QUASI-PROJECTIVE VARIETIES ARE QUIVER GRASSMANNIANS FOR EXACT CATEGORIES

Projective varieties are quiver Grassmannians in several ways as shown in Reineke [2] with a precursor already in [1] and further variants in [3], [4]. We slightly modify Reineke's construction to show that every quasi-projective variety (i.e. finite union of principal opens) is a quiver Grassmannian for an exact category.
We start recalling Reineke's isomorphism and first look at a single principle open subset of a projective variety. Let K be an algebraically closed field. We consider $X=\operatorname{Proj}(\mathrm{R})$ with $R=K\left[T_{0}, \ldots, T_{n}\right] /\left(f_{1}, \ldots, f_{t}\right), f_{i}$ homogeneous polynomials of degree $d_{i}>0,1 \leq i \leq t$. Let f be another homogeneous polynomial such that $\bar{f} \in R$ has a positive degree $d_{f}>0$ - in particular f is not a scalar multiple of any f_{i}, $1 \leq i \leq t$. Then the principal open subset $D_{+}(\bar{f}) \subset X$ equals $\left\{x \in \mathbb{P}^{n}(K) \mid f_{i}(x)=\right.$ $0,1 \leq i \leq t, f(x) \neq 0\}$.
(1) We may assume that $d:=d_{i}=d_{j}=d_{f}$ for all $i \neq j$. Otherwise, take $\ell=\operatorname{lcm}\left(\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{t}}, \mathrm{d}_{\mathrm{f}}\right)$ and replace f_{i} by $f_{i}^{\frac{\ell}{d_{i}}}$ and f by $f^{\frac{\ell}{d_{f}}}$. This does not change the variety, nor the open subset.
(2) We use the d-uple embedding of \mathbb{P}^{n}. More precisely: Let
$M_{n, d}:=\left\{\left(m_{0}, \ldots, m_{n}\right) \in \mathbb{N}_{0}^{n+1} \mid \sum_{j=0}^{n} m_{j}=d\right\}, M:=\left|M_{n, d}\right|$ and $N:=$ $\left|M_{n, d-1}\right|$ the cardinalities. Let

$$
\begin{aligned}
& j: \mathbb{P}^{n} \rightarrow \mathbb{P}^{M-1}, \quad\left[x_{0}: \ldots: x_{n}\right] \mapsto\left[\cdots: x_{m}: \cdots\right]_{m \in M_{n, d}}, \\
& \quad \text { where } \quad x_{m}=x_{0}^{m_{0}} \cdots x_{n}^{m_{n}} \text {, for } m=\left(m_{0}, \ldots, m_{n}\right) \in M_{n, d}
\end{aligned}
$$

This is a closed embedding called the d-uple embedding.
Now, we consider the quiver $Q=\left(Q_{0}, Q_{1}\right)$ with three vertices $1,2,3$ and $n+1$ arrows from 2 to 3 and t arrows from 2 to 1 . We define the following Q-representations: We denote by $v_{m}, m \in M_{n, d}$ a vector space basis for $K^{M_{n, d}}$ (which is the set of all maps from $M_{n, d} \rightarrow K$, given a vector space structure with the pointwise addition and scalar multiplication). Let $f_{j}=\sum_{m \in M_{n, d}} a_{m}^{(j)} T^{m}, f=\sum_{m \in M_{n, d}} a_{m} T^{m}$, we denote by φ_{j} resp. φ the linear map $K^{M_{n, d}} \rightarrow K$ sending $v_{m} \mapsto a_{m}^{(j)}$ resp to a_{m}.
Let V be the Q-representation with $V_{1}=K, V_{2}=K^{M_{n, d}}, V_{3}=K^{M_{n, d-1}}$ and linear maps $\varphi_{j}: V_{2} \rightarrow V_{1}, 1 \leq j \leq t, g_{i}: V_{2} \rightarrow V_{3}, 0 \leq j \leq n$ defined by $g_{i}\left(v_{m}\right):=v_{m-e_{i}}$ if $m_{i}>0$ and $g_{i}\left(v_{m}\right)=0$ if $m_{i}=0$.
Then [2] it has been shown that $j(X)$ is isomorphic to $\operatorname{Gr}_{Q}(V,(0,1,1))$.
We are going to extend this quiver to a quiver Σ with vertices $\{1,2,3,4,5\}$

