

= (−1)i(dY [−i−1]gi)[−i] = dY [−1]gi[i] = (dY [−1]v)
∣∣
Ii[i]

.

One can similarly check that the composition u := (X → I0 → J) is a chain map. By construction

we have ∂(f̂) = vu. Then X̂ = Σ−1cone(u) and g = (−v, f̂) and the natural map s : X̂ → X satisfy
the desired properties. �

Lemma 4.2. Let E be a Frobenius exact category with P the full subcategory of projective-injective
objects and q : E → E the canonical functor. Let X ∈ Kb(E). If q(X) = 0 in Kb(E), then X ∈ Kb(P).

Proof. It is enough to show the claim for a complex of the form

X = (· · · → 0→ X0 d0

−→ X1 d1

−→ X2 → · · · → Xn−1 dn−1

−−−→ Xn → 0→ · · · )
for any n ≥ 0. We use induction on n.

For n = 0, the assumption q(X) = 0 implies q(X0) = 0. Hence X0 ∈ P.

Let n ≥ 1. As q(X) = 0, the morphism q(d0) is a split monomorphism in E and there exists a

morphism s : X1 → X0 such that sd0 − idX0 = ba for some morphisms X0 a−→ P
b−→ X0 with P ∈ P.

We view P as a complex concentrated in degree zero and set

X ′ := cone(Σ−1a) = (· · · → 0→ X0

(
d0

a

)
−−−→ X1 ⊕ P ( d1 0 )−−−−→ X2 d2

−→ X3 → · · · ) .
Since ( s −b ) ◦

(
d0

a

)
= idX0 , the zero differential of X ′ is a split monomorphism in E . Therefore, in

Kb(E), the complex X ′ is isomorphic to a complex Y concentrated between degrees 1 and n. In
Kb(E) we have q(Y ) ∼= q(X ′) ∼= q(X) = 0. By induction hypothesis we have X ′ ∼= Y ∈ Kb(P). By
construction there is an exact triangle X ′ → P → X → ΣX ′, and as X ′, P ∈ Kb(P), so is X. �

Proof of Proposition 3.8. As q(Kb(P)) = 0 in Kb(E), the functor q : Kb(B)→ Kb(C) induces
a triangle functor

q : Kb(B)/Kb(P)→ Kb(C) .
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We claim that q is an equivalence of triangulated categories. For this we need to show that q is full,
faithful and essentially surjective.

The functor q is full by Lemma 4.1. By Lemma 4.2, whenever q(X) = 0 then X = 0. As we already
know that q is full, this implies that q is faithful by [158, p. 446]; also see [163, 4.3, 4.4].

It remains to show that q is essentially surjective. The essential image of q is a thick subcategory
containing the complexes concentrated in degree zero. As these complexes generate Kb(C), the
functor q is essentially surjective. �
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CHAPTER 10

Fragments of derived Morita theory for exact categories with
enough projectives

1. Synopsis

Given T a tilting subcategory E , then as T ⊥ is an exact category with enough projectives, one
always finds a bounded derived equivalence to E ′ = modS T where S are T ⊥-admissible morphisms.
This suggest that for a derived equivalence between two exact categories with enough projectives, we
need to find a selforthogonal subcategory T which is generating (Hom(T ,ΣnX) = 0 ∀n ∈ Z implies
X = 0) and a class of morphisms which we call ∆-suitable morphisms (cf. Def. 1.8). The definition
is still suboptimal as it is difficult to verify, but ∆-suitability is used to show that we can find
C = modS T ⊆ ∆ as h-admissible exact subcategory (i.e. admissible exact and
Extn(X,Y ) ∼= Hom∆(X,ΣnY ) for all X,Y in C, n > 1). Fully ∆-suitable means additionally
Thick∆(C) = ∆. In this case, if we assume ∆ algebraic, then the realization functor for C is a
triangle equivalence, cf. [133].
Using this, the following characterization of the triangulated categories triangle equivalent to
Db(modS T ) is then immediate.

Theorem 1.1. Let ∆ be an algebraic triangulated category and assume that there exists T ⊆ ∆
selforthogonal, generating and S ⊆ Mor− T fully ∆-suitable. For every other algebraic triangulated
category ∆′ the following are equivalent.

(a) ∆ and ∆′ are triangle equivalent.
(b) There exists T ′ ⊆ ∆′ selforthogonal, generating together with S′ ⊆ Mor− T ′ fully ∆-suitable

and an additive equivalence F : T → T ′ with F (S) = S′.

We also conclude that a triangulated category is triangle equivalent to a bounded derived category of
an exact category with enough projectives if and only if it contains a selforthogonal generating
subcategory which admits fully ∆-suitable morphisms.

1.1. Exact categories with enough projectives revisited. We recall the following notion
from chapter 4.

Definition 1.2. Let C be an idempotent complete additive category. We call a class of morphisms
S ⊆ Mor− C homotopy-closed if s ∈ S and coker HomC(−, s) ∼= coker HomC(−, t) in Mod C implies
t ∈ S.
We say that S is suitable if it is homotopy closed and modS C = {F : coker Hom(−, s) | s ∈ S} is a
resolving subcategory of mod∞ C.

Lemma 1.3. We fix an essentially small idempotent complete additive category P and look at the
following sets:

(1) Exact categories E with enough projectives P(E) = P.
(2) Suitable classes of morphisms S ⊆ Mor− P.

The assignements S(E) = {E − admissible morphisms in P} and M(S) := modS P are mutually
inverse bijections.
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Proof. For E with enough projectives P, the functor E → modS P, X 7→ Hom(−, X)|P with
S = Sadm the E-admissible morphisms in P is an equivalence of exact categories (cf. Chapter 4, Cor.
3.16). This and (b) in Chapter 4, Lemma 3.13 imply the bijection. �

Definition 1.4. We consider classes of morphisms in P with respect to inclusion, then for suitable
morphsims S, S′ we have

S′ ⊆ S ⇔ modS′ P ⊆ modS P.
We consider exact categories with enough projectives given by P with the partial order E ′ ≤ E if and
only if E ′ is equivalent to a fully exact subcategory of E . When we consider the sets in the previous
Lemma with these poset structures, it is straightforward to see that the bijection in the previous
lemma becomes an isomorphism of posets.

Remark 1.5. The (unique) maximal suitable morphisms are all morphisms S which admit weak
kernels because then modS P = mod∞ P.
The (unique) minimal suitable morphisms are the ones admissible in the split exact structure on P.
Then modS P = P ⊆ mod∞ P.

1.2. Selforthogonal subcategories in triangulated categories with suitable
morphisms. Let ∆ be an algebraic triangulated category. We look at the full subcategory of
non-negative objects in ∆

∆nn := {X ∈ ∆ | Hom∆(X,Σ<0X) = 0}.

This is closed under taking direct summands but not under direct sums (it can be just {0}). We
have the following easy observation: Subcategories of ∆nn which are closed under direct sums are
precisely the same as additive subcategories of ∆ which are non-negative. Recall from [133], a full
additive subcategory C of ∆ is admissible exact if it is non-negative (Hom(C,Σ<0C ′) = 0 for all
C,C ′ in C) and extension-closed.
If X is a non-negative subcategory of ∆, then its extension-closure is also non-negative and an
admissible exact subcategory. This follows from the easy observation: If X → Y → Z → ΣX is a
triangle in ∆ with X,Z,X ⊕ Z ∈ ∆nn then Y ∈ ∆nn.

Remark 1.6. If C is an extension-closed subcategory in ∆ and C ∩∆nn is additively closed, then it
is the unique largest admissible exact subcategory in C.
(By the previous discussion, we have that C ∩∆nn is extension-closed, the rest is obvious.)

Now, we assume that T ⊆ ∆ is an essentially small full additively closed subcategory which is
selforthogonal (i.e Hom∆(T,ΣnT ′) = 0 for all n 6= 0, T, T ′ in T ) and generating (this means:
Hom∆(T,ΣnX) = 0 for all n ∈ Z, T in T implies X = 0 in ∆).

Remark 1.7. There are many conditions called generating in a triangulated category, our definition
is from [115, Def. 5.2.1], in the stacks project this is called weakly generates. The main example for
us is the following: If ∆ = Db(E) is the the bounded derived category of an exact category with
enough projectives P, then P generates ∆. It will be a necessary condition for us to assume on T .

Thirdly, we take a class of suitable morphisms S ⊆ MorT . We start with

T ⊥ := {X ∈ ∆ | Hom∆(T,ΣnX) = 0 for all n 6= 0, T ∈ T }

This is an extension-closed subcategory of ∆ so we can see this as an extriangulated category. We
consider the functor

Φ: T ⊥ → Mod T , X 7→ Hom∆(−, X)|T =: (−, X)|T

The functor Φ maps triangles to short exact sequences by definition of T ⊥.

Definition 1.8. Given a suitable class of morphisms S on an additive subcategory T in a
triangulated category ∆. We call S ∆-suitable if for every sequence (sn)n∈N in S with sn+1 is a
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weak kernel of sn for every n there exists triangles

X4 X2 X0

· · · T3 T2 T1 T0

X3 X1

+1 +1

s3 s2 s1

+1 +1

with Xn ∈ ∆nn ∩ T ⊥ for all n ∈ N and sn factors over Xn for all n ∈ N.

Given a suitable class of morphisms S ⊆ Mor− T . Can we extend T ⊆ ∆ to an admissible exact
category modS T ⊆ ∆?
In general not. It follows easily from the definition:

Lemma 1.9. Let T be selforthogonal in a triangulated category ∆ and S ⊆ Mor− T a suitable class
of morphisms. If C := modS T is an admissible exact subcategory of ∆ extending the inclusion
T ⊆ ∆, then

(1) S is ∆-suitable.
(2) modS T is h-admissible exact (i.e. ExtnC(X,Y )→ Hom∆(X,ΣnY ) are isomorphism for all

X,Y in C).

Proof. (1) As C is a resolving category, every X has a projective resolution. Split it into
short exact sequences, call the syzygies Xn, n ∈ N. As C is admissible exact, these short
exact sequence are part of distinguished triangles and all Xn ∈ C are non-negative. Now,
every consecutive weak kernel sequence arises in this way, so S is ∆-suitable.

(2) As C is admissible exact, we have an isomorphism Ext1
C(X,Y )→ Hom∆(X,ΣY ) for all X,Y

in C. Now, choose a projective resolution of X, call the syzygies Xn, n ∈ N. Now, we can
use dimension shift twice, once to see Extn+1

C (X,Y ) ∼= Ext1
C(Xn, Y ) ∼= Hom∆(Xn,ΣY ) and a

second time apply Hom(−,ΣY ) to the triangles Xn → Tn−1 → Xn−1
+1−−→ to conclude

Hom(Xn,ΣY ) ∼= Hom(Σ−nX,ΣY ) ∼= Hom(X,Σn+1Y ).

�

Now, this is the main thing to prove:

Lemma 1.10. (Extension-Lemma) If S is a ∆-suitable class of morphisms in a selforthogonal
subcategory T which generates a triangulated category ∆.
We look at the subcategory C := {X ∈ ∆ | ∃(sn)n, Xn as above such that X = X0}. Then we claim:
C is an admissible exact subcategory equivalent to modS T and C ⊆ ∆ extends T ⊆ ∆.

Before we give the proof in the next section, let us state the consequence.

Definition 1.11. If (T , S) with T selforthogonal in ∆ and S ∆-suitable. Then we say that S is
fully ∆-suitable if Thick∆(modS T ) = ∆.

Clearly triangle equivalences map fully ∆-suitable morphisms to fully ∆-suitable morphisms, so
Theorem 1.1 follows trivially.
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Example 1.12. Let E be an exact category with enough projectives P - we see P as stalk
complexes in ∆ = Db(E), then this is a selforthogonal subcategory. We take S to be the E-admissible
morphisms (they are suitable) in P and also ∆-suitable.

Example 1.13. If E is an exact category and T ⊆ E is a tilting subcategory of E (cf. [172]), this
means

T ⊥E := T ⊥ ∩ E = {X ∈ E | Ext>0
E (T,X) = 0 ∀T ∈ T }

has enough projective given by T and every object in E has a finite coresolution by objects in T ⊥E .
Let S be the class of T ⊥E -admissible morphisms then S is fully ∆-suitable in T ⊆ Db(E) and
T ⊥E = modS T

Example 1.14. Let T be an additive category. We consider it as self-orthogonal subcategory inside
Kb(T ). Then, all ∆-suitable morphisms in T are fully ∆-suitable and they are precisely the suitable
morphisms S such that modS T = P<∞(modS T ). There is a maximal ∆-suitable class of morphisms
given by mod ST = P<∞(mod∞ T ) = Res(T ) ⊆ mod∞ T .
More generally, if ∆ is triangulated, T ⊆ ∆ self-orthogonal and Thick∆(T ) = ∆ (i.e. T a tilting
subcategory in a triangulated category in the sense of Keller), the same statement holds true.

Example 1.15. Let T be an additive category. We consider it as self-orthogonal subcategory inside
K+(T ). Then all suitable morphisms in T are ∆-suitable but none are fully ∆-suitable:
Given fully ∆-admissible morphisms S in T ⊆ ∆, since ∆ ∼= Db(modS T ) ∼= K+,b(T ) ⊆ K+(T ), we
necessarily have a full triangulated subcategory of K+(T ) with K+,b(T ) 6= K+(T ).

1.3. Proof of the Extension-Lemma. Recall, T selforthogonal and generating in ∆,
S ⊆ MorT is ∆-suitable and C := {X ∈ ∆ | ∃(sn)n, Xn as above such that X = X0}.
Claim: C is an admissible exact subcategory and with the admissible exact structure equivalent as
exact category to modS T .
So, divide and conquer, we show one property after the other, in this order

(i) C is closed under direct sums
(ii) C is non-negative
(iii) additive equivalence to modS T
(iv) C is extension-closed (and so admissible exact in ∆)
(v) exact equivalence to modS T

We look at the composition ϕ : C ⊆ T ⊥ Φ−→ Mod T defined by X 7→ Hom∆(−, X)|T . As T is
generating, the functor ϕ reflects isomorphism, this can be used to see that

(i) C is closed under direct sums:
Assume X,Y in C, pick the first morphisms sX , sY ∈ S in the definition of C. As

modS T is resolving and S homotopy closed, we have that s := sX ⊕ sY ∈ S. We extend s
to a sequence of consecutive weak kernels in S and as S is ∆-suitable, we can factor s as

T1 → Z1 → T0 such that we have a distinguished triangle Let Z1 → T0 → Z
+1−−→ with Z ∈ C.

