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Abstract

The thesis consists of the following chapters:

1.

Springer theory.

For any projective map E — V, Chriss and Ginzburg defined an algebra structure
on the (Borel-Moore) homology Z := H,(F xy E), which we call Steinberg algebra.
(Graded) Projective and simple Z-modules are controlled by the BBD-decomposition
associated to & — V. We restrict to collapsings of unions of homogeneous vector
bundles over homogeneous spaces because we have the cellular fibration technique and
for equivariant Borel-Moore homology we can use localization to torus-fixed points.
Examples of Steinberg algebras include group rings of Weyl groups, Khovanov-Lauda-

Rouquier algebras, nil Hecke algebras.

Steinberg algebras.
We choose a class of Steinberg algebras and give generators and relations for them.
This fails if the homogeneous spaces are partial and not complete flag varieties, we

call this the parabolic case.

The parabolic case.
In the parabolic cases, we realize the Steinberg algebra Z¥ as corner algebra in a
Steinberg algebra ZP associated to Borel groups (this means ZF = eZPBe for an

idempotent element e € Z5).

. Monoidal categories.

We explain how to construct monoidal categories from families of collapsings of ho-

mogeneous bundles.

Construct collapsings.
We construct collapsing maps over given loci which are resolutions of singularities or
generic Galois coverings. For closures of homogeneous decomposition classes of the

Kronecker quiver these maps are new.

Quiver flag varieties.

Quiver flag varieties are the fibres of certain collapsings of homogeneous bundles. We
investigate when quiver flag varieties have only finitely many orbits and we describe
the category of flags of quiver representations as a A-filtered subcategory for the

quasi-hereditary algebra KQ ® K A,,.

A, -equioriented.
For the A,-equioriented quiver we find a cell decompositions of the quiver flag vari-

eties, which are parametrized by certain multi-tableaux.
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Chapter 1
A survey on Springer theory

Summary. A Springer map is for us a union of collapsings of (complex) homogeneous
vector bundles and a Steinberg variety is the cartesian product of a Springer map with
itself. Chriss and Ginzberg constructed on the (equivariant) Borel-Moore homology and
on the (equivariant) K-theory of a Steinberg variety a convolution product making it an
associative algebra, we call this a Steinberg algebra (cp. | |,2.7, 5.2 for the nonequiv-
ariant case). The decomposition theorem for perverse sheaves gives the indecomposable,
projective graded modules over the Steinberg algebra. Also this convolution yields a mod-
ule structure on the respective homology groups of the fibres under the Springer maps,
which we call Springer fibre modules. In short, for us a Springer theory is the study
of a Steinberg algebra together with its graded modules.

We give two examples: Classical Springer theory and quiver-graded Springer theory.

(1) Definitions and basic properties.
(2) Examples

(a) Classical Springer theory.
(b) Quiver-graded Springer theory.

(3) We discuss literature on the two examples.

1.1 Definition of a Springer theory

Roughly, following the introduction of Chriss and Ginzburg’s book (| D!, Springer
theory is a uniform geometric construction for a wide class of (non-commutative) algebras

together with families of modules over these algebras. Examples include
(1) Group algebras of Weyl groups together with their irreducible representations,

(2) affine Hecke algebras together with their standard modules and irreducible represen-

tations,

!We take a more general approach, what usually is considered as Springer theory you find in the example
classical Springer theory. Nevertheless, our approach is still only a special case of | |, chapter 8.



(3) Hecke algebras with unequal parameters,

(4) Khovanov-Lauda-Rouquier-algebras (or shortly KLR-algebras) and alternatively called

quiver Hecke algebras
(5) Quiver Schur algebras

For an algebraic group G and closed subgroup P (over C) we call G — G/P a principal
homogeneous bundle. For a given P-variety F' we have the associated bundle defined

by the quotient
GxV"F=GxF/~, (9.f)~(d.f): <= thereispeP:(g,f)=(g'p.p"'f)

and G x F — G/P, (g, f) — gP. Given a representation p: P — GI(F), i.e. a morphism
of algebraic groups, we call associated bundles of the form G' x F — G/ P homogeneous

vector bundles (over a homogeneous space).

Definition 1. The uniform geometric construction in all cases is given by the following:
Given (G, P;,V, F;)icr with I some finite set,

(¥) G a connetcted reductive group with parabolic subgroups P;.
We also assume there exists a maximal torus 7' C G which is contained in every F;.

(¥) V a finite dimensional G-representation, F; C V a Pj-subrepresentation of V, i € I.

We identify V, F; with the affine spaces having the vector spaces as C-valued points. Let

E; := G xTi F;,i € I and consider the following morphisms of algebraic varieties?:

E =l Ei (g, fi)]
/ X
1% Llier G/ P 9fi 9P
Then, £ — V x |;c; G/P;, (g, fi)] = (g9fi,g9P) is a closed embedding (see | I,

p.25,26), it follows that 7 is projective. We call the algebraic correspondence® (E,, i)
Springer triple, the map m Springer map, its fibres Springer fibres. Via restriction
of E =V x| ;,c; G/P; to m=1(s) — {x} x | ];c; G/P; one sees that all Springer fibres are
via p closed subschemes of | |,.; G/P;.

Zalgebraic variety = separated integral scheme of finite type over a field

3two scheme morpisms X <2 725y are called algebraic correspondence, if p is proper and ¢
is flat

10



We also have another induced roof-diagram

Z:=ExyE
/ \

|4 (Uier G/B) x (Uicr G/ B)

withp: ExvE 22 E 5 V projective and m: Exy E ZEVEL pup 9 (1) G/P)x
(Lier G/F;). Observe, by definition

Z = |_| Zi,ja Zi,j = E,L Xy Ej.
i,5€l
We call the roof-diagram (Z,p, m) Steinberg triple, the scheme Z Steinberg variety
(even though as a scheme Z might be neither reduced nor irreducible). But in view of our
(co-)homology choice below we only study the underlying reduced scheme and look at its

C-valued points endowed with the analytic topology.

If all parabolic groups P; are Borel groups, the Steinberg variety Z is a cellular fibration

over | |;c; G/P; via the map

z% | |a/px| |G/p 2| |G/P
icl icl icl
(see definition of cellular fibration in | |, 5.5 or subsection 8.3.5 in the Appendix.) We
choose a (co-)homology theory which can be calculated for spaces with cellular fibration
property and which has a localization to the T-fixed points theory. Let HZ, A € {pt, T,G}
be (A-equivariant) Borel-Moore homology. We could also choose (equivariant) K-
theory, but we just give some known results about it.
There is a natural product * on HA(Z) called convolution product constructed by Chriss

and Ginzburg in | |-

«: HN(Z) x HMNZ) — HA(Z)
(c,d) = exd = (q1,3)«(p 2(c) NP5 5(c))
where p,: Ex ExE — Ex Eis the projection on the a, b-th factors, ¢, is the restriction
of pay to E xy E xy E, then p, ,(c) € H(p,,(E xy E)) and N: HA(X) x H}MY) —
H;+q_2d(X NY) is the intersection pairing which is induced by the U-product in relative
singular cohomology for X, Y C M two A-equivariant closed subsets of a d-dimensional

complex manifold M (cp. | |, p-98, (2.6.16)).
It holds

Hﬁ(Z@j) * H(f(Zk,g) C 5j,kH£+q72ek(ZZ',€)7 e, = dimg Ej.