with t arrows from 2 to 1 one arrow $\iota: 2 \rightarrow 4$ and one $\iota^{\prime}: 3 \rightarrow 5, n+1$ arrows $\alpha_{0}, \ldots, \alpha_{n}$ from 2 to 3 and $n+1$ arrows $\beta_{0}, \ldots, \beta_{n}$ from 4 to 5 . Additionally
we impose the commutativity relations $I=\left(\alpha_{u} \circ \iota-\iota^{\prime} \circ \beta_{u}, 0 \leq u \leq n\right)$. Let $\Lambda=K \Sigma / I$. We extend the Q-representation V to a Λ-module \mathbb{V} by imposing that at arrow ι and arrow ι^{\prime} have to be the identity map, then we have $\underline{\operatorname{dim} \mathbb{V}}=(1, M, N, M, N)$ (here dimension vector $\underline{\operatorname{dim}} L=\left(d_{1}, \ldots, d_{5}\right)$ means $\left.d_{i}=\operatorname{dim}_{K} L_{i}\right)$. Observe that every $K Q \otimes K \mathbb{A}_{2}$-module, i.e. a $K Q$ module morphism $a: U \rightarrow V$, restricts to a Λ-module $e(a)$ when we leave out the vector space V_{1} and the maps to it. Now let $d=(0,1,1, M, N)$ be a dimension vector, then it is straight forward to see that we get an isomorphism of varieties:

$$
\operatorname{Gr}_{Q}(V,(0,1,1)) \rightarrow \operatorname{Gr}_{\Lambda}(\mathbb{V}, d)
$$

which sends $i: U \subset V$ to $e(i) \subset \mathbb{V}$ and conversely, just restricts the inclusions to the vertices $1,2,3$, call this $i: U \rightarrow V$. Then the inclusion i_{2} of i at vertex 2 has the same image as $e(i) \subset \mathbb{V}$ at vertex 2 . This is a very silly map but it ensures that different point $x \neq x^{\prime}$ in X correspond to non-isomorphic Λ-modules U_{x} and $U_{x^{\prime}}$.
Now let \mathbb{V}_{f} be the Λ-module with underlying vector space as \mathbb{V} and the restriction to the subquiver given by $2,3,4,5$ is the same as for \mathbb{V} but with all the linear maps $V_{2} \rightarrow V_{1}$ are all chosen to be φ.
We claim:
Lemma 0.1. (i) $\operatorname{Hom}_{\Lambda}\left(\mathbb{V}, \mathbb{V}_{f}\right)=0=\operatorname{Hom}_{\Lambda}\left(\mathbb{V}_{f}, \mathbb{V}\right)$ and $\operatorname{End}_{\Lambda}\left(\mathbb{V}_{f}\right)=K=$ $\operatorname{End}_{\Lambda}(\mathbb{V})$.
(ii) If $U_{x}=e(i) \in \operatorname{Gr}_{\Lambda}(\mathbb{V}, d)$ such that $i: U \subset V$ corresponds under Reinekes isomorphism to $x \in X \subset \mathbb{P}^{n}(K)$ (i.e. $j(x)=\operatorname{Im} i_{2}$), then:
$\operatorname{Hom}_{\Lambda}\left(U_{x}, \mathbb{V}_{f}\right)=0$ iff $f(x) \neq 0$.
Proof. (i) It is clear that we may restrict to the full subquiver Q at vertices $1,2,3$ since for these modules at arrow i and j we have the identity. We look at the full subquiver Q^{\prime} given by the vertices $\{2,3\}$. The restricted representation V^{\prime} onto this subquiver is for \mathbb{V} and \mathbb{V}_{f} the same. In the last paragraph of loc. cit it is shown that $\operatorname{End}_{K Q^{\prime}}\left(V^{\prime}\right)=K$, more precisely every endomorphism consists of a pair of linear maps $\psi_{2}: V_{2} \rightarrow$ $V_{2}, \psi_{3}: V_{3} \rightarrow V_{3}$ with $\psi_{2}=C \mathrm{id}_{V_{2}}$ for a $C \in K$ and ψ_{3} is determined by ψ_{2}. Now, since f is not a scalar multiple of any of the f_{i}, the rest of the claim is clear from the definitions.
(ii) $\operatorname{Hom}_{\Lambda}\left(U_{x}, \mathbb{V}_{f}\right) \neq 0$ is equivalent to $\operatorname{Hom}_{\Lambda}\left(U_{x}, \mathbb{V}_{f}\right)=0$ (using [2], last paragraph). This is equivalent to that there is a monomorphism $U_{x} \rightarrow$ \mathbb{V}_{f} and this is equivalent to $U_{x} \subset \mathbb{V}_{f}$. The last statement is by the argument used for Reineke's isomorphism equivalent to $f(x)=0$.

Now let $\mathcal{E} \subset \Lambda-\bmod$ be the extension-closed subcategory consisting of all modules L such that $\operatorname{Hom}_{\Lambda}\left(L, \mathbb{V}_{f}\right)=0$. Observe that given a short exact sequence of Λ-modules $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$, with U, V in \mathcal{E}, it follows that W is in \mathcal{E}.
From the previous Lemma it follows directly:
Theorem 0.2. The isomorphism $\operatorname{Gr}_{\Lambda}(\mathbb{V}, d) \rightarrow j(X) \cong X,(i: U \subset \mathbb{V}) \mapsto$ $\operatorname{Im} i_{2}$, restricts to an isomorphism of open subsets $\operatorname{Gr}_{\mathcal{E}}(\mathbb{V}, d) \rightarrow D_{+}(\bar{f})$ where \mathcal{E} is the exact category defined before.