Now, by definition Hom∆(−, Z)|T ∼= coker HomT (−, s) ∼= Hom∆(−, X ⊕ Y )|T and as ϕ
reflects isomorphism we conclude X ⊕ Y ∼= Z is non-negative.

(ii) Also, it implies that C is a non-negative subcategory (as C ⊕ C ′ non-negative implies
Hom(C,Σ<0C ′) = 0).

(iii) Now as C is a non-negative subcategory we can easily deduce that ϕ is a fully faithful
functor: For X,Y in C we choose again sX : TX1 → TX0 and sY : T Y1 → T Y0 from the
definition of C.

First observe that ϕ gives an isomorphism whenever both objects are in T (by Yoneda)
and also if the first object is in T , because Hom∆(T, Y ) = (coker Hom(−, sY ))(T ) =
HomMod T (ϕ(T ), coker Hom(−, sY )) = Hom(ϕ(T ),Φ(Y )) for every T ∈ T . Now apply
Hom∆(−, Y ) to the triangles for X, we find a left exact sequence (as C is non-neg.)

0→ Hom∆(X,Y )→ Hom∆(TX0 , Y )→ Hom(TX1 , Y )
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Now, to see that ϕ induces an isomorphism on Hom(X,Y ) it suffices to see that

0→ Hom∆(ϕ(X), ϕ(Y ))→ Hom∆(ϕ(TX0 ), ϕ(Y ))→ Hom(ϕ(TX1 ), ϕ(Y ))

is also exact, but ϕ maps triangles to exact sequences, so this claim follows.
We observe that for X ∈ C (defined by (sn) in S)

ϕ(X) = Hom∆(−, X)|T ∼= coker HomT (−, s1)

so, ϕ induces an equivalence of additive categories ϕ : C → modS T which maps triangles to
exact sequences.

(iv) Next, we claim C is extension-closed: For this we first observe that for every short exact
sequence σ : ϕ(X)� ϕ(Y )� ϕ(Z), X,Y, Z in C in modS T there exists a triangle

δ : X → Y → Z
+1−−→ with ϕ(δ) ∼= σ. Just take C := cone(X → Y ) and look at the standard

triangle X → Y → C
+1−−→ applying Hom(T,−) with T ∈ T implies that

Hom∆(−, C)|T ∼= Hom∆(−, Z)|T but as T is generating this implies C ∼= Z.

Now, this easily implies C is extension-closed, take a triangle X → Y → Z
+1−−→ with X,Z

in C. As X,Z,X ⊕ Z are non-negative, this implies Y is non-negative. We apply Φ implies
that Φ(Y ) = ϕ(Y ) ∈ modS T . Now, we take the short exact sequences from a projective
resolution of ϕ(Y ), by the first consideration there exist the triangles as required for Y ∈ C.

(v) To the that ϕ is an equivalence of exact categories, it is enough to show that it induces a
surjection on Ext1’s. But that had just been discussed in (iv).
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Part 3

Singular and stable equivalence





CHAPTER 11

Non-commutative resolutions of singularities using exact
substructures

1. Synopsis

We introduce (bounded) singularity categories for arbitrary exact categories. An exact category is
regular if its singularity category is zero. We recall the known Buchweitz theorem for a Gorenstein
exact categories with enough projectives. Then we explore a new concept of a noncommutative
resolution of singularities (NCR) of a given exact category as an exact substructure which is regular.
There exist various alternative versions of non-commutative resolutions in the literature. Our aims
here are:

(1) Partially unify and simplify the theory (singularity categories, non-commutative resolutions
of singularities and relative singularity categories) for module categories of rings and for
coherent sheaves on a quasi-projective variety.

(2) Characterize NCRs corresponding to cluster tilting subcategories (as a candidate for a
’minimal’ NCR).

What is new? The concept to see NCRs as exact substructures and the generality of our approach.

2. Definitions and notations

We recall some of the previous definitions. Let E be an exact category in the sense of Quillen. Recall,
for an object X in E , the projective dimension pdX is defined as the infimum of all n ∈ N0 such that
Ext>nE (X,−) = 0. Dually idX is defined as the infimum of all n ∈ N0 such that Ext>nE (−, X) = 0.
We consider

P≤n := {X ∈ E | pdE X ≤ n},
I≤n := {X ∈ E | idE X ≤ n},

and P<∞ =
⋃
n≥0 P≤n, I<∞ =

⋃
n≥0 I≤n. We also use the notation P<∞(E),P≤n(E) etc. for these

categories.
Using long exact sequences on the Ext-groups it is easy to see that all these full subcategories are
extension closed and that P≤n is deflation-closed and I≤n is inflation-closed, P<∞, I<∞ are thick
subcategories. Throughout: All underlying additive categories of exact categories are assumed to be
idempotent complete.
The suspension functor in Db(E) will be denoted by [1] from now on.

3. Singularity categories for exact categories

Summary: We will define singularity categories for exact categories in a naive manner which
leaves the question if it is a derived invariant. There are different ways to address this - one way is to
try to generalize Rickard’s results for rings, more precisely: Given a two derived equivalent exact
categories E and E ′. Is there a triangle equivalence Db(E)→ Db(E ′) which restricts to
Thick∆(P∞(E))→ Thick∆(P<∞(E ′))? We follow an alternative idea of Orlov and define singularity
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category for triangulated categories. The question here is to characterize exact categories for which
these two coincide.

Definition 3.1. We say the E is regular if E = P<∞(E).
We say X is homologically finite if for every Y ∈ E there exists an n such that Ext>nE (X,Y ) = 0.

We write Ehf for the full subcategory of homologically finite objects. We say that E is ∆-regular if
E = Ehf .

Observe that we always have thick subcategories P<∞(E) ⊆ Ehf ⊆ E (in the exact category sense,
i.e. they fulfill the 2 out of 3 property for short exact sequences and are closed under summands).

Definition 3.2. If T is a triangulated category and X ∈ T , we say that X is homological finite if
for every Y ∈ T there is a finite subset I ⊆ Z such that HomT (X,Y [i]) = 0 for all i /∈ I. We denote
by T hf the full subcategory of homological finite objects.
More generally, given a full additive category C of T we say that X ∈ C is C-homological finite if
for every Y ∈ C there is a finite subset I ⊆ Z such that HomT (X,Y [i]) = 0 for all i /∈ I. We denote
by Chf the full subcategory of homological finite objects.

Observe that T hf is thick in T (in the triangulated sense, i.e. it is a triangulated subcategory closed
under summands).

We make the following easy observation:

Lemma 3.3. Let T be a triangulated category and C be a full additive category whose
extension-closure is T . Then C = Chf if and only if T = T hf .

Proof. We assume C = Chf . Let X ∈ C. We show that X ∈ T hf : Let Y ∈ T . By assumption
there is a triangle Y1 → Y → Y2 → Y1[1] with Yi ∈ C. Then there exist finite subsets I1, I2 of Z with
Hom(X,Yi[k]) = 0 for k /∈ Ii, i ∈ {1, 2}. Then, just take I = I1 ∪ I2 and for k /∈ I we conclude that
Hom(X,Y [k]) = 0. Therefore X ∈ T hf . It follows that T = Thick∆(C) ⊆ T hf . The other
implication is trivially true. �

Corollary 3.4. Let E be an exact category. Then E = Ehf if and only if Db(E) = Db(E)hf .

Definition 3.5. Let E be an exact category. We define the singularity category as the Verdier
quotient

Dsg(E) = Db(E)/Thick∆(P<∞(E))

For a triangulated category T we define the ∆-singularity category as the Verdier quotient

Tsg = T /T hf

Then every triangle equivalence T → S between triangulated categories induces a triangle
equivalence Tsg → Ssg. Clearly, since for an exact category E we have

Thick∆(P<∞(E)) ⊆ Thick∆(Ehf ) ⊆ Db(E)hf (for the second inclusion see next lemma) we get an
induced Verdier quotient

Dsg(E)→ (Db(E))sg

Definition 3.6. We say E has ∆-singularities if this map is an equivalence.

Open question 3.7. When are the two singularity categories locally small (i.e. have Hom-sets)? If
E is essentially small, then Db(E) is also essentially small and hence it holds. And more generally?
When are they idempotent complete?

So if E and E ′ have ∆-singularities and are derived equivalent, then their singularity categories are
equivalent.
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Example 3.8. ([184, Example 3.3]) This is an example of two derived equivalent exact categories
one is regular and the other one not. Furthermore, one has ∆-singularities and the other one not.
Let R = k[x0, . . . , xn]/〈x2

i , xixj + xjxi〉 be the exterior algebra and S = k[x0, . . . , xn] a polynomial
ring for k a field, both are graded algebras with degxi = 1, 0 ≤ i ≤ n.
We consider the categories of graded modules E = grR and E ′ = grS with finite-dimensional graded
parts. Then BGG-correspondence provides a triangle equivalence Db(E)→ Db(E ′).
But gldim E ′ <∞ and gldim E =∞ as R is self-injective. This implies that Dsg(E ′) = 0 = (Db(E ′))sg
but Dsg(E) 6= 0 = (Db(E))sg.

Observe that E has ∆-singularities if and only if P<∞(E) = Ehf and Thick∆(Ehf ) = Db(E)hf . We
ask if the last equality is always true?
Here is the answer in a special case:

Lemma 3.9. Let E be an exact category. Then we have:

(a) Ehf = Db(E)hf ∩ E where we consider E ⊂ Db(E) as stalk complexes in degree zero.
(b) If E is an exact category with enough projectives then Thick∆(Ehf ) = Db(E)hf .

Proof. (a) It is enough to show: Ehf ⊆ Db(E)hf . Let X ∈ Ehf and Y ∈ Db(E). Assume there
exists an infinite set I ⊆ Z such that Hom(X,Y [i]) 6= 0 for i ∈ I. Since Thick∆(E) = Db(E) we may
assume Y ∈ Thickn∆(

∨
m E [m]) and that there exists Yn−1, Y

′
n−1 ∈ Thickn−1

∆ (
∨
m E [m]) and a triangle

Yn−1 → Y → Y ′n−1
+1−−→. Since Hom(X,−) is a cohomological functor, either for Yn−1 or for Y ′n−1

there exists an infinite subset of In−1 ⊆ Z with Hom(X, ..[i]) 6= 0 for all i ∈ In−1. Then inductively,
we can produce a Y0 ∈ E such that there exists an infinite set I0 ⊆ Z with Hom(X,Y0[i]) 6= 0 for all
i ∈ I0. Since Hom(X,Y [< 0]) = 0 it follows that I0 ⊆ N and therefore a contradiction to X ∈ Ehf .
(b) We need to see Db(E)hf ⊆ Thick∆(Ehf ). We identify Db(E) with Kb,−(P) where P are the
projectives in E . Take n ∈ Z, then one shows that X ∈ Kb,−(P)hf is equivalent to σ≤nX and σ>nX
are homologically finite. Furthermore, we observe X ∈ Thick∆(σ≤nX,σ>nX). Since for |n| >> 0 we
have that σ≤nX is quasi-isomorphic to a shifted stalk complex - this has to lie in Thick∆(Ehf ). By
definition σ>nX ∈ Kb(P) ⊆ Thick∆(Ehf ) and therefore X ∈ Thick∆(Ehf ). �

Then let us state the obvious:

Lemma 3.10. The following are equivalent:

(1) E is regular.
(2) Dsg(E) = 0.

Furthermore, the following are equivalent:

(a) E is ∆-regular.
(b) (Db(E))sg = 0.

Proof. The implication ’(1) implies (2)’ is obvious since Thick∆(E) = Db(E).
Assume (2), i.e. we assume E ⊆ Thick∆(P<∞(E)). We look at

D<∞,E(E) := {X ∈ Db(E) | ∃m ∈ Z such that Hom(X, E [n]) = 0 ∀n ≥ m}

this is a thick subcategory of Db(E). It contains P<∞ and so by assumption we have
E ⊆ Thick(P<∞(E)) ⊆ D<∞,E(E). This implies E ⊆ P<∞.
The implication ’(a) implies (b)’ is obvious as in the previous proof. Now assume that (b), i.e.
(Db(E))hf = Db(E). We intersect with the stalks to get E = Db(E)hf ∩ E ⊆ Ehf . �

Corollary 3.11. Let f : E → A be an exact functor between exact categories. If the derived functor
Db(E)→ Db(A) is a triangle equivalence, then: E regular if and only if A is regular.
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Proof. Assume E is regular. f : Db(E)→ Db(A) is a triangle equivalence which restricts to
E → A on stalk complexes. Therefore (using the definition of the previous proof) it restricts to a
triangle functor D<∞,E → D<∞,A. Since E is regular, it follows as in the previous proof that
Db(E) = D<∞,E . This implies that the essential image Db(A) = f(Db(E)) ⊆ D<∞,A. In particular, it
follows A ⊆ D<∞,A and this imples A = P<∞(A).
If A is regular, then since f is homologically exact (cf. Chapter 1), it follows that E is also
regular. �

Remark 3.12. If E is an exact category with enough projectives P then we have

Dsg(E) = Db(E)/Kb(P)

Lemma 3.13. If E = Filt(M1, . . . ,Mn) then pdX = max(mi | 1 ≤ i ≤ n) with
mi := inf{m ∈ N≥0 | Ext>m(X,Mi) = 0} ∈ N≥0 ∪ {∞}.
This implies P<∞(E) = Ehf . If E has enough projectives then we get that E has ∆-singularities.