We call (HA(Z),*) the (A-equivariant) Steinberg algebra for (G, P, V,F,)ics. It is
naturally an graded module over HA(pt), see Appendix section ??, (6). We denote by

11



DY(V) the A-equivariant derived category of V defined by Bernstein and Lunts in | |-

There is a the following identification.

Theorem 1.1.1. (/ |, chapter 8) Let A € {pt,T,G} we write e; = dimc E;. There is

an isomorphism of C-algebras

H(Z) = Extyy ) (D (i) Clei], ) (i), Clei)),

el el

where C is the constant sheaf associated to C on the appropriate spaces. If we set

Hiy(Z):= P HE (Zi ;)

ei+ej—p
i,j€l

then H[’;‘}(Z) is a graded module over H*(pt) = HA,(pt). It is even a graded algebra over
H(pt). The right hand side is naturally o graded algebra over H(pt) = EXtEg(pt) (C,©)
and the isomorphism is an isomorphism of graded Hj(pt)-algebras. Furthermore, the
Verdier duality on DZ(V) imduces an anti-involution on the algebra on the right hand

side.

On the left hand side the anti-involution is given by pullback along the swapping-the-
two-factors map. The proof is only given for A = pt, but as Varagnolo and Vasserot in

[ | observed, the same proof can be rewritten for the A-equivariant case.

1.2 Convolution modules

Compare | |, section 2.7. Given two subsets S12 C My x My, Sa3 C My x Mz the

set-theoretic convolution is defined as
5172 o 3273 = {(ml,mg) | dmo € My: (ml,mz) S 51,2, (mQ,TTL3) S 5273} C M7 x Ms.

Now, let S;; C M; x M; be A-equivariant locally closed subsets of smooth complex A-
varieties, let p; j: My x My x Ms — M; x M; be projection on the (7,7)-th factors and

assume q1 3 := p173‘pf21(51,2)ﬂp;§(52,3) is proper. Then we get a map

s Hi'(S12) X HJ(S2.8) = Hpy g o dime it (S1,2© S2.3)

c12 % c23 = (q1,3)+(P12€12 NP2 3C23)-

This way we defined the algebra structure on the Steinberg algebra, but it also gives a
left module stucture on HA(S) for any A-variety S with Z oS = S and a right module

structure when SoZ = S.

(a) We choose My = My = M3 = E and embed Z = Exy EC EX E,E =F xpt C
E x E, then it holds Z o E = E. If we regrade the Borel-Moore homology (and the

12



Poincare dual A-equivariant cohomology) of E as follows

Hiy(B) = @ HL () (= P H () = H{(E)

i€l el
then H[‘:]
(b) We choose My = My = M3 = E and embed E C FE x E diagonally, then Fo E = E,
it holds Hé) (E) = H}(FE) as graded algebras where H(‘;‘J)(E) =, Héii,p(Ei) and
the ring structure on the cohomology is given by the cup product. If we take now
Z = FExy E C EXxFEthen FEoZ = Z and we get a structure as graded left

H*%(E)-module on H[fj](Z).

E) and HM(E) carry the structure of a graded left HA (Z)-module.
J

[*

(c) We choose My = My = M3 = E, A=ptand embed Z = Exy EC Ex E, 7 }(s) =
771(s) x pt C E x E, then it holds Z o 7~!(s) = E. If we regrade the Borel-Moore

homology and singular cohomology of 7=1(s) as follows
Hyy(r () i= @D He,—p(m; ' (5),  HP(x™(s)) := @ H (7 (s))
icl el
then H, (m=1(s)) and H¥(7~1(s)) are graded left H[,y(Z)-module.

We call these the Springer fibre modules.

Similarly in all examples one can obtain a right module structure (the easy swaps are
left to the reader). Independently, one can define the same graded module structure on
H.(77(s)), H*(7~'(s)) using the description of the Steinberg algebra as Ext-algebra and
a Yoneda operation (for this see | |, 8.6.13, p.448 ).

There is also a result of Joshua (see | |) saying that all hypercohomology groups
HY(Z, F*), F* € DY%(Z) carry the structure of a left (and right) H(Z)-module.

1.3 The Steinberg algebra

1.3.1 The Steinberg algebra H{}(Z) as module over H,"(pt).

We set W := L; jer Wij with Wi ; := W; \ W/W; where W' is the Weyl group for (G, T)
and W; C W is the Weyl group for (L;,T) with L; C P; the Levi subgoup. We will fix
representatives w € G for all elements w € w.

Let Cy = G - (eP;, wPj) be the G-orbit in G/P; x G/P; corresponding to w € W ;.

Lemma 1. (1) p: C,, C G/P; x G/P; 2% G/P; is G-equivariant, locally trivial with
fibre pY(eP) = PP, /P,

(2) PawPj/Pj admits a cell decomposition into affine spaces via Schubert cells

zBjr lvwP;/P;, veEW,;

13



where B; C P; is a Borel subgroup and x € W such that *B; C P;. In particular,
Hodd(Pinj/Pj) =0 and

H.(PawP;/P;) = @ Cbi;j(v), bi;(v) := [¢Bjz~TowP;/Py).
veW;
It holds that degb; j(v) = 2¢;;(v) where {;;(v) is the length of a minimal coset
representative in W for = LowW; € W/W;.

(3) For A€ {pt,T,G} it holds H2,,(Cy) = 0 and since G/P; is simply connected

HCw) = € HL(G/P)® Hy(PwP;/Py),

n
ptq=n

H)NCw) = @ Cb;(u) @ b;,;(v),
uEW/Wi,’UEWZ‘

where bj(u) = [B;uP;/P;|* is of degree 2dimc G/P; — 2¢;(u) with ¢;(u) is the length

of a minimal coset representative for u € W/W; and b; ;(v) as in (2).

Proof: Seelemma 80 in the Appendix.
This implies using degeneration of Serre cohomology spectral sequences (see section in

the Appendix) the following properties for the homology of Z.

Corollary 1.3.0.1. (1) Z has a filtration by closed G-invariant subvarieties such that
the successive complements are Zy, := m~1(Cy),w € W and the restriction of m to

Z is a vector bundle over Cy, of rank dy, (as complex vector bundle). Furthermore,

H\(Z) = P H:(Zw) = D Hi'2a,(Cw)

weW weW

=P P PChiw) @bi(v)

i,jEI ’LUGWZ‘J' u,v

where the index set of the last direct sum is
{u e W/W;,ve Wi | 2dim G/ P; — 24;(u) + 24; j(v) = n — 2dy }.

(2) We have H,qq(Z) = 0, H°¥(Z) = 0.

(8) Z is equivariantly formal (for T and G, for Borel-Moore homology and cohomology).
In particular, for A € {T,G} the forgetful maps HA(Z) — H.(Z) and H(Z) —
H*(Z) are surjective algebra homomorphisms. It even holds the stronger isomorphism

of C-algebras

H*(Z) = HA(Z)/HZ"(pt)HA(Z)

14



As a consequence we get the following isomorphisms.

1) HA(Z) = H.(Z) @c H(pt)  of HA(pt)-modules
2) Hy(Z) = H(Z) ®@c H)(pt)  of H(pt)-modules

We can see that H[‘;‘}(Z) has finite dimensional graded pieces and the graded pieces

are bounded from below in negative degrees.

1.3.2 The Steinberg algebra H*(Z) and H*%(E)

Recall from a previous section that H%(E) is a graded left (and right) H[‘i](Z)—module
and that H%(E) has a Hj(pt)-algebra structure with respect to the cup product, the
H[‘j}(Z)—operation is H (pt)-linear.