In this second part, we look at a finite union of principal open subsets $D_{+}\left(\bar{h}_{1}\right) \cup \cdots \cup D_{+}\left(\bar{h}_{s}\right)$ inside the projective variety $X=V_{+}\left(f_{1}, \ldots, f_{t}\right)$. Let \mathcal{E}_{i} be the full subcategory of $\Lambda-\bmod$ of objects L such that $\operatorname{Hom}\left(L, \mathbb{V}_{h_{i}}\right)=0$. In this situation, we define \mathcal{E} to be the full subcategory of $\Lambda-\bmod$ all objects L such that there exists a filtration

$$
0=L_{0} \subset L_{1} \subset \cdots \subset L_{r}=L
$$

such that $L_{i} / L_{i-1} \in \mathcal{E}_{j_{i}}$ for some $j_{i} \in\{1, \ldots, s\}$ for all $1 \leq i \leq r$.
Lemma 0.3. \mathcal{E} is an extension-closed subcategory of $\Lambda-\bmod$.
Proof. Denote by Filt ${ }^{\mathrm{r}}$ the subcategory of modules L admitting a filtration as above with $L_{r}=L$. Given a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow L \rightarrow 0$ with $A \in \mathcal{E}$ and $L \in$ Filt r one pulls back the short exact sequence along $L_{r-1} \rightarrow L$ to a short exact sequence $0 \rightarrow A \rightarrow B^{\prime} \rightarrow L_{r-1} \rightarrow 0$. Inductively, one concludes that $B^{\prime} \in \mathcal{E}$. On the other hand the pullback induces an exact sequence $0 \rightarrow B^{\prime} \rightarrow B \rightarrow L / L_{r-1} \rightarrow 0$ and therefore $B \in \mathcal{E}$.

Lemma 0.4. $\operatorname{Gr}_{\mathcal{E}}(\mathbb{V}, d)=\operatorname{Gr}_{\mathcal{E}_{1}}(\mathbb{V}, d) \cup \cdots \cup \mathrm{Gr}_{\mathcal{E}_{s}}(\mathbb{V}, d)$. In particular, this is an open subscheme of $\operatorname{Gr}_{\Lambda}(\mathbb{V}, d)$.

Proof. Clearly we have the right hand side is a subset of $\operatorname{Gr}_{\mathcal{E}}(\mathbb{V}, d)$. For the other inclusion we look at a submodule U of \mathbb{V} of dimension vector d in \mathcal{E}. If U is in none of the \mathcal{E}_{i}, then there exists non-zero morphisms $U \rightarrow \mathbb{V}_{h_{i}}$ for every i. In this case, since $\operatorname{Hom}_{\Lambda}\left(U, \mathbb{V}_{h_{i}}\right)=K$ it follows by the same argument used before that there is a monomorphism $U \rightarrow \mathbb{V}_{h_{i}}$ for every i. This implies that for every i every non-zero submodule of U is also not in \mathcal{E}_{i} contradicting $U \in \mathcal{E}$.

As a corollary we obtain.
Theorem 0.5. The isomorphism $\operatorname{Gr}_{\Lambda}(\mathbb{V}, d) \rightarrow j(X) \cong X,(i: U \subset \mathbb{V}) \mapsto$ $\operatorname{Im} i_{2}$, restricts to an isomorphism of open subsets $\operatorname{Gr}_{\mathcal{E}}(\mathbb{V}, d) \rightarrow \bigcup_{a=1}^{s} D_{+}\left(\bar{h}_{a}\right)$ where \mathcal{E} is the exact category as before. In particular, every quasi-projective variety is a quiver Grassmannian for an exact category.

But of course there are deep open questions: For which exact categories and dimension vectors and objects is a quiver Grassmannian(-functor) representable by a scheme (or variety)? For example, looking at the exact category \mathcal{E} as before, do quiver Grassmannian for all dimension vectors and objects exist?

References

[1] L. Hille, Tilting line bundles and moduli of thin sincere representations of quivers, 1996, pp. 76-82. Representation theory of groups, algebras, and orders (Constanţa, 1995). MR1428456
[2] M. Reineke, Every projective variety is a quiver Grassmannian, Algebr. Represent. Theory 16 (2013), no. 5, 1313-1314. MR3102955
[3] C. M. Ringel, The eigenvector variety of a matrix pencil, arXiv, 2017.
[4] , Quiver grassmannians for wild acyclic quivers, arXiv, 2017.