Lemma 3.14. Let E be an exact category with infinite coproducts. Then P<∞(E) = Ehf . So if E has
also enough projectives then it has ∆-singularities.

Proof. Let pdX =∞. There exists an infinite subset I ⊂ N and objects Yn, n ∈ I such that
ExtnE(X,Yn) 6= 0. So let Y =

⊕
n∈I Yn ∈ E . Then for every n ∈ I we have

ExtnE(X,Y ) = ExtnE(X,Yn)⊕ ExtnE(X,
⊕

m∈I,m 6=n Ym) 6= 0. Therefore X is not homological finite. �

Remark 3.15. Here is an example which is ∆-regular but not regular: Let E be the abelian
category of all representations (over some field) of the following infinite quiver with relations that
any two consecutive arrows are zero

1

��>>>>>>>> 3

��>>>>>>>> 5

��>>>>>>>> 7 · · ·

2

@@��������
4

@@��������
6

>>}}}}}}}}
· · ·

Indecomposables are either projectives or simples, all simples have infinite projective dimension.
Nevertheless all indecomposables are homologically finite in E .

Example 3.16. ([48, Theorem 4.4.1]) If R is any left and right noetherian ring, then Buchweitz
introduced the singularity category for E = RMod and showed the theorem for Rmod (f.g.
R-modules).
Of course this can be defined for every ring. If R is left coherent and semiperfect, then Rmod has
∆-singularities, cf. [126, Prop. 9.2.14].
If R is any ring then RMod has ∆-singularities by loc. cit. Lemma 9.2.3.

Example 3.17. (Orlov, 2004 in [147]) Now we consider the following geometric situation: Let X be
a scheme over a field K which is separated, noetherian, of finite Krull dimension and coh(X) has
enough locally frees - following Orlov [147] we will call these properties (ELF). (The last assumption
is also called the resolution property cf. [175, Tag 0F85]) Orlov introduced in [147] the singularity
category of X as the Verdier quotient

Dsg(coh(X)) = Db(coh(X))/Dperf(X)

If X is ELF, then coh(X) has ∆-singularities (Orlov [148], Prop.1.11).

Here are some of my open questions to this subsection:

(3.1) If E is an exact category, is P<∞(E) always regular (as fully exact category of E)? Or
stronger: Is P<∞(E) ⊆ E always homologically exact?

(3.2) If we consider Ehf as homologically finite objects in E . Are all objects in Ehf homologically
finite in Ehf? Or stronger: Is Ehf ⊆ E homologically exact?

(3.3) Is Thick∆(Ehf ) = Db(E)hf? This would imply: P<∞ = Ehf is equivalent to
Thick∆(P<∞) = Db(E)hf?

(3.5) For which exact categories E do we have Thick∆(P<∞) = Db(E)hf?
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4. Descriptions as stable categories - Buchweitz theorem

We start with the following definition:

Definition 4.1. Let n ≥ 0. An exact category E is called Gorenstein if I<∞ = P<∞. We say it is
n-Gorenstein if we have I≤n = I<∞ = P<∞ = P≤n.

This is by definition a symmetric condition (it holds for E if and only if it holds for Eop).

Remark 4.2. Of course, one can define dually, the injective singularity category

Dsg−inj(E) = Db(E)/Thick∆(I<∞)

Then E is Gorenstein if and only if we have Db
sg(E) = Db

sg−inj(E) (= here means they are Verdier

quotients of Db(E) with the same kernels). In general, we do not know when these two singularity
categories are triangle equivalent.

Remark 4.3. One could define Gorenstein for triangulated categories as T hf = T chf (where
cohomologically finite elements are defined dually to homologically finite), so imposing the symmetry
condition of the previous remark for Orlov’s singularity categories.

We recall from [172] the following definition: A full subcategory P ⊆ E is called cotilting (resp.
n-cotilting) if and only if the following hold

(C1) ⊥P has enough injectives given by P itself and
(C2) Res(⊥P) = E .

(resp. (C1) and (C2)n Resn(⊥P) = E).

Lemma 4.4. Let E be an exact category with enough projectives P. If P is cotilting then ⊥P is
Frobenius exact with enough injectives given by P and we have P<∞ ∩ ⊥P = P.

Proof. By definition this category has enough injectives given by P, an easy check shows that
⊥P is resolving in E , so it also has enough projectives given by P.
If X ∈ P<∞ ∩ ⊥P then there exists an n ∈ N such that Ext>nE (X,−) = 0. This implies, as ⊥P is

homologically exact in E , that Ext>n⊥P(X,−) = 0. This implies that Ext1
⊥P(X,Ω−nY ) = 0 for all

Y ∈ ⊥P. But every object in ⊥P is an n-th cosyzygy, so X in P(⊥P) = P. �

Proposition 4.5. Let E be an exact category with enough projectives P. Then we have

(1) If P is n-cotilting then E is n-Gorenstein
(2) If E is n-Gorenstein and ⊥P ⊆ cogenE(P) then P is n-cotilting

It would be much nicer if we had an equivalence in (1) but we could not see how to prove that
n-Gorenstein implies ⊥P ⊆ cogen(P). But in special situations this is fulfilled.

Proof. (1) If P is n-cotilting then Thick(P) = I<∞ follows from [172, Lem. 5.8]. But
Thick(P) = P<∞ then implies that E is Gorenstein. Now, we show P<∞ ⊆ P≤n. Take X ∈ P∞ a
projective resolution

ΩnX � Pn−1 → · · · → P0 � X

Then by dimension shift Ext>0
E (ΩnX,P ) = Ext>n(X,P ) = 0 for all P ∈ P, therefore ΩnX ∈ ⊥P and

so ΩnX ∈ P<∞ ∩ ⊥P = P by Lemma 4.4.
Now, we want to see that I∞ ⊆ I≤n: We have I<∞ = P≤n. Assume Y ∈ ⊥P, then we easily verify
Ext>nE (Y,X) = 0 (using the projective resolution of X). If we look at an arbitrary Y in E , then

clearly Ext>2n
E (Y,X) = 0 (using pdE X ≤ n, idE P ≤ n). Assume Extm+n

E (Y,X) 6= 0 for some
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m ∈ {1, . . . n}. Then ΩnY ∈ ⊥P and there exists an Y ′ ∈ ⊥P such that Ωn
EY = Ωn

EY
′ (use the first

bit of the injective coresolution of ΩnY to find Y ′); an easy dimension shift shows

Extm+n
E (Y,X) ∼= ExtmE (Ωn

EY,X) ∼= Extm+n
E (Y ′, X) 6= 0

This contradicts our previous observation.
(2) assume idE P ≤ n, take X in E arbitrary and look at the beginning of a projective resolution of
X:

ΩnX � Pn−1 → · · · → P0 � X

then ΩnX ∈ ⊥P and X ∈ Resn(⊥P), so (C2) holds. Condition (C1) is implied by P⊥ ⊆ cogenE P:
Clearly P are injective objects in ⊥P (as ⊥P is a resolving subcategory, it is homologically finite).
For X ∈ ⊥P there is an E-short exact sequence X � P � Y such that Hom(−, P ′) is exact on it for
all P ′ ∈ P (this follows by the definition of cogen(P)). But then it follows Y ∈ ⊥P and this shows
that we have enough injectives given by P, so (C1) follows. �

This is the classical result for rings.

Example 4.6. Let R be a left and right noetherian ring and Rmod (resp. modR) the category of
finetely generated left (resp. right) R-module. In this case, we say R is n-Iwanaga-Gorenstein if
idRR ≤ n and idRR ≤ n. Then the following are equivalent:

(1) R is n-Iwanaga-Gorenstein
(2) RMod and ModR are n-Gorenstein
(3) Rmod and modR are n-Gorenstein

The implication (1) implies (2) and (1) implies (3) are a famous result of Iwanaga [101, Theorem 2].
The implication (2) implies (1) is trivial, and (3) implies (1) follows from idRmodR = idRR and
idmodRR = idRR.
Observe that Rmod and modR are abelian categories with enough projectives but in general not
with enough injectives.

Lemma 4.7. Let E be a weakly idempotent complete exact category with enough projectives and
enough injectives. If E is n-Gorenstein and P is covariantly finite in ⊥P, then P is n-cotilting.

Proof. By Prop. 4.5, (2), it is enough to show ⊥P ⊆ cogenE(P). As P is assumed covariantly
finite in ⊥P, it is enough to show that ⊥P ⊆ copresE(P). For X ∈ ⊥P take an E-inflation i : X � I
with I in I(E). Then take a deflation p : P � I with P ∈ P(E). As E is n-Gorenstein, and
I, P ∈ P<∞, it follows that L := ker p ∈ P<∞. Using a finite projective resolution of L, one sees
Ext1

E(X,L) = 0. This implies that i factors as i = pf . By the obscure axiom ([49, Prop. 7.6]), we
conclude that f : X � P is an inflation. �

Open question 4.8. Let E be a weakly idempotent complete exact category with enough
projectives P and enough injectives I. We also assume that P ⊆ ⊥P is covariantly finite and I
contravariantly finite in I⊥. Then the following are equivalent:

(i) E is n-Gorenstein
(ii) idE P ≤ n and pdE I ≤ n.
(iii) Eop is n-Gorenstein.
(iv) There exists a subcategory which is s-tilting and t-cotilting for some s, t ≥ 0.
(v) A subcategory is s-cotilting for some s if and only if it is t-cotilting for some t.

Observe that we have already seen that (i),(ii),(iii) are equivalent, and (i) implies (iv). In (ii), do we
also have pdE I = idE P?

Definition 4.9. Given an exact category E and we define P = P(E) be its projectives. The category
of Gorenstein projectives (denoted by Gp(E)) are the full subcategory of objects X such that
there exists an exact complex of projectives

· · · → P−1 → P0 → P1 → · · ·
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such that

(1) · · · → Hom(Pn, P )→ Hom(Pn−1, P )→ · · · is exact for all P in P
(2) Im(P−1 → P0) = X

Proposition 4.10. Let E be an exact category and P := P(E).

(1) Then Gp(E) is extension-closed, closed under taking summands and deflation-closed (i.e.
closed under taking kernels of deflations) and we have Gp(E) ⊆ ⊥P. With this exact
structure it is a Frobenius exact category with projectives P.

(2) Gp(E) is resolving if and only if E has enough projectives.
(3) Gp(E) is finitely resolving (resp. n-resolving) if and only if E has enough projectives and P

is cotilting (resp. n-cotilting). In these cases we have Gp(E) = ⊥P.

Proof. (1) The proof from [54, Prop. 2.1.7 (1),(2),(3)] can also be used to prove
extension-closedness, summand-closedness and deflation-closedness. By definition,
X ∈ Gp(E) implies all Xn = Im(Pn−1 → Pn) ∈ Gp(E) and all short exact sequence
Xn� Pn � Xn+1 are short exact in Gp(E), apply Hom(−, P ) with P ∈ P to these short
exact sequences to conclude Ext>0(X,P ) = 0, so P ⊆ I(Gp(E)). Then just use the defining
exact sequence in P to conclude that Gp(E) is Frobenius.

(2) If E has enough projectives then these have to be in Gp(E) and by (1) it is resolving. If
Gp(E) is resolving, we also know it has enough projectives P = P(Gp(E)) (by (1)).

(3) If P is cotilting then (C1) implies ⊥P ⊆ cogen∞(P) and the other inclusion follows from the
definition of cogen∞(P). Then for X ∈ ⊥P = cogen∞(P) splice together the projective
resolution in E with the injective coresolution, this shows X ∈ Gp(E). By definition
Gp(E) ⊆ cogen∞(P), so we conclude in this case Gp(E) = ⊥P is finitely resolving
(n-resolving if P was n-cotilting).

Conversely, if Gp(E) is finitely (resp. n-)resolving, we already know from (1) that
Gp(E) ⊆ P⊥. We need to see the other inclusion, this follows immediately from the Lemma
4.11. But then all properties for P being (resp. n-)cotilting are fulfilled.

�

Lemma 4.11. Let E be an exact category with enough projectives P. Given an exact sequence
E1 � E0 � X with X ∈ ⊥P, E0, E1 ∈ Gp(E). Then X ∈ Gp(E).

Proof. This can be shown with the same argument as [54, Prop. 2.1.7 (4)]. �

in exact categories wep. P:

n-Gorenstein
⊥P = Gp(E)

P n-cotilting
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Lemma 4.12. Assume that E is a weakly idempotent complete exact category with enough
projectives P and assume E ⊆ cogenE(I<∞). If E is n-Gorenstein, then P is n-cotilting.

The proof is very similar to Lemma 4.7.

Proof. We show that ⊥P ⊆ cogenE(P) (the rest follows from Prop. 4.5, (2)).

We assume E ⊆ cogenE(I<∞): So, for X ∈ ⊥P, we take a short exact sequence X
i
� J � Q with

J ∈ I<∞. We choose a short exact sequence J1 � P
p
� J with P ∈ P. As I<∞ = P<∞ is

deflation-closed, we find that J1 ∈ P<∞ and one easily checks Ext>0(X, J1) = 0 for all X ∈ ⊥P
(using the finite projective resolution of J1). This implies Hom(X,P )→ Hom(X, J) is surjective,
pick a morphism f : X → P that maps to i, say fp = i . By the obscure axiom f is an E-inflation.
Now, we need to see that Hom(f, P ) is surjective for every P ∈ P. But since
Hom(i, P ) = Hom(f, P ) ◦Hom(p, P ), this follows. Then we see ⊥P ⊆ cogenE(P). �

Example 4.13. From [70]: If R is an n-Iwanaga-Gorenstein ring and F = R−Mod, then
F ⊆ cogenF (I<∞) and this implies Gp(RMod) = ⊥(Proj(R)).
This implies for E = Rmod, i.e. the category of finitely generated left R-modules, that
Gp(E) = ⊥ER =: ⊥R, to see this, recall that we only needed to see ⊥R ⊆ cogenE(R). But by the
previous result we have ⊥R ⊆ cogenRMod(ADD(R)) and observe that every finitely generated
submodule of a free R-module is contained in a finitely generated free summand, this implies the
claim.