Remark. Let ¢;: F; — pt, © € I, there is an isomorphism of algebras

End s o) (HA(E)) = HA(E x E) = Extpya 0 (€D (a1).Cleil, €D (a).Clei]).
i€l i€l

the first equality follows from | |, Ex. 2.7.43, p.123, for the second: Use the Thom
isomorphism to replace ¥ X F by a union of flag varieties, then use theorem 1.1.1 for the
Springer map given by the projection to a point.

Furthermore, under the identifications, the following three graded HA (pt)-algebra homo-

morphisms are equal.

(1) The map HA(Z) — End g (o) (H4(E)),c— (e cxe).

(2) iv: HA(Z) — HA(E x E) where i: Z — E x E is the natural embedding.

(3) Set Ar := ;e (m),Clei].

Ext*DA(V) (Ar, Ar) — ExtBA(pt)(a* (Ar),ax(Ar)),
[ adf)
where a: V — pt.

We do not prove this here.

Lemma 2. (/ |, remark after Prop.3.1, p.12) Assume that T C (); P; is a mazimal
torus and ZT = ET x ET ET = | |,.;(G/P)T. Let A€ {T,G}. The map from (1)

HMNZ) — Endgs o) (HA(E)), cr (e cxe)

is an injective homomorphism of H(pt)-algebras. Let t be the Lie algebra of T, then it
holds H},(E) = C[t|®!, where C[t] is the ring of regular functions on the affine space t.

15



Proof: For G-equivariant Borel-Moore homology we claim that the following diagram is
commutative

HT(27) g¢ K —= HT(ET x ET) 0¢ K

T !

HI(Z) HT(E x E)
HE(Z) HE(E x E)

where K = Quot(H7}(pt)) The commutativity of the lowest square uses functoriality of
the forgetful maps. By assumption Z7 = (E x E)T, the highest horizontal map is an
isomorphsim. Now, since H! (Z), HI(E x E) are free HZ(pt)-modules, we get that the
maps H! (Z) - HI(Z)® K, HI (E x E) - HI'(E x E) ® K are injective. By the local-
ization theorem see Appendix, theorem 8.3.1 or | |, lemma 1, we get the isomorphisms
HI'(Z)o K 2 HI'(ZT)o K, HI(ExE)® K = HI' (E” x ET)® K. That implies that the
middle horizontal map has to be injective, together with (2) from the previous remark it
implies the claim for T-equivariant Borel-Moore homology. But by the splitting principle,
i.e. the identification of the G-equivariant Borel-Moore homology with the W-invariant
subspace in the T-equivariant Borel-Moore homology, the forgetful maps become the in-
clusion of the W-invariant subspace. This means the two vertical maps in the lower square
are injective. This implies that the lowest horizontal map is injective. Together, with (2)
of the previous remark the claim follows for A = G. ]

The main ingredient to the previous lemma is a weak version of Goretzky’s, Kottwitz’
and MacPherson’s localization theorem (see | ). Similar methods are currently
developed by Gonzales for K-theory in [Gon].

The previous lemma is false for not equivariant Borel-Moore homology as the following

example shows.

Example. Let G be a reductive group with a Borel subgroup B and u be the Lie algebra
of its unipotent radical. Z := (G xP u) x4 (G xB u), then it holds that the algebra H.(Z)
can under the isomorphism in Kwon (see | |) be identified with C[t]/ Iy #C[W|] where
Iy C C[{] is the ideal generated by the kernel of the map C[]"Y — C, f + f(0). The
skew ring C[t]/Iw#C[W] is defined as the C-vector space Clt]/Iyy ®c C[W] with the
multiplication (f @w)-(g®v) := fw(g) ®wv. Furthermore, we can identify Endc(H*(E))
via the Thom-isomorphism and the Borel map with Endc_;,,(C[t]/I). The canonical
map identifies with
C[t]/Iw#C[W] — Endc_1in(C[t]/Iw)
fewes (o fulp)

This map is neither injective nor surjective. For example > 1 ®@w # 0 in
Clt]/Iw #C[W] but its image (p — Y, cw w(p)) is zero because Y, i w(p) € Iyy. Be-
cause both spaces have the same C-vector space dimension, it is clear that it is also not

surjective.
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Furthermore, H(Z) is naturally a H*%(E)-module. In fact let e; ; := € € W; ; be the
double coset of the neutral element, then H*%(F) = HA(| |
of HA(Z).

0 N\ -
i el Z*%i) is even a subalgebra

Corollary 1.3.0.2. In the situation of the previous lemma, i.e. T C (), P; is a mazimal
torus and ZT = ET x ET ET = | |,.,(G/P,)T and let A € {T,G}. There are injective
homomorphism of H}.(pt)-algebras

H(pt) € HNE) C HN(Z) — Endp ) (HA(E)),

where the first inclusion is given by the pullback along the map E — pt. In particular,
H(pt) is contained in the centre of HA(Z) (we only know ezamples where it is equal to

the centre).

Let w € W. Observe, that H*%(E) already operates on HA(Z%) and the compo-
sition HA(Z) = @, HA(Z?) is a direct sum composition of H*(E)-modules. Using
the Thom-isomorphism (see Appendix, subsection ??, (5)), up to a degree shift we can
also study HA(C%) as module over H%(|];c; G/P;). Now, let e; be the idempotent in
By (e G/P) = B,e; Hi(G/P;) which corresponds to the projection on the i-th di-
rect summand. Since for w € W;; it holds HA(Cy) = H(G/P) ®c H.(PiwP;/P;)
also as H%(G/P;)-module, we conclude that H2(C,,) is always a projective module over
H%(;e; G/P;). In other words this discussion yields.

Lemma 3. (1) Letw € W, ;. Each H(Z™) is a projective graded H*(E)-module of the
form

D (Hi(E)e:)[2dy, + degb; ;(v)),
veW;

where [d] denotes the degree shift by d. In particular, HA(Z) is a projective graded
H (E)-module.

(2) If all P; = B; are Borel subgroups of G, then

HNZ)= @ (DHA(E)e:) dw,ij))

w,jEWXI i€l

as graded H (E)-module for certain dy,; j € Z. In particular, if we forget the grading
HAMZ) is a free H%(E)-module of rank #W - #1.

1.4 Indecomposable projective graded modules over H[f}(Z)

and their tops for a different grading

Let X be an irreducible algebraic variety, we call a decomposition X = (J,c4Sa into
finitely many irreducible smooth locally closed subsets a weak stratification. Since 7: E =

|lic; £i — V is a G-equivariant projective map, there exists (and we fix it) a weak strati-
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fication into G-invariant subsets V' = | |, 4 Sq such that 771(S,) & S, is a locally trivial*
fibration with constant fibre F, :== 7= !(s,) where s, € S, one fixed point, for every a € A.
(For projective maps of complex algebraic varieties one can always find such a weak strat-
ification, see | |, 4.4.1-4.4.3)°

Recall that for any G-equivariant projective map of complex varieties, the decomposition
theorem holds (compare | | for the not equivariant version and | | for the equiv-
ariant version). Let ¢ run over all simple® G-equivariant local systems £; on some stratum
S = Sa,, ar € A, we write IC{ := (ig)«(ZC*(Si, L1)[ds,] with dg, = dime Sy for the sim-
ple perverse sheaf in the category of A-equivariant perverse sheaves Perva (V) C DY(V),
see again | |, p. 41. Let e; = dimc Ej,i € I, then Cp [e;] is a simple perverse sheaf in
DY%(E). For a graded vector space L = @ .y, Lq we define L(n) to be the graded vector
space with L(n)q := Ly4+4, n € Z. We see C as the graded vector space concentrated in
degree zero. For an element F* € D% (X) for an A-variety X we write F'*[n] for the (class
of the) complex (F*[n])y := F™" n € Z. Now given F'* € D%(X) and a finite dimensional
graded vector space L := @;_, C(d;) we define

L®g F* = F*[d;] € DY(X)
=1

The A-equivariant decomposition theorem applied to 7 gives

P (mi).Cplei) = P Li @4r IC € DY(V)

el

where the L; := @,y Lt g are complex finite dimensional graded vector spaces.

Let D be the Verdier-duality on V', it holds D (. (C[d])) = 7.(C[d]), D(IC{') = IC} where
we define for t = (5, £) the associated dual local system as t* = (S5, L*), L* := Hom(L,C).
This implies L; = Ly for all ¢.

1.4.1 Indecomposable projectives in the category of graded left H[f*‘}(Z)-

modules

We set

PtA = EXt*DZ(v) (10547 @ (i) .Clei]).-
el

“with respect to the analytic topology

5If the image of r is irreducible, by [ ], theorem 1.9.10 we can refine this stratification to a (finite)
Whitney stratification, but it is not clear if we can find a Whitney stratification into G-invariant subsets.

6a local system is simple if the by monodromy associated representation of the fundamental group has
no nontrivial subrepresentation. Usually this is called irreducible.
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It is a graded (left) H, [fk‘](Z )-module. It is indecomposable because IC{* is simple. Clearly

it holds as left graded H, [f:](Z )-modules

Hiy(2) = D Lua © (D Bxtyy ) (IG €D (mi) .Clei)]

deZ,t nel i€l
= @ Lya®c P/[d]
deZ,t

:®L7‘ ®g7‘ PtA
t

that implies that PtA is a projective module and that (P/); is a complete set of isomorphism

classes up to shift of indecomposable projective graded H [A (Z)-modules.

+]

Lemma 4. Assume that H’(pt) is a graded subalgebra of the centre of H[‘;‘](Z). The
elements Hjo(pt) operate on any graded simple H[’f}(Z)—module S by zero. In particular,
by lemma 1.8.0.1 we see that S is a graded simple modules over HM(Z). Any graded simple
module is finite-dimensional and there exists up to isomorphism and shift only finitely many
graded simple modules.

For any graded simple module S there is no nonzero degree zero homomorphism S —

S(a), a #0.

Proof: By assumption that H%(pt) is central, we obtain that Hjo (pt)- S is a graded left
H[‘g}(Z)—module, clearly it is a submodule of S. Since S is simple it holds H7;°(pt) - S is
zero or S. Assume it is S, then there exists z € H%(pt) for a d > 0 such that z - S # 0.
Since z is central, this is a submodule of S and we have z-S = S. Let y € S,y # 0,
homogeneous. Then, it holds S = H[‘j}(Z) cy = H[f:](Z) - xy contradicting the fact that
there is a uniquely determined minimal nonzero degree for S. Therefore H;%(pt) - S = 0.
By | |, I1.6, p.106, we know that the graded simple modules considered as modules over
the ungraded rings HA(Z), H.(Z) are still simple modules. Since the finite-dimensional
algebra H,(Z) has up to isomorphism only finitetly many simples, the claim follows.

Any nonzero degree 0 homomorphism ¢: S — S(a) has to be an isomorphism. Let S =
H[f*‘}(Z) -y as before, set degy = m. Then S(a) = H[’:](Z)‘cﬁ(y), deg ¢(y) = m which gives

a contradiction when considering the minimal nonzero degrees of S and S(a). O
Corollary 1.4.0.3. There is o bijection between isomorphism classes up to shift of

(1) indecomposable projective graded H[’i](Z)—modules

(2) indecomposable projective graded Hp, (Z)-modules

(3) simple graded Hj,(Z)-modules.

The bijection between (1) and (2) is clear from the decomposition theorem, it maps P +—
P/HZ (pt)P. We pass from (3) to (2) by taking the projective cover and we pass from (2)
to (3) by taking the top (which is graded because for a finite dimensional graded algebra the
radical is given by a graded ideal).
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Example. (due to Khovanov and Lauda, | |) Let G D B D T be a reductive group
containing a Borel subgroup containing a maximal torus, Z = G/B x G/B. Then, it is
known that HE(Z) = Endegw (C[t]) =: NH where W is the Weyl group associated to
(G,T) and t = Lie(T).

The G-equivariant pushforward (to the point) of the shift of the constant sheaf is a direct
sum of shifts of copies of the constant sheaves on the point, therefore there exist precisely
one indecomposable projective graded H, [G*}(Z )-module up to isomorphism and shift. It is
easy to see that P := C[t] is an indecomposable projective module and P/HZ"(pt)P =
C[t]/Iw is the only graded simple N H-module which is the top of P. Also, one checks
that H},)(Z) = Endc(Clt]/Iw) is a semi-simple algebra which has up to isomorphism and
shift only the one graded simple module C[t]/ Iy .

In the following subsectionwe equip the Steinberg algebra with a grading by positive
integers which leads to a description of graded simple modules in terms of the multiplicity
vector spaces L; in the BBD-decomposition theorem.

1.4.2 Simples in the category of graded finitely generated left HZ, (Z)-

<*>
modules

Given a graded vector space L, we write (L) := @ o Lq for the underlying (ungraded)

vector space. If we regrade HA(Z) as follows

HA,.(Z) = @) Home (L), (L)) @ Bxtly, ) (1G], 1C2)]
s,t

in other words

HZ,.(Z) = Ext* (D (L+) @c ICH, (L) @c ICH)

as graded algebra. This is as an ungraded algebra isomorphic to HA(Z). With the same
arguments as in the previous section one sees that P/ := EXtEZ (V)(I C{, m.C) are a com-
plete representative system for the isomorphism classes of the indecomposable projective
graded H2,. (Z)-modules.

We claim that there is a graded HZ,. (Z)-module structure on the (multiplicity-)vector
space (L) such that the family {(L;)}; is a complete set of the isomorphism classes up to
shift of graded simple modules. Using Hom(IC{, IC#) = Cd,,, Ext®(ICA, ICA) = 0 for
n < 0 we get

HZ,.(Z) = P End((Ly)) ® @ Hom((Ly), (L)) @¢ Ext™0(IC/, ICY).

deg=0

Now, the second summand is the graded radical, i.e. the elements of degree > 0 (with
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respect to the new grading). It follows
HZ,.(2) » H2,.(2)/(H2,.(Z))>0 = @D Endc((Ly)).
t

This gives (L;) a natural graded H4,. (Z)-module structure concentrated in degree zero
(the positive degree elements in H2,. (Z) operate by zero). Observe, that (L;) does not
depend on A, ie. in fact they are modules over HZ,. (Z) via the forgetful morphism
H2,.(Z) = Heos(Z).

That means we can instead look for the simple graded modules of H.,~(Z).

Remark. Let H, be a finite dimensional positively graded algebra such that
Hy = H,/Ho = P End(L,)
t

is a semi-simple algebra. Then H~q is the set of nilpotent elements, i.e. Jacobson radical

of H,. Furthermore all simple and projective H,-modules are graded modules.

* (L¢)¢ is the tuple of (pairwise distinct isomorphism classes of all) simple modules.

* For each ¢ pick an e; € End(L;) C Hp which corresponds to projection and then
inclusion of a one dimensional subspace of L;.
(P, := H, - ;) is the tuple of (pairwise distinct isomorphism classes of all) indecom-

posable projective modules.