Here we have the following result

Theorem 4.14. ([108, Cor 2.2], [123, Ex. 2.3]) Let E be a weakly idempotent complete Frobenius
exact category and let P = P(E) be the projectives in E. Then the functor E → Db(E)→ Dsg(E)
induces a triangle equivalence

E → Dsg(E)

As a corollary, follows the following result of Kvamme (in the special case of weakly idempotent
complete exact categories). Just take Gp(E) as Frobenius exact category and use Prop. 4.10
(observe this implies: if E has enough projectives, then Db(Gp(E))→ Db(E) is fully faithful. If
Gp(E) is finitely resolving, it is a triangle equivalence, cf. [92]).

Theorem 4.15. ([131] ) Let E be an exact category with enough projectives. Then
Gp(E)→ Db(E)→ Db

sg(E) induces a fully faithful triangulated functor

Gp(E)→ Dsg(E).

This is an equivalence if Gp(E) is finitely resolving in E.

We prefer to reformulate this last statement to:

Theorem 4.16. (Buchweitz Theorem)
Let E be an exact category with enough projectives P and assume that P is n-cotilting. Then, the
functor Gp(E)→ Db

sg(E) induces a triangle equivalence

Gp(E)→ Dsg(E)

Now, if E is an exact category with enough projectives, Dsg(E) can be realized as the Heller
stabilisation ZE of the stable category of E seen as a left triangulated category [131, Thm 3.4]. Since
the stabilization is functorial, an equivalence of left triangulated stable category E ∼= E ′ implies E
and E ′ are singular equivalent (cf. [131]), but it also implies that E and E ′ are stable equivalent
(investigated in the next chapter). That is the only connection between singular and stable
equivalence that we know of.

Here is the my main open questions in this subsection
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(4.1) Can we find singular invariants? Can we find classes of singular equivalent exact categories
which are not derived equivalent (inspired by Knörrer periodicity)?

5. Non-commutative resolutions from exact substructures

Let A be an exact category. We fix an exact substructure E of A. We observe that this gives a
Verdier localization sequence

Ac(A)/Ac(E)→ Db(E)→ Db(A)

If E is regular then we want to interpret Db(E)→ Db(A) as a categorical desingularization (following
Orlov’s definition - only that Orlov required that E is also abelian).

Definition 5.1. We fix an exact category A and an exact substructure E . Let d ≥ 0 be an integer.
We will write NCR as a shorthand for non-commutative resolution throughout the rest of the
chapter.

(*) We call E a weak (d-)NCR if E is regular (resp. gldim E ≤ d).
(*) We call E a (d-)NCR if E is regular (resp. gldim E ≤ d) and has enough projectives.
(*) We call E a strong (d-)NCR if E and has enough projectives Q and Q has pseudo-kernels

and mod∞Q is regular (resp. gldim(mod∞Q) ≤ d).

Naively, we expect to find weak NCRs in algebraic geometric situations and NCRs when studying
certain module or functor categories. For A Frobenius exact category, what we call a strong d−NCR
is defined in [112] just as an NCR.
The existence of a strong d-NCR for a Frobenius category has the consequence that it is equivalent
to the Gorenstein-projectives in mod∞ P.

Theorem 5.2. Let A be an idempotent complete exact category with enough projectives P and
assume it has a strong d-NCR, then

P : A → mod∞ P, X 7→ Hom(−, X)|P
has a finitely resolving image.
Furthermore, if P is n-cotilting in A, then P is also (n+ d)-cotilting in mod∞ P and P restricts to
an equivalence of exact categories

GP : Gp(A)→ Gp(mod∞ P).

Before we give the proof, let us remark the following corollary which shows that for some exact
categories a strong d-NCR can not exist (because their bounded derived category does not have a
t-structure).

Corollary 5.3. If A is an idempotent complete exact category with enough projectives and A admits
a strong d-NCR, then A is derived equivalent to an abelian category with enough projectives.

Since the inclusion of a finitely resolving subcategory induces a triangle equivalence on bounded
derived categories, the corollary follows.

Proof. Let E be a strong d-NCR and Q = P(E). We have that the restriction functor

f = (−)|P : mod∞Q → mod∞ P
is exact and essentially surjective because P ⊆ Q is a full subcategory. Now, we look at the
commutative diagram

A PA //

id
��

mod∞ P

E PE // mod∞Q

f

OO
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Since gldim(mod∞Q) ≤ d, we have ImPE is d-resolving. Since PA = f ◦ PE and f is exact and
essentially surjective, it follows that ImPA is also d-resolving.
Now assume additionally that P is n-cotilting, clearly the functor PA maps complete resolution by
projectives into complete resolutions by projectives, therefore it restricts to a functor on Gorenstein
projectives (call this GP). Since Gp(A) is n-resolving in A ∼= ImP which is d-resolving in mod∞ P,
we conclude ImGP is finitely resolving in mod∞ P. This implies Gp(mod∞ P) is finitely resolving in
mod∞ P and therefore mod∞ P is P cotilting in mod∞ P by Prop. 4.10. As A = ImP is d-resolving
in mod∞ P and idA P ≤ n, it follows easily by dimension shift that idmod∞ P P ≤ n+ d and therefore
P is (n+ d)-cotilting.
We still need to see that GP is essentially surjective. But GP induces an triangle equivalence (since
the image is finitely resolving) which induces a triangle equivalence on the singularity categories.
But since these are the stable categories we conclude that GP is essentially surjective. �

Corollary 5.4. ([112] and an old result by Auslander) If A is Frobenius exact and has a strong
d-NCR, then the functor P induces an equivalence of exact categories A → Gp(mod∞ P)

Example 5.5. Let A be a left noetherian ring and A = A−mod the category of finitely generated
left A-modules. Take a generator E = M ⊕A ∈ A and assume that add(E) is contravariantly finite in
A and that Γ = EndA(E)op is again left noetherian of finite global dimension. Take the idempotent
e ∈ Γ corresponding to the summand A in E and the exact functor e : Γ−mod→ A, e(X) := eX.
It has a fully faithful left adjoint and a fully faithful left adjoint ` and a fully faithful right adjoint
r = HomA(E,−) (the right adjoint is well-defined since add(E) is contravariantly finite). So by
Chapter 1, we get three exact substructures S`,Sr,Sc where c = Im(`→ r) is the intermediate
extension functor.
Now we look at E = (A−mod,Sr), as an exact category this is equivalent to Im r (seen as
extension-closed subcategory of Γ−mod. It is deflation-closed and contains Γ = r(E). Therefore it
is a resolving subcategory. Since we assume gldim Γ <∞ it is finitely resolving and we get that the
composition is a traingle equivalence Db(E)→ Db(Im r)→ Db(Γ−mod) such that the composition

Db(E)→ Db(Γ−mod)
e−→ Db(A) equals the natural map Db(E)→ Db(A) induced by the identity on

A−mod.

Example 5.6. Every exact category has a unique 0-NCR given by the split exact structure.
Therefore, we usually look for d-NCRs with d ≥ 1.

If E is an NCR for A with enough projectives P(E) =: P, then the previous Verdier localization
sequence is triangle equivalent to the Verdier localization sequence

Kac(P)→ Kb(P)→ Kb(P)/Kac(P).

where Kac(P) is the thick subcategory given by complexes which are A-acyclic.

Example 5.7. Let G be a finite group and k a field of characteristic p dividing the order of the
group. Let E :=

⊕
H⊂G k(G/H) and P = add(E) ⊂ mod kG. Let A = mod kG and E the exact

substructure with P(E) = P. This is an NCR of A. This way (up to idempotent completion) the
triangle equivalence between Db(A) and Kb(P)/Kb

ac(P) from a previous remark is the main result in
[30].

We also want to keep track on how A-self-orthogonal the projectives P(E) are, so we define (inspired
by the works of [52])

Definition 5.8. Let n ∈ N>0. Given a full subcategory M of A, we say that M is n-rigid if
Ext1∼n

A (M,M) = 0 (this is a shorthand notation for ExtiA(M,M ′) = 0 for all M,M ′ ∈M,
i ∈ {1, . . . , n}). We say it is nZ-rigid if ExtiA(M,M ′) = 0 for all M,M ′ ∈M, i ∈ N>0 \ nN
Let E be an exact substructure of A. We define the A-rigidity of E (or more accurately of P(E)) to
be

rigA(E) = sup({m ∈ N>0 | P(E) is m-rigid} ∪ {0}) ∈ N≥0 ∪ {∞}
If gldimA <∞ we have rigA(E) ∈ {0, 1, . . . , gldimA− 1} ∪ {∞}.
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We define the (projective) rigidity dimension of A to be

rdim(A) = sup{rigA(E) | E NCR }
If A is regular with enough projectives, it follows rdimA =∞ since we may take E = A.

We have the following (version of the Auslander-Reiten formulation of the Nakayama conjecture)

Proposition 5.9. (Nakayama Conjecture for NCRs) If A is exact category and E is an NCR with
rigA(E) =∞ then A = E (in particular A is also regular with enough projectives).

Proof. We have P := P(E) is homologically exact in A since it is self-orthogonal. This implies
that Db(E) ∼= Kb(P)→ Db(A) is fully faithful. Therefore, the inclusion of the exact substructure
E → A is homologically exact implying it is the identity, cf. Chapter 1. �

Corollary 5.10. If A is not regular and E NCR, then rigA(E) <∞.

Corollary 5.11. If A is hereditary and Krull Schmidt and E an NCR which is not equal to A then
rigA(E) = 0 (i.e. Ext1

A(P(E),P(E)) 6= 0)

Remark 5.12. For modules over rings: Via generator correspondence and Müller correspondence
this is very much related to the so-called dominant dimension, cf. correspondences explained in [136].
We added the adjective projective since the rigidity dimension of a finite-dimensional algebra is
defined using generator-cogenerators and not just generators.

The main reason to introduce A-rigidity for E is the following easy observation:

Lemma 5.13. Let A be an exact category. If E is an exact substructure with enough projectives
P(E). If we have rigA(E) ≥ n, then we have ResEn(P(E)) = ResAn (P(E)).

Proof. Let P := P(E) be n-rigid (in A). The inclusion ResEn(P) ⊆ ResAn (P) is trivial. Let
X ∈ ResAn (P). By definition we have an A-exact sequence

0→ Pn → Pn−1 → · · · → P1 → P0 → X → 0

with Pi ∈ P. To see that it is exact in E , we split it in short exact sequences and show that
Hom(P,−) is exact on it: Set X = P−1, let Qi = ker(Pi → Pi−1), i = 0, . . . , n− 1, observe
Pn = Qn−1. By dimension shift we have Ext1

A(P,Qi) ∼= Ext2
A(P,Qi+1) ∼= · · · ∼= Extn−iA (P, Pn) = 0 for

all P ∈ P, i ∈ {0, . . . , n− 1}. �

Theorem 5.14. Let A be an exact category. The assignment E 7→ P(E) gives a bijection between:

(1) d-NCRs E with rigA(E) ≥ d.
(2) d-rigid subcategories P of A with ResAd (P) = A.

Remark 5.15. Let P be a subcategory as in (2).

(1) If P is also (d+ 1)-rigid, then P is deflation closed and a d-resolving subcategory of A, this
implies Kb(P) = Db(P)→ Db(A) is a triangle equivalence. If E is the d-NCR with
P(E) = P, then Prop.5.9 implies E = A. In particular, P = P(A) is then even
self-orthogonal in A.

(2) If P is not (d+ 1)-rigid, then it can not be deflation-closed (because else, we can apply the
same argument as in (1) to deduce that P has to be even selforthogonal).

Proof. The assignment E 7→ P(E) is one to one between exact substructures with enough
projectives and admissibly contravariantly finite subcategories. If we now additionally assume
d-NCR with rigA(E) ≥ d then we clearly get a subcategory as in (2). For the converse we just use
the previous lemma to see that the exact structure has gldim ≤ d. �

Definition 5.16. ([132, Def. 3.1]) A d-rigid subcategory P in an exact category A is called
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(1) left maximal d-rigid if ResAd (P) = A and

(2) right maximal d-rigid if CoresAd (P) = A

Observe, given an exact category A with enough projectives P = P(A), then P is left maximal
d-rigid iff gldimA ≤ d. But P is right maximal rigid implies P = CoresAd (P) = A because P is
projective.

Proposition 5.17. If A has enough projectives P and let A′ = Gp(A). Then, restricting exact
substructures from A to A′ gives an injective map from (a) to (b) where

(a) d-NCRs E with rigA(E) ≥ d and P(E) ⊆ A′
(b) d-NCRs E ′ with rigA′(E ′) ≥ d

If additionally P is n-cotilting with d ≥ n, then the inclusion P(E) ⊆ A′ in (a) is always true.

Proof. The first part is more generally true: Let A be an exact category with enough
projectives. Let A′ ⊆ A be a resolving subcategory. Let E be as in (a). The homologically exactness

implies that P(E) ⊆ A′ is d-rigid and since A′ is deflation-closed we have ResA
′

d (P(E)) = A′. Clearly
the map is injective since an exact substructure with enough projectives is determined by its
category of projectives.
Now assume also that idA P ≤ n and Gp(A) = ⊥P. If d ≥ n and P(E) is d-rigid, we have that
P ⊆ P(E), so Ext1∼d

A (P(E),P) = 0. Since idA P ≤ n, it follows that P(E) ⊆ ⊥P = Gp(A). �

Here are my open questions in this section:

(5.1) Given an exact category, does there always exist a non-trivial weak NCR?
(5.2) Exact substructures of an exact category form a complete lattice - do maximal elements

exist in the subposet of regular exact substructures (maybe plus some rigidity...)?
(5.3) If A is an exact category with enough projectives. Is A regular if and only if rdim(A) =∞?

6. NCRs from cluster tilting subcategories

Definition 6.1. Given two exact substructures E and F (with the same underlying additive
category), we say that F is the translate of E (or (E ,F) a translated pair) if E has enough
projectives, F has enough injectives and P(E) = I(F).

Cf. Chapter 2, assume that the underlying additive category is weakly idempotent complete, then
translated pairs are (via (E ,F) 7→ P(E)) in bijection to functorially finite generator-cogenerators.

Example 6.2. We have that an exact substructure E is a Frobenius exact structure if and only if
(E , E) is a translated pair.

The following example is the reason for the naming (translated stands for Auslander-Reiten
translated).

Example 6.3. Let A be the category of finite-dimensional modules over a finite-dimensional algebra
Λ. Let G = Λ⊕X. We consider E = (Λ−mod, FG) the exact substructure with enough projectives
given by add(G). By [15] we have that E = (Λ−mod, FH) is equal to the exact substructure with
enough injectives given by add(H) with H = τ−X ⊕D Λ. So, with short-hand notation (Fτ−G, FG)
is a translated pair iff add(τ−G⊕ Λ) = add(τ−G⊕D Λ) (i.e. Λ has to be self-injective or Λ of finite
global dimension and G the Auslander generator)

Let us recall the following definition from e.g. [131]
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Definition 6.4. Let A be an exact category. Let M be a full additively closed subcategory and
d ≥ 0 an integer. We M is (d+ 1)-cluster tilting if it is a functorially finite generator-cogenerator
with

M = {X ∈ E | Ext1∼d(X,M) = 0 ∀M ∈M}

= {X ∈ E | Ext1∼d(M,X) = 0 ∀M ∈M}

Lemma 6.5. [68, Prop. 2.9] Let A be an exact category and M a d-rigid, generating-cogenerating
covariantly functorially finite subcategory. The following are equivalent

(1) M is (d+ 1) cluster tilting
(2) ResAd (M) = A

This has the the following corollary.

Corollary 6.6. Let A be an exact category and M a full additively closed subcategory and d ≥ 0 an
integer. The following are equivalent

(1) M is (d+ 1)-cluster tilting in A
(2) M is d-rigid and ResAd (M) = A = CoresAd (M)

From this, we directly get:

Proposition 6.7. Let d ≥ 1 and A an exact category. The assignment (E ,F) 7→ P(E) gives a
bijection between

(1) translated pairs (E ,F) with gldim E ≤ d, gldimF ≤ d and rigA(E) ≥ d
(2) (d+ 1)-cluster tilting subcategories in A.

In other words (d+ 1)-cluster tilting subcategories in A are the projectives in a d-NCR of A with
A-rigidity ≥ d and in a d-NCR of Aop with Aop-rigidity ≥ d .

Example 6.8. For d = 0, the split exact substructure A0 is the unique 0-NCR and it is a Frobenius
exact category, so (A0,A0) is a translated pair. It corresponds to the unique 1-cluster tilting
subcategory in A given by A itself.

Then there are geometrically inspired examples.

Example 6.9. The first instances of noncommutative resolutions where found as algebraic
analogues of algebraic geometric resolutions of very easy types of singularities (this is the reason for
calling this concept ’noncommutative resolution’).
The connection between cluster tilting and noncommutative resolutions of singularities is apparent
in the following:

(1) For simple singularities: algebraic McKay correspondence (using an Auslander generator of
an exact category of finite type, i.e. a 1-cluster tilting subcategory. This exact category is
the Cohen-Macaulay modules of the local ring) [18], [134]

(2) For some non-isolated singularities in [107]

Furthermore, there are many more cluster tilting subcategories in Cohen-Macaulay modules over
commutative noetherian local rings which are isolated singularities (i.e. geometrical examples) and
more generally over (non-commutative) orders over isolated singularities found: [102],[109], [103],
[51], [86], [5] (here: use [131] to pass from cluster tilting in the stable category to cluster tilting in
the Frobenius exact category), also in graded Cohen-Macaulay module categories [105].

Corollary 6.10. (also of [68, Prop. 2.9]) For A a Frobenius exact category, the projectives of a
d-NCR with rig ≥ d of A are already (d+ 1)-cluster tilting subcategory if and only if they are
covariantly finite cogenerator (in A).
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Using Prop. 5.17, the previous corollary amounts to: if A has enough projectives P and P is
n-cotilting, then we have a bijection between

(1) d-NCRs E with rig ≥ d and the category P(E) is a covariantly finite cogenerator in ⊥P
(2) (d+ 1)-cluster tilting subcategories in Gp(A)

We conclude with: Let d ≥ 0, by now, there is a remarkable list of examples of d-cluster tilting
subcategories in exact categories already found, apart from geometrically inspired examples Ex. 6.9
we also have:

(1) Higher Auslander-Reiten theory is developed in cluster tilting subcategories (with many
examples for artin algebras) [106], [94], [93],

(2) most instances of cluster categories are algebraic - this means their cluster tilting
subcategories lift to cluster tilting subcategories in a Frobenius exact enhancement [47],
[46], [4], [121], [104],...

We also have the following structural result of S. Kvamme.

Theorem 6.11. ([132, Theorem A]) Every weakly idempotent complete d-exact category is
equivalent (as d-exact category) to a d-cluster tilting subcategory in a weakly idempotent complete
exact category. Furthermore, the ambient exact category is unique up to exact equivalence.

172



CHAPTER 12

The Yoneda category and effaceable functors

1. Synopsis

For an exact category we introduce its Yoneda category and the category of Yoneda effaceables. The
category of Yoneda effaceables is a Frobenius category. We show that there is a triangle equivalence
between the bounded derived category of the effaceable functors and the stable Yoneda effaceables.
As an application, we show that the 2-functor assigning to an exact category its effaceable functors
is preserving homological exactness.
What is new? The main result is new in this generality but known for finite-dimensional modules
over finite-dimensional algebras.

2. Introduction

The category of effaceable functors is an abelian category which we can assign to every exact
category. It is always an extension-closed subcategory in the category of all additive functors on E .
Similar to Auslander’s correspondence for exact categories, cf. [90], the exact structure of E
corresponds (by taking effaceable functors eff(E)) to certain Serre subcategories in P2(E), cf. [72]
and Chapter 2. But unlike Auslander correspondence, many (non-equivalent) exact categories can
have equivalent effaceable functor categories. In this case we say they are stable equivalence to
each other.

Opposite to the Auslander categories effaceable functors still contain some residue of homological
properties of an exact category. This was presumably also a motivation for Auslander and Reiten’s
series of papers [20], [21], [22],[23],[24] on stable equivalence of dualizing R-varieties (the category
of finitely presented functors on the stable module category is the category of effaceable functors).

We show as a corollary of the second theorem:

Theorem 2.1. (cf. Theorem 8.2) If E → F is a homologically exact functor between exact
categories, then eff(E)→ eff(F) is also homologically exact.

Furthermore, we proved the following: If an exact category E has enough projectives (resp. enough
injectives) then so has eff(E). If E has enough injectives then gldim eff(E) ≤ 3 gldim E − 1, cf. Cor.
4.10. If E is a Frobenius category then so is eff(E).

Theorem 2.2. (cf. Theorem 8.1) Let E be a weakly idempotent complete exact category. Then there
is a triangle equivalence

Db(eff(E))→ Yeff(E).

This result has been proven in [104] for E = kQmod with Q Dynkin quiver and k a field, for an
arbitrary finite acyclic quiver Q in [124] and for E = Λ mod with Λ a finite-dimensional algebra in
[85].

What about the hereditary case? Using Neeman’s result we would have a Verdier localization
sequence

Db(eff(E))→ Kb(E)→ Db(E)
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Given two hereditary exact categories, when are they derived equivalent? In this case
Yeff = mod1 Db(E) and derived equivalence implies derived stable equivalence.

3. The Yoneda category

Definition 3.1. Let E be the full subcategory of Db(E) given by the essential image of stalk
complexes in degree 0. We define the following full subcategory of Db(E)

Y(E) := add{E[n] | n ∈ Z, E ∈ E}
as the Yoneda category of E . More generally, for every admissible exact subcategory C in a
triangulated category T , we define YT (C) = add{C[n] | n ∈ Z, C ∈ C} as the Yoneda category of C in
T .

The Yoneda category is an additive category (with an autoequivalence). The extension-closure of
Y(E) in Db(E) is Db(E).

Lemma 3.2. Assume that T is triangulated category and that n ≥ 1. For an admissible exact
category C of a triangulated category T we consider:

(1) Hom(C, C[> n]) = 0,
(2) C[n] ∗ C = C[n]⊕ C,
(3) C[n] ∗ C ⊆ YT (C).

Then we have (1)⇔ (2)⇒ (3), and if T is also Krull-Schmidt then we also have (3)⇒ (2).

Proof. The equivalence of (1) and (2) is trivially true and also the implication from (2) to (3).
We just show that (3) implies (2). As T is Krull-Schmidt and Hom(C[n], C) = 0, it follows by [109],
Prop.2.1 (1) that C[n] ∗ C is closed under summands. Assume (3), let C[a] ∈ C[n] ∗ C for some a ∈ Z
and C ∈ C. To show (2), we need to conclude that a ∈ {n, 0}. There exists a triangle
C1[n]→ C[a]→ C2 → C1[n+ 1] with C1, C2 ∈ C. For a > 0 we have Hom(C[a], C2) = 0 and then
a = n or C = 0. If a < n then Hom(C1[n], C[a]) = 0 and therefore a = 0 or C = 0.

�

We may also recall here the following result:

Theorem 3.3. ([99], Cor.1.2) Let C be an admissible exact subcategory in a triangulated category.
The following are equivalent

(1) C is h-admissible hereditary abelian
(2) C[1] ∗ C = C[1]⊕ C = C ∗ C[1]
(3) YT (C) = T .

Remark 3.4. In the situation of the corollary, in loc. cit. a realization functor is constructed
without the assumption that T is algebraic.

We can look at Y the category of Yoneda categories (of small exact categories), where morphisms
are given by additive functors which preserve degree i-objects (i ∈ Z) and commute with the shift
functor.
Let Ex be the category of small exact categories with morphisms given by exact functors. We leave
it to the reader to formulate this for 2-categories.

Remark 3.5. We consider the assignment E 7→ Y(E) and an exact functor f is mapped to the
induced functor Y(f) on Yoneda categories. This defines a functor

Y : Ex→ Y

174



Furthermore:
An exact functor f is homologically exact if and only if Y(f) is fully faithful. An exact functor f is
an exact equivalence if and only if Y(f) is an equivalence (If Y(f) is an equivalence f is
homologically exact and an equivalence as we get an induced equivalence on degree 0 elements).

4. Effaceable functors

Effaceable functors (also called category of defects) appeared prominently in several places in the
literature. We collect here where it appears, examples and properties of these categories. Let us
start with the definition.

Definition 4.1. Let E be an exact category, we define eff(E) to be the full subcategory of mod1 E
given by functors F : Eop → (Ab) such that there exists an exact sequence X → Y → Z in E such that

HomE(−, Y )→ HomE(−, Z)→ F → 0

is exact.
Dually, we define E − eff ⊆ EMod(= Mod Eop) as the full subcategory of functors F : E → (Ab) such
that there exists an exact sequence X → Y → Z in E such that

HomE(Y,−)→ HomE(X,−)→ F → 0

Observe that by definition E − eff = eff(Eop) as we would expect.

Let us denote by i : E → E ic, X 7→ (X, 1) the idempotent completion of an exact category described
in [49] - the functor i is fully faithful, exact and reflects exactness cf. loc. cit. The essential image of
i is extension-closed, generating and cogenerating, so the induced derived functor Db(E)→ Db(E ic) is
fully faithful (cp. [31, Cor 2.12]).
Furthermore, one can show using [33, Lemma 21] that E is weakly idempotent complete if and only
if the essential image of i is deflation-closed if and only if it is inflation-closed.

Lemma 4.2. Let E be an exact category.

(i) eff(E) is extension-closed in mod1 E.
(ii) If E is idempotent complete then eff(E) is idempotent complete.
(iii) We have eff(E) = eff(E ic) is idempotent complete.

Proof. (i) The category eff(E) is extension-closed in the so called category of admissible
presentable functors by [90, Proposition 3.6], and the latter is extension-closed subcategory
of Mod(E) by [90, Proposition 3.5].

(ii) Assume E is idempotent complete. By [90, Corollary 3.18] eff(E) is an additively closed
subcategory (e.g. it is part of a torsion pair) of an idempotent complete additive category,
so it is idempotent complete itself.

(iii) We see eff(E) as a full subcategory of eff(E ic) (using the universal property of the
idempotent completion of an additive category).

Given a functor F ∈ eff(E ic) we can choose an E ic-exact sequence

(Z, 1)→ (X, p)
d−→ (Y, 1) such F = coker Hom(−, d) (because given a short exact sequence

(A, a)→ (B, b)
ϕ−→ (C, c) with (C, c)⊕ (C, 1− c) = (C, 1), (A, a)⊕ (A, 1− a) = (A, 1) we can

just add the following sequences 0→ (C, 1− c) id−→ (C, 1− c) and

(A, 1− a)
id−→ (A, 1− a)→ 0, this does not change the cokernel of Hom(−, ϕ)). As E is

extension-closed in E ic it follows that F ∈ eff(E). Then by (ii) it follows that eff(E) is
idempotent complete.

�

Theorem 4.3. ([174], Lemma 9 ) Let E be an exact category. Then eff(E) as fully exact subcategory
of Mod E, is abelian.

175



Remark 4.4. The previous result is proven only for idempotent complete exact categories but by
Lemma 4.2, this implies it is true for all exact categories.

Lemma 4.5. If φ : E → F is an exact functor, there exists a well-defined exact functor

φ : eff(E)→ eff(F)

defined on objects via φ(coker HomE(−, d)) := coker HomF (−, φ(d)) for E-deflations d.