We can apply this remark to H = H.,~(Z). As a consequence we see that up to
shift ((L;)); is the tuple of (pairwise distinct isomorphism classes of all) simple graded
HA(Z)-modules.

From now on, the case where the two gradings coincide will play a special role.
Remark. The following conditions are equivalent
(1) H[fi](Z) = H2,.(Z) as graded algebra for every A € {pt,T,G}.
(1) H[f](Z) = H2,.(Z) as graded algebra for at least one A € {pt, T, G}.
(2) (m;)«Cle;] is A-equivariant perverse for every i € I for every A € {pt,T,G}.
(2)" (m;)«Clei] is A-equivariant perverse for every i € I for at least one A € {pt,T,G}.
(3) mi: E; — V is semi-small for every i € I, this means by definition dim Z; ; = e; for
every i € I.

In this case, we say the Springer map is semi-small. Also, 7 semi-small is equivalent to
Hyop(Zii) = H)(Zii),i € I. Observe, that Hig(Z) is always a subalgebra of H,)(Z)
and in the semi-small case isomorphic to the quotient algebra H[,j(Z)/(H4(Z))>0. As-
sume 7 semi-small, then it holds 2dim 771-_1(5) < e; —dg, i € I where x € S belongs to
the stratification and Hiop(m!(s)) := 6P, Ddim ! (s)=ei—ds HQdimﬂi—l(S) (m;1(s)) is a left
Hp)(Z)-module via the restriction of the convolution. If I consists of a single element,
Hiop(Z) = Hig)(Z) and Hy gy n—1() (71 (s)) is a Hig)(Z)-module.
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Remark. If one applies the decomposition theorem to m;,7 € I one gets that L; =
Dicr L,gi) (as graded vector space) where ng‘) is the multiplicity vector space for ICy in
(7:)+Cles]. It holds {Lgi) | Lgi) # 0} is the complete set of isomorphism classes of simple

H,.(Z;;)-modules.

Remark. In fact, Syu Kato pointed out that the categories of finitely generated graded

modules over H [’2](2 ) and H4,. (Z) are equivalent. This has been used in | |.

Remark. Now, we know that the forgetful (=forgetting the grading) functor from finite
dimensional graded H|,)(Z)-modules to finite dimensional H.(Z)-modules maps graded
simple modules to simple modules. We can use the fact that we know that simples and
graded simples are parametrized by the same set, to see: Every simple H,(Z)-module
Lt has a grading such that it becomes a graded simple H\,(Z)-module and every graded

simple is of this form.

For the decomposition matrix for the finite dimensional algebra H,(Z), there is the

following result of Chriss and Ginzburg.

Theorem 1.4.1. (] |, thm 8.7.5) Assume Hoqq(m~1(s)) =0 for all z € V. Then, the

following matriz multiplication holds
[P: L]=1C-D-IC"

where all are matrices indexzed by s = (S, L),t = (S', L) such that Ly # 0,Ls # 0 and ()*

denote the transposed matriz.

[P: L]sy = [Ps: L) = ) _ dimExt"(IC;, ICy)

k
IC., =Y [H*(i5(ICY)): L]
k
Dy =655 »_(—1)Fdim H*(S, (£')* ® L)
k
According to Kato in | |, the whole theory of these algebras is reminiscent of quasi-

hereditary algebras (but we have infinite dimensional algebras). He introduces standard

and costandard modules for HY, . (Z) in | |, thm 1.3, under some assumptions’.He
shows that under these assumptions, HS,. (Z) has finite global dimension (see [ I,
thm 3.5).

1.4.3 Springer fibre modules in the category of graded H;'(Z)-modules

Recall, that Springer fibre modules Hy, (7~ (s)), H¥(771(s)), s € V are naturally graded
modules over H[,(Z), but if we forget about the grading and we can show that they
are actually semi-simple in H,(Z)-mod, then, we can see them as semi-simple graded

HA, . (Z)-modules for A € {G,T,pt} by the previous section.

"= finitely many orbits with connected stabilizer groups in the image of the Springer map, HS,- (Z)
and the in the decomposition theorem occurring IC; are pure of weight zero
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Let A = pt. Since the map = is locally trivial over S := S, we find that
5@ R (ri).LClei),  is(EP R*(mi)+LClei]
il iel
are local systems on S, via monodromy they correspond to the (S, s)-representations
H¥(n 7Y (s)) = @ H (w71 (5), €D He, k(' (5)) = Hyg(w ' (s))
icl iel

with e; := dim¢ E; respectively (for a fixed point s = s, € S, cp. | |, Lemma 8.5.4).
Now, let us make the extra assumption that the image of the Springer map is irreducible
and the stratification {S;}4ec.4 is a Whitney stratification (every algebraic stratification of
an irreducible variety can be refined to a Whitney stratification see | |, thm 1.9.10,
p.30), which is totally ordered by inclusion into the closure. Let S C S’ be an incusion for
two strata S, 5’, we write IndS,(E) =g 0 H*(IC(S/,E)), i.e. we consider the functors for
ke [—dg,—ds]

Ind, (—): LocSys(S") — LocSys(S)
L — Indg/(ﬁ)k = ’L*S o %k(IC(S/’L))
where LocSys(S) is the category of local systems on S, i.e. locally constant sheaves on S
of finite dimensional vector spaces (for other k € Z this is the zero functor). If we apply the

functor ig oH¥ on the right hand side of the decomposition theorem we notice the following

(for the cohomology groups of IC-sheaves, see | |, section 4.1, p.41), let t = (S, L).

L, if dg = dgi, k = —dg
GSHNIC) = ndS, (L), ifds < dg/, k € [~dg/, —dg — 1]

0 else.

and
isHE(IC[d]) = HF(DgitICp) = isH =120 (1Cy)

implies

L*, if dg =dg/, k+d= —dg
isH" (ICy[d]) = Indg (£*) g_a_2as if ds < ds/, —k —d — 2ds € [~dg/, —ds — 1]

0 else.
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where dg = dimc S. This implies

) = P EP Lia @c igHHIC)

i deZ

—dg—1
D Li-arecte D D Lk ©cndS (L),
t=(5.L) t=(5",L).ds<dgr r=—dgs

=HHM(7=1(s))> s

Hyy(n'(s)) = P P Lea @c isH 1 (IC)

t deZ
—dg—1
= @D Lissrecle P D Li—rsis—t Oc IndS (L),
t=(5,£) t=(5",L),ds<dgs r=—dg

=:Hp (m71(s))>s

as (S, s)-representations. We call the direct summands isomorphic to Ind2,(£),,r €
[—dg/, —ds — 1] the unwanted summands. Now we can explain how you can recover from
the 71(S, s)-representations H*(7=1(s)),k € Z the data for the decomposition theorem

(i.e. the local sytems and the graded multiplicity spaces). If dg is the maximal one, it

holds
=P @ Li—gg—k ®c L

kEZ t=

and we can recover the graded multiplicity spaces L; with ¢ = (S, ?) for the dense stratum

ocurring in the decomposition theorem. For arbitrary S we consider

HY (7)) /HY (x 7 (s)ss 2D P Li—as—r®c L

kEZ t=(S,L)

and by induction hypothesis we know the 7 (S, s)-representation H* (71(s))s s, therefore
we can recover the L; with ¢t = (5,7?) from the above representation.