Proof. By [90], Thm 3.9 (2), there exists such an exact functor on the Auslander exact
categories. As it restricts to the functor φ : eff(E)→ eff(F), it is automatically well-defined and
exact. �

Definition 4.6. Let E be an exact category with enough projectives P. Then the stable category
denoted by E is defined as the ideal quotient category. For every two objects X,Y ∈ E let
P(X,Y ) ⊆ HomE(X,Y ) to be the subgroup of all morphisms factoring through a projective object.
This defines an ideal in the category E . Then E has the same objects as E but morphisms are defined
as

HomE(X,Y ) := HomE(X,Y ) = HomE(X,Y )/P(X,Y )

This defines an additive category. Dually if E has enough injectives then we define E = (Eop)op.

Observe that the stable category of E is an additive category with an endofunctor, given by taking
syzygies Ω. If in addition E is a Frobenius category then its stable category has the structure of a
triangulated category with Ω−1 being the suspension functor and the distinguished triangles induced
by short exact sequences (cp. [87]).
In general, one can either study this as a pretriangulated category or use the Heller stabilization to
obtain a triangulated category from the stable category.

Let us observe the following easy

Lemma 4.7. Let E be an exact category.

(1) If E has enough projectives then for every morphism g in the category E there exists an
E-deflation d with d = g.

(2) If E has enough injectives then for every morphism g in the category E there exists an
inflation i such that i = g

Proof. If g : X → Y and (1) if E has enough projectives, take a deflation p : P → Y with P
projective and then using the pullback of p along g we have an induced deflation
d = [g, p] : X ⊕ P → Y with d = g. (2) If E has enough injectives, take an inflation j : X → I with I
injective and form the pushout to obtain an inflation i =

(
g
j

)
: X → Y ⊕ I with i = g. �

For an additive category P we call mod∞ P to be the full subcategory of ModP of all additive
functors F : Pop → (Ab) such that there exists an exact sequence in

Hom(−, Pn)→ · · · → Hom(−, P0)→ F → 0

with Pi ∈ P. This is a fully exact subcategory of ModP which has enough projectives and the
Yoneda embedding P ic → P(mod∞ P) induces an equivalence of additive categories.
Whenever we have an exact category F with enough projectives P, then we have a functor

P : F → mod∞ P, X 7→ Hom(−, X)|Pop

which is homologically exact and induces an equivalence of F ic to a resolving subcategory of
mod∞ P but usually this is not essentially surjective.
Dually given an additive category I we define the category Imod∞ := (mod∞ Iop)op, this is an
exact category with enough injectives and the Yoneda embedding
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I → (mod∞ Iop)op, I 7→ HomI(I,−) induces an equivalence Iic → I((mod∞ Iop)op). Whenever an
exact category F has enough injectives I then we consider

I : F → (mod∞ Iop)op, X 7→ Hom(X,−)|I
this is homologically exact and induces an equivalence of F ic to a coresolving subcategory of
(mod∞ Iop)op.

The following first part is [72], Lemma 2.13 (in the idempotent complete case)

Proposition 4.8. Let E be an exact category.

(1) If E is an exact category with enough projectives, then eff(E) has enough projectives. The
Yoneda functor E → mod1 E , X 7→ HomE(−, X) induces an equivalence of additive categories

(E)ic → P(eff(E)). Furthermore, in this case, the functor P induces an equivalence

P : eff(E)→ mod∞ E
(2) If E is an exact category with enough injectives, then eff(E) also has enough injectives.

Furthermore, the functor X 7→ Ext1
Eic(−, X) gives an equivalence of additive categories

(E)ic → I(eff(E)). Furthermore, we have an exact equivalence

I : eff(E)→ (mod∞(E)op)op

Proof. (1) The proof in [72, Lemma 2.13] works also if E is not idempotent complete. For P
essentially surjective, the main argument is just Lemma 4.7,(1).
(2) Again the essentially surjectivity of I follows from Lemma 4.7, (2). �

Remark 4.9. In the light of the previous Proposition, it is sensible for arbitrary exact categories to
define two exact categories as stably equivalent if there exists an equivalence φ between their
effaceable functor categories (observe that additive equivalences between abelian categories are
exact). In this case we would call φ the stable equivalence. It can be that a stable equivalence is
induced by an exact functor as in Lemma 4.5 or it can also not be induced by a functor between the
exact categories.
So continuing Auslander-Reiten’s quest would mean: Try to classify/understand exact categories up
to stable equivalence.

Corollary 4.10. If E is an exact category with enough injectives and assume that gldim E ≤ n, then
we have

gldim eff(E) ≤ 3n− 1

This is an obvious generalization of [20, Prop. 10.2].

Proof. Let F ∈ eff(E), then there exists an exact sequence A→ B
g−→ C such that

F = coker HomE(−, g). So by definition, the long exact sequence when applying a functor
Hom(X,−) induces an exact sequence of functors on E

0→ F → Ext1
E(−, A)→ Ext1

E(−, B) → Ext1
E(−, C)

→ Ext2
E(−, A)→ · · · → ExtnE(−, C)→ 0

as ExtiE(−, X) ∼= Ext1
E(−,Ω−(i−1)X) ∈ I(eff(E)) by Prop. 4.8,(2), the claim follows. �

Remark 4.11. If E is an exact category with enough projectives, the category of effaceables are just
the category mod∞ E , so its global dimension can be determined by higher weak kernels in the
additive category E (in the sense of Enomoto).
In particular, if E has enough projectives the following are equivalent

(1) gldim eff(E) = 0
(2) E is abelian semi-simple
(3) Every non-isomorphism in E factors through a projective
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In particular, we can find examples of exact categories of all global dimension (including ∞) such
that the category of effaceable functors is semi-simple abelian. Take E an abelian Krull-Schmidt
category such that every indecomposable is either projective or simple and all simples
Hom-orthogonal (e.g. take a finite dimension Nakayama algebra Λ and pass to the quotient Λ/ rad2).
We look at Λn = k(1→ 2→ · · · → n)/ rad2 (of global dimension n) and Λ∞ = k[X]/(X2) (of infinite
global dimension), then En = Λn mod has semi-simple effaceable functors for all n ≤ ∞.

Lemma 4.12. If E is a Frobenius category then eff(E) is also a Frobenius category and
HomE(−,Ω−X) ∼= Ext1

E(−, X) for all X ∈ E.

Proof. By Happel [87], E is triangulated, then there is a general result that mod∞ E is a
Frobenius category by a Theorem of Freyd (cf. [77], Thm 1.7). The last statement is more generally
proven in Lemma 6.1. �

5. Yoneda-effaceable functors

Definition 5.1. We define the category of Yoneda-effaceables Yeff(E) to be the full subcategory
of mod∞ Y(E) given by functors X such that there exists a triangle in Db(E)

A→ B
f−→ C → A[1]

with A,B,C ∈ Y(E) such that X ∼= Coker HomY(E)(−, f), that is, X admits a presentation as

HomY(E)(−, B)
Hom(−,f)−−−−−−→ HomY(E)(−, C)→ X → 0

and we say that X is presented by f . In practice, we say that a Yoneda effaceable functor is
presented by a map f and we implicitly assume that the domain, codomain and cone (in Db(E)) of f
are in Y(E). In particular, any functor in Yeff(E) is finitely presented (a.k.a. coherent).

We also have the following harmless looking result - which has a lengthy proof which is only
completed in Lemma 5.13.

Proposition 5.2. Let f : X → Y a morphism in Y(E) and F = coker HomDb(E)(−, f). Then:

F |Y(E) ∈ Yeff(E) if and only if cone(f) ∈ Y(E).

Example 5.3. If E is hereditary abelian, we know by Thm 3.3 that Y(E) = Db(E), in particular for
every morphism f : X → Y in Y(E) we have cone(f) ∈ Y(E).
Therefore the category of Yoneda-effaceables Yeff(E) coincides with the (Frobenius exact) category
mod1 Db(E) (of finitely presented functors Db(E)op → (Ab)).

Definition 5.4. Let E be an exact category and M a full subcategory. We say M is generating if
for every E ∈ E there exists a deflation d : M → E with M ∈M. It is called deflation-closed if for
every short exact sequence X → Y → Z with Y, Z ∈M also X ∈M holds.
A resolving subcategory in an exact category is fully exact subcategory which is deflation-closed
and generating. It is a coresolving subcategory if it is resolving in the opposite category. A
biresolving subcategory in an exact category is a fully exact subcategory which is resolving and
coresolving.

We often use the following:

Remark 5.5. (cf. [71, 2.6]) If E is an exact category and F is a fully exact subcategory closed
under direct summands.
If E has enough projectives P, P ⊆ F and F closed under syzygies then F is resolving.
If E has enough projectives P and enough injectives I both contained in F and F is closed under
syzygies and under cosyzygies, then F is biresolving.

Observe that biresolving subcategories in a Frobenius category are always again Frobenius categories
(with the same projective-injectives).
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Definition 5.6. Given an exact category F we denote by P(F) the full subcategory of projectives
in F . Let C be a fully exact subcategory. We call C partially resolving if C is deflation-closed,
summand-closed and for every C ∈ C there exists an F-deflation d : P → C with P ∈ P(F). Dually
we define partially coresolving if Cop is partially resolving in Fop.
We call C partially biresolving if it is partially resolving and partially coresolving.

Remark 5.7. We have the following (cf. Chapter 1)

(1) Let C be fully exact in an exact category F and closed under taking summands in F . Then
C is partially resolving if and only if for every C ∈ C there exists an F-exact sequence
C ′� P � C with P ∈ P(F), C ′ ∈ C.

(2) If C is partially resolving then C has enough projectives with P(C) ⊆ P(F). If C is partially
biresolving then it has enough projectives and enough injectives - therefore it is a Frobenius
category if and only if P(C) = I(C) holds.

(3) If C is partially resolving in F then it is homologically exact in F .

Lemma 5.8. Let f : E → E ′ be an exact functor which is homologically exact. Then we have a fully
faithful embedding Y(E) ⊆ Y(E ′). The full subcategory
C = {F ∈ Yeff(E ′) | ∃f : X → Y in Y(E), cone(f) ∈ Y(E)} is partially resolving in Yeff(E ′) and the
restriction functor C → Yeff(E), F 7→ F |Y(E) is an exact equivalence.
In particular, the induced triangle functor

Yeff(E)→ Yeff(E ′)

is fully faithful

Proof. By the usual horseshoe argument C is extension-closed. By definition it has enough
projectives and enough injectives equivalent to Y(E), therefore it partially biresolving. It is
straight-forward to see that the restriction C → Yeff(E), F 7→ F |Y(E) is an exact equivalence. As C is
homologically exact in Yeff(E ′), we have induced isomorphisms on Ext-groups and by Lemma 6.1
these calculate the homomorphisms in the stable category, i.e. we have for all X,Y in C and n ≥ 1

HomC(X,Ω
−nY ) ∼= ExtnC(X,Y ) = ExtnYeff(E ′)(X,Y ) ∼= HomYeff(E ′)(X,Ω

−nY )

as every object in C is a cosyzygy for some n ≥ 1, the claim follows. �

Lemma 5.9. We have Yeff(E) ⊆ Gp(mod∞ Y(E)) is extension-closed. Furthermore, as fully exact
category, Yeff(E) is biresolving and therefore as a fully exact subcategory, it is a Frobenius exact
category.

Proof. Let Y denote Y(E). Let X be a Yoneda-effaceable functor presented by the presented by

the map f fitting in the triangle A −→ B
f−→ C −→ A[1] in Db(E) with A,B and C in Y. Then the

complex of finitely generated projective Y–modules

. . .→ Y(−, A)→ Y(−, B)→ Y(−, C)
d0−→ Y(−, A[−1])→ . . .

is totally acyclic and X is the image of d0. Therefore X is in GP(mod∞(Y)). Note that Yeff(E) is
extension closed. Indeed, consider and short exact sequence 0→ X → Y → Z → 0 in
Gp(mod∞ Y(E)) with X and Z in Yeff(E) and chose a presenting maps f : B → C and f ′ : B′ → C ′

of X and Z, respectively. Use the horseshoe lemma in ModY(E) to produce a complex of the form

. . .→ (−,A′′)→ (−, B ⊕B′) (f ′′)∗−−−→ (−, C ⊕ C ′)→ Y → 0

where f ′′ is the matrix

(
f 0
g f ′

)
for some g : B → C ′. We claim that f ′′ is a presenting map for Y .

Let D denote the cocone of f ′′ in Db(E). Then comparing the long exact sequence obtained from the
triangle induced by f ′′ and the previous complex obtained from the horseshoe lemma, we obtain that
(−, A′′) ∼= (−, D) as functors from Y(E) to (Ab). Then Lemma 5.10 will give us that A′′ ∼= D in
Db(E). But A′′ is in Y(E). This completes the claim.
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It remains to show that Yeff(E) is Frobenius exact as fully exact subcategory. In fact we need to see
that it contains the projective-injectives and is closed under syzygies and cosyzygies but all three
claims are clear when looking at the long exact sequence above. �

Lemma 5.10. Let L,M ∈ Db(E) and M ∈ Y(E).
If HomDb(E)(−, L)|Y(E)

∼= HomDb(E)(−,M)|Y(E) then L ∼= M as objects in Db(E).

Proof. As M ∈ Y(E), there exists a morphism f : M → L (in Y(E)) which corresponds to
idM : M →M under the assumed natural isomorphism of functors. This induces a natural
transformation f∗ : HomDb(E)(−,M)→ HomDb(E)(−, L) which is an equivalence when restricted to

Y(E). The extension-closure of Y(E) in Db(E) is Db(E) and using the long exact sequences obtained
when applying Hom(−,M) and Hom(−, L) we conclude that f∗ is an isomorphism of functors. Then
by the Yoneda-embedding, a quasi-inverse functor is given by an inverse morphism for f and f has
to be an isomorphism in Db(E). �

The shift functor [1] in D := Db(E) induces by precomposition an autoequivalence on Yeff(E) which
maps representable (i.e. projectives) to projectives, therefore we have induced quasi-inverse
autoequivalences

[1]D : Yeff(E)↔ Yeff(E) : [−1]D.

As Yeff(E) is a Frobenius exact category we also have the quasi-inverse equivalences

Σ := Ω− : Yeff(E)↔ Yeff(E) : Ω =: Σ−

given by taking cosyzygies and syzygies (they are the suspension and cosuspension of the
triangulated structure discussed before, therefore we will rename them as Σ±).

Then the following corrollary is immediate from the previous lemma.

Corollary 5.11. We have a natural isomorphism of functors Ω3 = [1]D on Yeff(E). Furthermore,

we have for all F,G ∈ Yeff(E) there exists an n = nF,G << 0 such that

HomYeff(E)(F,Σ
<nG) = HomYeff(E)(Σ

>(−n)F,G) = 0

Proof. The statement is obvious. �

We make the following auxilliary definition.

Observe that F = mod1 Db(E) = mod∞Db(E) = Gp(mod∞Db(E) as every projective presentation of
a functor can be extended to a complete projective resolution by taking the associated completion of
a morphism to a distinguished triangle. This is a Frobenius category.

Definition 5.12. We define Ỹeff to be the full subcategory of mod1 Db(E) given by all F such that
there exists an f : X → Y in Y(E) with cone(f) ∈ Y(E) such that F = coker Hom(−, f).

By the horseshoe lemma it is obvious that Ỹeff is extension-closed in F .

Lemma 5.13. Let E be idempotent complete.

(1) Then Ỹeff is partially biresolving in F = mod1 Db(E). Furthermore, it is a Frobenius
category.

(2) A morphism f ∈ X → Y in Y(E) the following are equivalent:
(a) coneDb(E)(f) ∈ Y(E)

(b) HomDb(E)(−, f) is Ỹeff-admissible

(c) coker HomDb(E)(−, f) ∈ Ỹeff

(3) The restriction functor Ỹeff → Yeff(E), F 7→ F |Y(E) is an exact equivalence.
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We just state (2) in the previous Lemma, to combine it with the equivalence in (3) - then it implies
Prop. 5.2.

Proof. To see (1) use the same argument as before, (2) follows by definition. The equivalence
in (3) has been considered in bigger generality in Chapter 3. �

Definition 5.14. Now we define ẽff ⊆ Yeff(E) to be the full subcategory given by functors X such

that there exists a triangle A→ B
g−→ C → A[1] in Db(E) with A,B,C in E such that

X ∼= coker HomY(E)(−, g).

The category ẽff is extension-closed in Yeff(E) (using the same horseshoe argument as in the Lemma

above). But ẽff does not contain any projectives.

Lemma 5.15. The restriction functor ẽff → eff(E), F 7→ F |Eop is an exact equivalence.

Proof. As restriction functors on functor categories are exact, also their restriction to fully
exact subcategories are exact functors.
By definition is this functor is essentially surjective and using the definition it is also
straight-forward to see that for an additive functor G : Y(E)op → (Ab), and for X such that there

exists an exact sequence A→ B
g−→ C in E such that X = coker HomY(E)(−, g) we have isomorphisms

Hom(X,G) = ker(Ab)(G(C)
G(g)−−−→ G(B)) = Hom(X|Eop , G|Eop)

therefore the functor is an equivalence of categories. As every fully faithful exact functor it induces a
monomorphism on Ext1-groups. We need to see it is surjective.

Let 0→ G→ H → F → 0 be a complex in ẽff such that when evaluated at objects of E(⊆ Y(E)) this
yields an exact sequence of abelian groups. We need to see that 0→ G→ H → F → 0 evaluated at
E[i] with E ∈ E , i ∈ Z, i 6= 0 still gives an exact sequence of abelian groups. But this follows from the
next Lemma 5.16. �

Lemma 5.16. Given a two composable morphisms of distinuished triangles X∗
f∗−→ Y∗

g∗−→ Z∗ which
is degree-wise split exact in a triangulated category T with suspension [1], i.e. we have commuting
diagrams

X1
a1 //

f1

��

X2
a2 //

f2

��

X3
a3 //

f3

��

X1[1]

f1[1]

��
Y1

b1 //

g1

��

Y2
b2 //

g2

��

Y3
b3 //

g3

��

X1[1]

g1[1]

��
Z1

c1 // Z2
c2 // Z3

c3 // X1[1]

with (fi, gi) is a split exact sequence for all i ∈ {1, 2, 3}. Let A be an object in T and apply
(A,−) := HomT (A,−) to obtain two morphisms of long exact sequences. Assume that
0→ coker(A, a2)→ coker(A, b2)→ coker(A, c2)→ 0 is an exact sequence of abelian groups, then we
have that also 0→ coker(A, ai)→ coker(A, bi)→ coker(A[i], ci)→ 0 is an exact sequence of abelian
groups for i ∈ {1, 2, 3}. In particular, also 0→ coker(A[i], a2)→ coker(A[i], b2)→ coker(A[i], c2)→ 0
is an exact sequence of abelian groups for every i ∈ Z.

Proof. Apply the snake lemma in the category of abelian groups. �

Definition 5.17. Let T be a triangulated category (we will usually denote the suspension by [1])
and C ⊆ T be a full additively closed subcategory. Then we say C is admissible exact in T if it is
extension-closed and non-negative (i.e. HomT (C,C ′[−n]) = 0 for all n > 0, C,C ′ ∈ C).
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Lemma 5.18. The composition eff(E) ∼= ẽff → Yeff(E)→ Yeff(E) is fully faithful, furthermore its
essential image is an admissible exact category.

Proof. First we proof that ẽff → Yeff(E) is fully faithful: Given a morphism φ : X → Y in ẽff

which factors in Yeff(E) as a composition X
a−→ HomY(E)(−, E[t])

b−→ Y with E ∈ E , t ∈ Z. We claim

that φ = 0 holds in ẽff. Using the definition of objects in ẽff, it is easy to see that Hom(X,E[t]) = 0
for t < 0 and Hom(E[t], Y ) = 0 for t > 0. For t = 0, we show that

HomYeff(E)(ẽff,HomY(E)(−, E)) = 0 for all E ∈ E , so take a projective resolution

HomY(−, X)→ HomY(−, Y )→ HomY(−, Z)→ F → 0

with σ : X → Y → Z a short exact sequence in E . When we apply HomY(−, E) with E ∈ E , then the
conclude that HomY(F,HomY(−, E)) = 0 as it has to be the zero to start the long exact sequence
associated to HomE(σ,E).
Next, we are going to see that the essential image of this functor is non-negative, i.e. we will show

HomYeff(E)(F1,Σ
<0F2) = 0

for all F1, F2 ∈ ẽff. By definition of the ideal quotient (Hom-sets) it is enough to show that
HomYeff(E)(F1,Ω

tF2) = 0 for all t ≥ 1. For t ≥ 3 this follows directly from lifting a morphism to

projective resolutions and using that HomY(E)(E,E
′[< 0]) = 0. For t = 1, 2, let Xi

ai−→ Yi
bi−→ Zi be

the short exact sequences in E such that Fi = coker HomY(E)(−, bi). For t ∈ {1, 2}: By definition, we

have a monomorphism ΩtF2 → HomY(E)(−, A) where A = Z2 for t = 2 and A = Y2 for t = 2, now by
the previous discussion, we have that Hom(F1,HomY(−, A)) = 0. This implies also
Hom(F1,Ω

tF2) = 0 for t = 1, 2.
Lastly, we still have to see that the essential image is extension closed. But this follows from the

next Lemma (as ẽff is extension-closed in the Frobenius exact category Yeff(E)).
�

Lemma 5.19. Let F be a Frobenius exact category and let q : F → F be the ideal quotient functor to
its stable category. If C an extension closed full subcategory in F , then the essential image of C is
extension closed in F .

Proof. Given a standard triangle X → Y → Z → X[1] in F with X,Z ∈ q(C). We may assume
that there exist injective-projective objects P and Q in F such that X = C ⊕ P,Z = C ′ ⊕Q with
C,C ′ ∈ C. By the construction of the triangulated structure on F , we have that Y → Z is the
pushout of an inflation X → I into a projective-injective object in F along the morphism X → Y .
By [49, Proposition 3.1], this implies that there is a short exact sequence C ⊕ P → Y ⊕ I → C ′ ⊕Q.
By [49, Proposition 2.12], the short exact sequence splits into a direct sum of of short exact

sequences P → P → 0, 0→ Q→ Q and C → Ỹ → C ′. Since C is extensions closed, it follows that
q(Y ) ∼= q(Ỹ ) lies in the essential image of C. �

Remark 5.20. Every extension-closed subcategory C in a triangulated category T can be equipped
with the structure of an extriangulated structure by restricting the triangles to this category.
This extriangulated structure is an exact structure if and only if HomT (C,C ′[−1]) = 0 for all C,C ′

in C. In particular, every admissible exact subcategory has an exact structure given by all triangles
A→ B → C → A[1] in T such that A,B,C in C. We will always equip an admissible exact
subcategory with this exact structure.

We recall the following result:

Theorem 5.21. ([133] or Chapter 9) For every admissible exact subcategory C in an algebraic
triangulated category T there exists a triangle functor

Db(C)→ T
which extends the inclusion C ⊆ T . It is called a realization functor of C.
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We will call a subcategory in a triangulated category admissible abelian if it is admissible exact
and the induced exact structure from the triangles is abelian.

6. Fully faithfulness of the realization functor

We now want to see that eff(E) is h-admissible exact in Yeff(E). This means we need to see

Extt
ẽff

(F,G)→ HomYeff(E)(F,Ω
−t
Yeff(E)G) ∀t ≥ 1

is an isomorphism for all F,G ∈ ẽff.

Lemma 6.1. Let F be a Frobenius category and X,Y ∈ F , then we have natural isomorphisms

ExtnF (X,Y )→ Hom(X,Ω−nY ) ∀n ≥ 1

where Hom := HomF

Proof. We look at short exact sequences Ω−nY → In → Ω−(n+1)Y , n ≥ 0 with In

projective-injective and apply HomF (X,−). We have induced an exact sequence of abelian groups

Hom(X, In)→ Hom(X,Ω−nY )→ Hom(X,Ω−(n+1)Y ). Comparism with the long exact sequence

gives an induced isomorphism Ext1
F (X,Ω−nY )→ Hom(X,Ω−(n+1)Y ). Now, the usual dimension

shift argument using cosyzygies gives Extn+1
F (X,Y ) ∼= Ext1

F (X,Ω−nY ). �

So, we are actually asking when ẽff is an homologically exact subcategory of Yeff(E).

Proposition 6.2. ẽff is an homologically exact subcategory of Yeff(E) (or equivalently: ẽff is
h-admissible exact in Yeff(E)).

Proof. We proceed by first making two general remarks in (1) and (2) before we proceed
inductively in (3).
(1) We first remark that for every morphism g : X[m]→ Y [m+ 1] in Y(E) with X,Y ∈ E , m ∈ Z the

following holds Im HomY(E)(−g) ∈ Ω3m
Yeff(E)ẽff.

(2) We secondly remark that in Y(E) every morphism f : X → Y [n] with X,Y ∈ E , n ≥ 1 can be

written as a composition X = X0
f1−→ X1[1]

f2−→ X2[2]
f3−→ · · · fn−→ Xn[n] = Y[n] with Xi ∈ E ,

0 ≤ i ≤ n. (3) Now, we claim the following: For every morphism h : F → Ω−tG in Yeff(E) with

F,G ∈ ẽff, t ≥ 2 there exists an s ∈ N, hs : ΩsF → Ωs−tG with Ω−shs = h in Yeff(E) such that hs is
a composition ΩsF = ΩsF0 → Ωs−1F1 → Ωs−2F2 → · · · → Ωs−tFt = Ωs−tG.

We fix short exact sequences X ′′
i−→ X

p−→ X ′ and Y ′′
j−→ Y

q−→ Y ′ with F = coker Hom(−, p),
G = coker Hom(−, q). The morphism h : F → Ω−tG induces morphisms between the long exact
sequences of representable functors which induces morphisms hs : ΩsF → Ωs−tG for all s ∈ Z. Now
we study the morphisms of long exact sequences to find the factorization, to shorten notation, we use
(−, ?) := HomY(E)(−, ?).
If t = 2, we look at the commutative diagram

(−, X ′′)

(−,a′′)
��

(−,i) // (−, X)
(−,p) //

(−,a)

��

(−X ′) //

(−,a′)
��

F

h
��

(−, Y ′) σ
// (−, Y ′′[1])

(−,j[1])
// (−, Y [1]) // Ω−2G

Then set F1 = Im(−, j[1]) ◦ (−, a) ∈ ẽff (by (1)) and using the exactness of the rows we conclude that
h1 factors as ΩF → F1 → Ω−1G.
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If t = 3, we look at the commutative diagram

(−, X ′′)

(−,a′′)
��

(−,i) // (−, X)
(−,p) //

(−,a)

��

(−X ′) //

(−,a′)
��

F

h
��

(−, Y ′′[1])
(−,j[1])

// (−, Y [1])
(−,q[1])

// (−, Y ′[1]) // Ω−3G

then with F1 = Im(−, q[1]) ◦ (−, a) we get a factorization of h1 as ΩF → F1 → Ω−2.
For t ≥ 4 we proceed inductively and find a factorization of the form ΩF → F1 → Ω−t+1G with

F1 ∈ ẽff as follows; Consider the commutative diagram

(−, X ′′)

(−,a′′)
��

(−,i) // (−, X)
(−,p) //

(−,a)

��

(−X ′) //

(−,a′)
��

F

h
��

(−, Y1[n1])
(−,`)

// (−, Y2[n2])
(−,m)

// (−, Y3[n3]) // Ω−tG

with the second row is induced by the suitably-number rotated triangle, we have
{Y1, Y2, Y3} = {Y ′′, Y, Y ′} and certain ni ∈ N≥1, n3 ≥ 2. By (2), the morphism (−, a′) factors as

(−, X ′)
f ′1−→ (−, X1[1])→ (−, Y3[n3]). We precompose with (−, p) to obtain a factorization of

(−,m) ◦ (−, a) : (−, X)→ (−, Y3[n3]) as (−, X)
f1−→ (−, X1[1])→ (−, Y3[n3]). We define

F1 := Im f1 ∈ ẽff. As the second row is exact, we find an induced morphism F1 → Ω−t+1. By
definition, we have f1 ◦ (−, i) = 0, this induces a morphism ΩF → F1, this gives the factorization of
h1. The previous claim (3) implies that the maps Extt

ẽff
(F,G)→ HomYeff(E)(F,Ω

−t
Yeff(E)G) are

surjective for all t ≥ 1 (as they are isomorphisms for t = 1). Then it is a standard argument that this
implies that they are isomorphisms for all t ≥ 2. �

7. The realization functor is essentially surjective

Is the inclusion Thick∆(ẽff) ⊆ Yeff(E) an equality? We start with the following duality:

7.1. The Auslander-Bridger transpose.

Tr: (mod1Y(E))op → mod1Y(Eop)

maps coker HomY(E)(−, f) to coker HomY(E)(f,−), compare [90, section 5.2]. It restricts to a duality,
i.e. a functor

Tr: Yeff(E)op → Yeff(Eop)

the quasi-inverse is given by the same transpose defined for Eop and by definition Tr(ΩF ) ∼= Ω−TrF .