Now assume that 7 is semi-small. Then, we know that L;4 = 0 for all ¢t = (S5, L)
whenever d # 0. We can also restrict our attention on a direct summand (7m;).Cle;]
for one ¢ € I and find the decomposition into simple perverse sheaves. That means we
only need H%~9s(m;!(s)) to recover the data for the decomposition theorem. Tt also holds
2dimn; '(s) < e;—ds,i € I and since H%~% (77 (s)) = 0 whenever 2dim 7; ' (s) < e;—dg,

we only need to consider the strata S with 2dimn; (s) = e; — dg, then
O (71 (5)) = H (57 (5)) #0

and we call S a relevant stratum for ¢ (€ I). We call a stratum relevant if it is relevant
for at most one 7 € I.

Analogously, one can replace H*(7=1(s)) by H|_j(m~1(s)) and stalk by costalk.
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Let s € V be arbitrary. By a previous section we know that Hj,j(7!(s)) and HM (7= 1(s))
are left (and right) graded H[,)(Z)-modules. The following lemma explains their special
role. Unfortunately, the following statement is only known if all strata S contain a G-orbit
G -s:= O C S such that m1(0,s) = m1(S,s). For local systems on the strata this is by
monodromy the same as the assumption that all strata are G-orbits. Let C' be a finite
group, we write Simp(C') for the set of isomorphism classes of simple CC-modules and

denote by 1 € Simp(C) the trivial representation®.

Lemma 5. (/ |, Lemma 8.4.11, p.436, Lemma 5.5.3, p.170) Assume that the image

of the Springer map contains only finitely many G-orbits.

(a) Let O = Gs CV be a G-orbit. There is an equivalence of categories between
{G-equivariant local systems on O} <» C(s)—mod

where C(s) = Stabg(s)/(Stabg(s))? is the component group of the stabilizer of s.
In particular, via monodromy also the w1 (O, s)-representations which correspond to

G-equivariant local systems on O are equivalent to C(s)—mod.

(b) The C(s)-operation and the Hy(Z)-operation on Hy, (7~ '(s)) (and on HY (7= 1(s)))

commute.

The semi-simplicity of C(s)—mod implies that

Hiyy(m =P P HyE())ycx

k€Z xeSimp(C(s))

where Simp(C(s)) is the set of isomorphism classes of simple C(s)-modules and for any
C(s)-module M we call M, := Homg(s)moa(X, M) an isotypic component. Since the
two operation commute it holds (Hp,(m~!(s))y naturally has the structure of a graded
Hp,j(Z)-module. But we will from now just see it as a module over H.(Z). As H.(Z)—C(s)-

bimodule decomposition we can write the previous decomposition as

Hy(r ') = @ Hl () Bx

x€Simp(C(s))

where H, (77 1(s)), X x is the obvious bimodule H,(7"!(s))y, ® x. As an immediate con-

sequence of this we get, if Gs is a dense orbit in the image of the Springer map, then

Lt,—*(_dGs) = H[*] (77—_1(8)))(7 for ¢ = (saX)7X € Simp(C(s)),

in particular, H, (771(s)) is a semisimple H,(Z)-module (graded and not graded), even
a semisimple H,(Z) — C(s)-bimodule. For more general orbits, we do not know if it is

semisimple. In the case of a semi-small Springer map we have the following result.

8In the literature this is called Irr(C), we use the word irreducible only for a property of topological
spaces
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Theorem 1.4.2. Assume the image of the Springer map 7 has only finitely many orbits

and m is semi-small. There is o bijection between the following sets

(1) {(s,x) | O = Gs,x € Simp(C(s)), Hyp) (77 '(s))y # 0} where the s in V are in a

finite set of points representing the G-orbits in the image of the Springer map.
(2) Simp(Ho~(Z)—mod) := simple H-o~(Z)-modules up to isomorphism

(3) Simp(HA,. (Z)—mod?) := simple graded H2,_ (Z)-modules up to isomorphism and
shift for any A € {pt,T,G}.

Between (1) and (2), it is given by (s,x) — Hig (7' (s))y. We call this bijection the
Springer correspondence.

For a relevant orbit O (for at least one i € I) it holds

Hugl(m 's)1= " D Hipln ()7 #0

i: 2dimm; ' (s)=e;—do

and C(s) operates on the top-dimensional irreducible components of wi_l(s) by permutation.

This implies we get an injection

{relevant G-orbits in Im(mw)} — Simp(H o> (Z)—mod)
O =Gs > Hyg)(n ' (s)“

sketch of proof: For k = do look at the decomposition for Hyy(n~'(s)) and use that
Liq = 0 whenever d # 0 to see that the unwanted summands vanish. Then show that
the decomposition coincides with the second decomposition (with respect to the irre-
ducible characters of C(s)) of Hyy(w~'(s)) which gives the identification of the L; with
the H[do](w_l(s))x. O

It is an open question to understand Springer fibre modules more generally. Also,
Springer correspondence hints at a hidden equivalence of categories. This functorial point

of view we investigate in the next subsection.

1.5 The Springer functor

We consider HA (Z) again with the grading from the theorem 1.1.1. Let proj“H2(Z) be

[+]
the category of finitely generated projective Z-graded left H [‘3]

(Z)-modules, morphisms are
the module homomorphisms which are homogeneous of degree 0. Let P4 C DY (X) be the
full subcategory closed under direct sums and shifts generated by IC{, t = (S, £) be the
tuple of strata with simple local system on it which occur in the decomposition theorem
(with nonzero multiplicity spaces Ly).

The following lemma is in a special case due to Stroppel and Webster, see | |.
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Lemma 6. The functor

proj” Hiy(Z) — Pa
M — @(Wi)*QEi (€3] BuA 2) M

i€l
1s an equivalence of semisimple categories mapping PtA — IC{‘. We call this the Springer
functor ®.
Proof: By theorem 1.1.1 we know H[‘f:] (Z) = Ext’b%(v)(@iel(ﬂi)*@& lei], D (mi)Cp,leil)
is an isomorphism of graded algebras. This makes the functor well-defined. The direct
sum decomposition of ,;c;(7:)«Cp, [ei] by the decomposition theorem in P4 corresponds
to idempotent elements in H [‘6‘}(2 ), which correspond (up to isomorphism and shift) to
the indecomposable projective graded modules, let for example P, = H[‘:}](Z)et. Shifts of
graded modules are mapped to shifts in Py, therefore the functor is essentially surjective.
It is fully faithful because of the mentioned equality

Hompmszﬁ](Z)(Pt, Py(n)) = esH[‘fL}(Z)et = Hosz(V)(ICt, ICq[n])

O

Let PA(V) D% (V) be the category of A-equivariant perverse sheaves on V. Assume

for a moment that the map 7 is semi-small. Then, we know that €;c;(7:)«Cp,[e;] is an
object of PA(V). In this situation the two gradings of the Steinberg algebra coincide. The
top-dimensional Borel-Moore homology Hyop(Z; ;) coincides with the degree zero subalge-
bra H[O}(Zm). We want the Springer functor to go to a category of perverse sheaves, i.e.

we do not want to allow shifts of the grading for modules. Therefore, we pass to

H[O](Z) = H<*>(Z)/(H<*>(Z))>O = HI<4*>(Z)/(Hé*>(Z))>O7 A€ {pthv G}

and replace projective graded modules over H ﬁ](Z ) by the additive category of simple
modules over H{g(Z), this equals the category Hg(Z)—mod of finite dimensional (un-
graded) modules over H(Z) because the algebra is semi-simple.
In particular, it holds
Hio\(Z) = Exty ) (Bier():C 0], By (70). Cip ) = Bnchpis v (@ (m0).Cis ],
Ae {pt,T,G}.