It restricts to a duality Ω− ◦ Tr: ẽff(E)→ ẽff(Eop).

Definition 7.1. Let F : Y(E)→ (Ab) be a covariant additive functor, we define the graded support
of F as

supp(F ) := {i ∈ Z | ∃E ∈ E | F (E[i]) 6= 0} ⊆ Z
If F is contravariant, we take the same definition but we write suppop instead of supp.
Let X ∈ Db(E) we have a covariant functor FX = HomDb(E)(X,−)|Y(E) and a contravariant functor

FX = HomDb(E)(−, X)|Y(E). We call supp(FX) resp. suppop(FX) the covariant resp. contravariant
graded support of X.
We define the two Yoneda degrees of X via

(*) Ydeg(X) = n if n ∈ supp(FX) ⊆ [n,∞).
(*) Ydegop(X) = n if n ∈ suppop(FX) ⊆ (−∞, n].
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Remark 7.2. For X ∈ Db(E).
If Ydeg(X) = n ∈ Z then Ydeg(X[−n]) = 0.
If Ydegop(X) = m then YdegopX[−m] = 0.
Given X = Ai ⊕Ai+1 ⊕ · · · ⊕Aj , i ≤ j with At ∈ E [t] for all t and Ai 6= 0, Aj 6= 0, then we have
Ydeg(X) = i, Ydegop(X) = j. Conversely, every X ∈ Y(E) with Ydeg(X) = i, Ydegop(X) = j can be
written in this way. In particular, for X ∈ Y(E), we have X ∈ E if and only if
Ydeg(X) = 0 = Ydegop(X).
Now, on Db(E), for n,m ∈ N, the conditions Ydeg ≥ n and Ydegop ≤ m are extension-closed. This
implies that the Yoneda degrees are well-defined for all X ∈ Db(E) because this is the
extension-closure of Y(E).

Remark 7.3. We have a problem when we want to extend this definitions to the stable category of
Yoneda-effaceables as then the support is no longer a well-defined invariant of the isomorphism class
(e.g. the zero functor is isomorphic to every projective - but their supports vary).

To overcome this issue, we define these degree functions first for triangles.

Definition 7.4. Given a triangle without a split summand ∆: A→ B → C
+1−−→, A,B,C ∈ Y(E).

We number the objects as follows A[n] =: D3n−2, B[n] =: D3n−1, C[n] =: D3n, n ∈ Z. We define

Ydeg(∆) := (inf{n ∈ Z | Ydeg(Dn) > 0})− 1

If Ydeg(∆) = t and ∆ has no split triangles as summands, then we have for the suitably times

rotated triangle ∆′ : Dt−2 → Dt−1 → Dt +1−−→ the following property

(*) Ydeg(Dt) = Ydeg(Dt−1) = Ydeg(Dt−2) = 0.
To see this, by definition Ydeg(Dt+1) ≥ 1, so Ydeg(Dt−2) ≥ 0. But by definition

Ydeg(Dt−2) can not be > 0, so it has to be = 0. Also by definition
Ydeg(Dt) ≤ 0,Ydeg(Dt−1 ≤ 0. Assume that Ydeg(Dt) = (−n) < 0, take X[−n] ∈ E [−n|,
then (Dt, X[−n]) ∼= (Dt−1, X[−n]). Then one can get a contradiction to the assumption
that ∆ has no split summand. Therefore we have Ydeg(Dt) = 0 and as Ydeg ≥ 0 is
extension-closed, we conclude that Ydeg(Dt−1) = 0

Furthermore, Ydeg(∆) only depends on the homotopy equivalence class of the complex
HomDb(E)(∆,−) ∈ K(P(ModY(E ic)op)). In particular, if F ∈ Yeff(E) is represented by ∆, then

Ydeg(∆) is well-defined for TrF ∈ Yeff and Tr is a duality on Yeff, so

deg(F ) := Ydeg(∆) for F ∈ Yeff(E)

is a well-defined integer.
Dually, we may define for a triangle as before

Ydegop(∆) = (sup{n ∈ Z | Ydegop(Dn) < 0}) + 1

If Ydegop(∆) = s, then for the suitable rotated triangle ∆′′ : Ds → Ds+1 → Ds+2 +1−−→ the following
property holds

(*)op Ydegop(Ds) = Ydegop(Ds+1) = Ydegop(Ds+2) = 0

In this case, also degop(F ) := Ydegop(∆) is well-defined for F represented by ∆ in Yeff(E).

Example 7.5. Let F be in Ωtẽff, then deg(F ) = t, degop(F ) = t− 2.

Lemma 7.6. Given a Yoneda-effaceable functor F and t = deg(F ). Then deg(F ) ≥ degop(F )− 2

and it is = if and only if F ∈ Ωtẽff.

Proof. The inequality follows by definition. Equality means that the triangles ∆′ and ∆′′

coincide. But this means that Ydegop = Ydeg = 0 for Dt−2, Dt−1, Dt, i.e. we have a distinguished
triangle with three consecutive terms in E . Then the first two maps in such a triangle are given by a
short exact sequence in E and the claim follows. �
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We think of the number dF = deg(F )− degop(F ) + 2 as the distance of F being a (co)syzygy of an
effaceable. Now, the strategy is the following: Show that every F ∈ Yeff(E) fits into a short exact
sequence G� F � ΩtE for some t such that dG < dF .

Remark 7.7. Observe that mod ∞Y(E) is deflation-closed in ModY(E) and
Gp(mod∞ Y(E)) is deflation-closed in mod∞ Y(E) and Yeff(E) is deflation-closed in
Gp(mod∞ Y(E)). Therefore we have that arbitrary kernels of epimorphisms between Yoneda
effaceable functors are again Yoneda effaceable.

Lemma 7.8. Let E be weakly idempotent complete. Given a triangle

∆: Z → Y → X
+1−−→, X, Y, Z ∈ Y(E) without split summands of Ydeg(∆) = 0. Then we have

Z>0 ⊕ Z0

(
c d
0 f

)
−−−−−−→ Y = Y>0 ⊕ Y0

(
a b
0 p

)
−−−−−→ X>0 ⊕X0

(
α β
γ δ

)
−−−−−−→ Z>0[1]⊕ Z0[1]

where Z>0, X>0, Y>0 ∈
∨
i>0 E [i], X0, Y0, Z0 ∈ E and p : Y0 → X0 an deflation.

Proof. That we can write it in this form follows from (*). Now, δ : X0 → Z0[1] corresponds to a

short exact sequence, say this is Z0
i
� V0

q
� X0. Then,

(
0
q

)
: V0 → X>0 ⊕X0 satisfies(

α β
γ δ

)(
0
q

)
=

(
0
0

)
. Therefore there exists a morphism

(
g
h

)
: V0 → Y>0 ⊕ Y0 such that(

a b
0 p

)(
g
h

)
=

(
0
q

)
, this implies p ◦ g = q. Now, as E is weakly idempotent complete it follows from

the obscure axiom [49, Prop. 7.6] that p is a deflation. �

Remark 7.9. If we could show that p is a deflation, then the proof can be completed: let
u : Y → Z, F = coker(−, u)|Y(E) be as before, take E = coker Hom(−, p)|Y(E) then the kernel can be
described as G = coker(−, a)|Y(E). As we know that G is Yoneda eaffaceable, it follows from Prop.
5.2 that a has a cone in Y(E) and can be completed to a complete projective resolution of G. Then
Ydeg(G) < 0 = Ydeg(F ) and Ydegop(G) = Ydegop(F ), so the induction would work.

Proposition 7.10. Let E be weakly idempotent complete. Assume F ∈ Yeff(E) is represented by a
triangle ∆ without split summands and Ydeg(∆) = 0, then there exists a short exact sequence in
Yeff(E)

ΩG� ΩF � ΩE

with E in Ẽ and if F is not in ẽff then dG < dF .

Proof. We take for ∆ the notation of the previous Lemma and set u :=

(
a b
0 p

)
, v =

(
c d
0 f

)
,

i.e. F = coker(−, u)|Y(E). By the previous Lemma, p is a deflation, say with E-kernel K0
j−→ Y0, then

E = coker(−, p)|Y(E) is in ẽff. Furthermore, we define G = coker(−, a)|Y(E). By the 3× 3-Lemma for
traingulated categories we find an object C and morphisms such that all rows and columns are
distinguished triangles in the following diagram

X0[−1] K0[−1] Y0[−1] X0[−1]

X>0[−1] C Y>0 X>0

X[−1] Z Y X

X0[−1] K0 Y0 X0

0 0 0

( 1
0 ) z

a

( 1
0 ) ( 1

0 )

(0,1)

v u

(0,1) (0,1)

j p
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Observe that by definition ΩG = Im(−, a)|Y(E), ΩF = Im(−, u)|Y(E), ΩE = Im(−, p)|Y(E) . We now
look at the induced diagramm of all representable functors (−, A)|Y restricted to the Yoneda
category Y = Y(E).

(−, X>0[−1])|Y (−, C)|Y (−, Y>0)|Y (−, X>0)|Y

(−, X[−1])|Y (−, Z)|Y (−, Y )|Y (−, X)|Y

(−, X0[−1])|Y coker(−, z)|Y (−, Y0)|Y (−, X0)|Y

( 1
0 ) (−,z)

a

( 1
0 ) ( 1

0 )

(0,1)

v u

(0,1) (0,1)

j p

Now, use the snake lemma (in ModY(E)) to obtain an exact sequence ΩG� ΩF � ΩE. We
conclude that G is also Yoneda effaceable and by Prop. 5.2 it follows C in Y(E). As Ydeg() > 0 is
extension-closed it follows Ydeg(C[1]) > 0, so, let us denote ∆′ the distinguished triangle

C → Y>0 → X>0
+1−−→. By definition, if F is not in ẽff, then we have Ydeg(∆′) ≤ (−2) and we have

Ydegop(∆′) ≥ Ydegop(∆) (use the columns in the 3× 3 diagram and the definition to see this). �

Then just use the distinguished triangles induced by a the short exact sequence from the previous
Proposition and an induction on dF , to see the following corollary.

Corollary 7.11. If E is weakly idempotent complete: Thick(ẽff) = Yeff(E)

Remark 7.12. We conjecture Y(E) = Y(E ic), this would imply that we can leave out the
assumption E weakly idempotent complete in the corollary 7.11 is obsolete.

8. Main results

From the previous two sections we conclude the following theorem which is our main result

Theorem 8.1. If E is a weakly idempotent complete exact category. Then the realization functor for

the admissible exact category eff(E) ∼= ẽff ⊆ Yeff(E) is a triangle equivalence

Db(eff(E))→ Yeff(E).

Theorem 8.2. If E → E ′ is a homologically exact functor. Then the induced functor eff(E)→ eff(E ′)
is homologically exact.

Proof. We get a commutative diagram

Db(eff(E)) //

��

Db(eff(E ′))

��
Yeff(E) // Yeff(E)

with the vertical arrows are fully faithful triangle equivalence and the lower one is fully faithful by
Lemma 5.8. This implies the upper triangle functor is also fully faithful. �

9. Some special situations

Definition 9.1. For an exact category we define a Frobenius pair (in the sense of Schlichting) by

eff(Gp(E)) ⊆ Gp(eff(E))

The associated Verdier quotient
Gp(eff(E))/eff(Gp(E))

will be called the Frobenius gap of E .
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Open question: Is E a Frobenius category if and only if its Frobenius gap is zero? (This seems to be
true for exact categories with enough projectives...)

Similary, if E is an exact category then P<∞(E) = {X ∈ E | pdE X <∞} is a thick subcategory We
say E is regular if E = P<∞(E). If we assume that E has enough projectives, then P<∞(E) is a
resolving subcategory of E , so in particular it is homologically exact. Then, we have a chain of
homological exact functors eff(P∞(E)) ⊆ P<∞(eff(E)) ⊆ eff(E) this induces three short exact
sequences of triangulated categories

Db(eff(P<∞(E)))→Db(P<∞(eff(E)))→ Db(P<∞(eff(E)))/Db(eff(P<∞(E))

Db(eff(P<∞(E)))→Db(eff(E))→ Db(eff(E))/Db(eff(P<∞(E))

Db(P<∞(eff(E)))→Db(eff(E))→ Dsg(eff(E))

and we get an induced fourth exact sequence of exact categories

Db(P<∞(eff(E)))/Db(eff(P<∞(E))→ Db(eff(E))/Db(eff(P<∞(E))→ Dsg(eff(E))

If E is regular then eff(E) is regular and all three triangulated categories are zero.
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[3] J. Adámek and J. Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture
Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR1294136

[4] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier
(Grenoble) 59 (2009), no. 6, 2525–2590. MR2640929

[5] C. Amiot, O. Iyama, and I. Reiten, Stable categories of Cohen-Macaulay modules and cluster categories, Amer. J.
Math. 137 (2015), no. 3, 813–857. MR3357123
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