The following lemma is for classical Springer theory due to Dustin Clausen, ¢cp. Thm
1.21n | |-

Lemma 7. If the Springer map 7 is semi-small, we have the following version of the

9This name is due to Dustin Clausen in his thesis.
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Springer functor

S: Hyy(Z)—mod — PY(V)
M = @ (mi)<C,lei] © gy 2) M.

i€l
It holds that S is an exact functor (between abelian categories) and it is fully faithful. If e;+
ej is even for alli, j € I then S identifies Hjg)(Z)-mod with a semi-simple Serre subcategory
of PE(V) (i.e. it is an exact subcategory which is also extension closed and closed under

direct summands). Furthermore it is invariant under Verdier duality on PE (V).

Remark. Assume that the Springer map is semi-small, the image of the Springer map
contains only finitely many G-orbits and each G-orbit is relavant and simply connected,
then the Springer functor from above is an equivalence of categories. (The only known

example for this is the classical Springer map for G = Gl,,, see later.)

Proof: A similar proof as in the lemma above shows that the Springer functor induces
an equivalence on the full subcategory of P%(V) generated by finite direct sums of direct
summands of @,c;(m)«Cp,[e;]. This is a semi-simple category. Assume that e; + e; is
even for all 4,7 € I, we have to see that it is extension closed. By composition with the

forgetful functor we get a functor
S F
Hyg(Z)—mod = PY(V) = PPHV) =: P(V),

by | | the forgetful functor F' is fully faithful. Now, by | |, 4.2.10 the category
P(V) of D*(V) is closed under extensions and admissible because it is the heart of a t-
structure. By the Riemann Hilbert correspondence there exists an abelian category A (=
regular holonomic D-modules on V') and an equivalence of triangulated categories (= the
de Rham functor)

DRy : D°(A) — D°(V)

such that the standard ¢-structure on D?(A) is mapped to the perverse t-structure and it re-
stricts to an equivalence of categories A — P (V). This implies that for X =2 DRy (X'),Y =
DRy (Y'") in P(V) and n € Ny

Extp oy (X,Y) = Ext’y (X', Y") = Hom py(4)(X', Y'[n]) = Homps (1) (X, Y[n])

where the first and the third equality follows from the de Rham functor and the second
equality holds because it is the standard ¢-structure, cp. for example | |, p-286.

Now, since we know

Hom i vy (€D (). C, [ei], (P ()L, [ei))[1]) = Har>(2) = €D Heye,-1(2) =0

iel i€l ijel

because H,qq(Z) = 0 by lemma 1.3.0.1 and the assumption that e; + e; is even for every
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1,7 € I. We obtain that
EX'G%)(V)(@(TH)*QE [ei]a EB(W)*QE, [ei]) =0,
i€l icl

i.e. the semi-simple category generated by the direct image of the Springer map is extension
closed. O
The next section consists of concepts of classical Springer theory in the context of a

more general collapsing of a homogeneous bundle.

1.6 Orbital varieties, Springer fibres and strata in the Stein-

berg variety

In this section we work over an arbitrary algebraically closed field K. In the example of

classical Springer theory (see later) orbital varieties have been introduced by Spaltenstein

in | |. He proved them to be in bijection to irreducible components of Springer fibres.
This idea has been further applied by several authors (for example Reineke | |, Vargas
[ |, Melnikov and Pagnon [ |). We give the analogue here to an arbitrary collaps-

ing of a homogeneous bundle under the (reasonable) assumptions on the orbits O, C V
to be isomorphic to the quotients G/Stab(v), where Stab(v) = {g € G | gv = v} is the

stabilizer of v. This property can be characterized as follows.

We think this lemma is well-known (but we do not have a source for it).

Lemma 8. Let G be an algebraic group over an algebraically closed field K. Let V be a
G-scheme of finite type over K. Let v € V(K) and denote by O, C V the orbit endowed
with the reduced subscheme structure. Let m: G — O, g — gv be the multiplication map.

Then, the following are equivalent.

1) m induces an isomorphism O, = G /Stab(v).
2) m is separable.

3) Tem: T.G — T,0, is surjective where e € G(K) is the neutral element.
Furthermore, if one of the conditions is fulfilled the map m is open and closed.

Example. In characteristic zero, the map m is always separated. Also in the example of
quiver-graded Springer theory (see a later section), for Glg-orbits in Rq(d) the property

3) is true over any algebraically closed field because of Voigt’s lemma | |, Prop. 1.1

Definition 2. Let (G, P,V,F) be the construction data for a Springer theory (i.e. we
assume the finite set I consists of a single element). Then the irreducible components of

O, N F are called orbital varieties (for v).

Lemma 9 (Reineke, | |, Lemma 3.1). There is an isomorphism
G x58P0) =1y = 771 0,) = G xT (0, N F).
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Proof: The first isomophism follows from lemma 77. Looking at 7
m:GxPF =V, (g9, f) = gf

gives

7 0,) ={(g9,f) € G X" F|gf €0}
={(9,f) eGxP F| fe0,}
=G xP(0,NnF)

We get the immediate corollary.

Corollary 1.6.0.1. There is an isomorphism of equivariant Chow groups tensored with Q
Stab - ~
AjfdiEfl)Stab(v)(G x 11 (v) ©72 Q= AL 4y p(G X (O, N F)) @2 Q,

where equivariant Chow groups are meant in the sense of Edidin and Graham (see [ /).

Secondly, there is a more intimate relation between the topology of associated fibre

bundles and their fibres, we cite from Bongartz the following

Lemma 10. (/. [, Lemma 5.16) Let G be a connected algebraic group with a closed
subgroup P. Let F' be o quasi-projective P-variety. Then, the map

U—GxPU

induces a bijection between P-invariant subvarieties of F' and G-invariant subvarieties of
GxP F. The bijection respects inclusions, closures and geometric properties like irreducibil-

ity, smoothness and normality.

This induces the bijection between the Stab(v)-invariant subvarieties of 7~ !(v) and

P-invariant subvarieties of O, N F.

Definition 3. Let (G, P, F,V) be the construction data for a Springer theory. A dense
P-orbit in F' will be called a Richardson orbit.

Corollary 1.6.0.2. Let (G, P, F) be as in the previous lemma. Then the following are

equivalent.
(1) G xP F has a dense G-orbit.
(2) F has a dense P-orbit.

If furthermore, V is a G-representation with F C V o P-subrepresentation and there exists
v €V such that GF = O, C V, then (1) and (2) are also equivalent to

(3) 71(v) has a dense Stab(v)-orbit.
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We will see later that condition (1) in quiver-graded Springer theory can be restated
in terms of representation theory to an existence statement for a tilting module of a given
dimension vector over a certain tensor algebra (KQ ® KA,, see chapter 6). There is one

important case where we can always find a Richardson orbit.

Corollary 1.6.0.3. Let (G, P,V,F) be the construction data for a Springer theory with
G connected. Assume that there is v € V such GF = O, and 7 (v) consists of a single

point. Then F N O, is a Richardson orbit.

Proof: Obviously (3) in the previous corollary is fulfilled, therefore also (1) and (2). As

77 1(v) is a single Stab(v)-orbit, it follows that F' N O, is a single P-orbit. O
A special case of the previous corollary is the Richardson orbit theorem, cp. Carter

[ |, 5.2, p.132.

Coming back to the lemma 10, we can realize this bijection between the Stab(v)-invariant

subvarieties of 771 (v) and P-invariant subvarieties of O, N F alternatively via the following

construction given by Melnikov and Pagnon in | |, section 2.

Corollary 1.6.0.4. Let (G, P,V, F) the construction data for a Springer theory. Letv € V
be an element such that Stab(v) is connected. Let G, :={g € G | gv € F} and

AN N

O,NF 71 (v) gu gP

Then, the map U + ®(U) := f1(f5 1 (U)) realizes the bijection between Stab(v)-invariant
subvarieties of 7~1(v) and P-invariant subvarieties of O, N F respecting inclusion. It

restricts to bijections

1) between the irreducible components of 71 (v) and the irreducible components of O, N

F. Furthermore, for any irreducible components C of 7~ 1(v) it holds

dim ®(C) = dim C + dim P — dim Stab(v).

2) Given two irreducible components C,C’ of m~(v) and r € Ny, there is an induced
bijection between the irreducible components of C N C" of fized codimension r in C

and irreducible components in ®(C) N ®(C”") of codimension r in ®(C).

3) between Stab(v)-orbits in 71 (v) and P-orbits in O, N F respecting the degeneration

order.

Remark. In the later example of quiver-graded Springer theory, the stabilizers coincide
with the groups Autgg(M). The algebraic group Autgg(M) is connected since it is open
in the affine space Endgq(M).

31



Relation between the Steinberg variety and orbital varieties

We fix (G, P, P',V,F,F') construction data for a Springer theory. We counsider (Z :=
(G xP F) xy (G x¥ F'),m,p) with m: Z — G/P x G/P',p: Z — V defined as before.
Assume furthermore that GG operates on the image of p with finitely many orbits

Oy -+, Oy, and the stabilizers of vy, ..., v, are irreducible and reduced. The image of p
is the closure of the unique maximal dimensional orbit. Furthermore, the point {0} C V

is always the unique minimal dimensional orbit. We write
Zo:=p H0), 0ec{0,,...,0,}

Then, for O = O,, we have Zp = G x5O (z=1(v) x (/)" (v)) with 7: G xP F —
V,7': G xP' F' = V the collapsing maps, together with the bijection between orbital

varieties and irreducible components of the Springer fibre we have
Remark. There are bijections between the following three sets
(1) Pairs Y1, Y5 of orbital varieties in O N F and O N F’ respectively.
(2) C1 x Cy irreducible components of 7= (v) x (7/)~1(v)
(3) Irreducible components of Zp.

We keep the notation of the previous subsections. Observe that we have a G-equivariant
roof diagram
Zo N Zy

(@) Cu

where po.w = P|zonZw, MO.w = M|zonz,- Then by lemma 77, we directly get for O = O,

Lemma 11.
G xS0 (77 () x ()71 (0)) N Cu] = Zo N Zy = G <P E) [F nw(F) N O]

We get the immediate corollary.

Corollary 1.6.0.5. There is an isomorphism of equivariant Chow groups tensored with Q

A o) (G X (77 (0) % (7)™ (1)) N Cu]) 82 Q

= Afféli)r(f[)lgﬁw(P’)} (G x [Fnw(F')Nn0O)) ez Q,

where equivariant Chow groups are meant in the sense of Edidin and Graham (see [ /).

As in the previous subsection, we get an inclusion preserving bijection between the
Stab(v)-invariant subvarieties of (771(v) x (7')~!(v)) N Cy, G-invariant subvarieties of

Zo N Zy, and PN w(P’)-invariant subvarieties of F Nw(F') N O.
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1.7 What is Springer theory ?

One possible definition:

Springer theory (for (G, P;,V, F;);cr and a choice of H) is to understand

the Steinberg algebra together with its graded modules.

But I think today it is sensible to say Springer theory is the study of all categories
and algebras (and modules over it) which have a construction originating in some Springer
theory data (G, P, V, F;);er. Then, this includes

(1) Monoidal categories coming from multiplicative families of Steinberg algebras and
their Grothendieck rings. In particular, this includes Lusztig’s categories of perverse

sheaves (see | | and the example quiver-graded Springer theory later).

10" corresponding to the Springer map. In particular,

(2) Noncommutative resolutions
this includes Bezrukavnikov’s noncommutative counterparts of the Springer map in

[ | and Buchweitz, Leuschke and van den Bergh'’s articles | | and | |-

(3) Categories of flags of (K Q-)submodules for given quivers because their isomorphism
classes parametrize orbits of (quiver-graded) Springer fibres. This includes for exam-
ple Ringel’s and Zhang’s work on submodule categories and preprojective algebras
[ |. Also certain A-filtered modules studied in | I, [ |

An (of course) incomplete overview can be found in the flowchart at the end of this
article.
We would also like you to observe that in the two examples we explore connections

between objects roughly related to the following triangle

Steinberg algebras

/\

Quantum groups Perverse sheaves

1.8 Classical Springer theory

This is the case of the following initial data

(%) G an arbitrary reductive group,

(x) P = B a Borel subgroup of G, denote its Levi decomposition by B = TU
with T" maximal torus, U unipotent.

(¥) V = g the adjoint representation,

(x) F =n:= Lie(U).

Ohere: This means just a tilting vector bundle on E, because this gives t-structures in the category of
coherent sheaves on F
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We set N := Gn, i.e. the image of the Springer map, and call it the nilpotent cone. We
consider the Springer map as 7: E = G xZ n — N. Explicitly, we can write the Springer

triple as

E={(n,gB) € N xG/B|n €9 :=Lie(gBg~!)}
N G/B

For G = Gl,, we identify Gl,,/B with the variety Fl,, of complete flags in C™ and
E ={(A,U®) € Endc(C") x Fl,, | A" = 0,A(U*) c U*, 1 <k <n}.

It turns out, 7 can be identified with the moment map of G, in particular, £ = T*(G/B)
is the cotangent bundle over G/B and 7 is a resolution of singularities for N'. But most
importantly, this makes the Springer map a symplectic resolution of singularities and one
can use symplectic geometry to study it (see for example | D-

The Steinberg variety is given by

Z = {(n,gB,hB) € N x G/B x G/B | n € %6 "b}
N G/B x G/B

For G = Gl,, we can write it as

Z ={(A,U*,V*) € Endc(C") x Fl, x Fl, |
A" =0, A(U*) c U*, A(VF) c VF, 1 <k <n}.

Recall, that we had the stratification by relative position Z% := m~1(G-(eB,wB)),w €
W where W is the Weyl group of G with respect to a maximal torus 7" C B. Since

Z" — G- (eB,wB) is a vector bundle, we can easily calculate its dimension

dim Z% = dim G - (eB,wB) +dimnN*n
=dimG —-dimBNYB+dmnnN“n=dimG —dimT
=dim FE.

We conclude that Z is equidimensional of dimension e := dim F, in particular the Springer
map is semi-small. Also we see that the irreducible components of Z are given by Z¥, w €
W, that implies that the top-dimensional Borel-Moore homology group Hyop(Z) has a C-
vector space basis given by the cycles [Z%]. In the semi-small case we know H 0(Z) =
Hoo>(Z) = Hyop(Z) is a sub- and quotient algebra of H.(Z).

Example. G = Sly, B = {(¢ %) | b€ C,a € C\{0}}. Then N = {(z,y,2) € C? |

0a?
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22 + zy = 0} and

E={(AL)e N xP'| L C ker A}
={((2 %) .[a: b]) € My(C) x P' | 2% + 2y = 0,2a + yb =0, 2a — xb = 0},

the Springer map can be seen as the following picture

This is well-known to be the crepant resolution of the As-singularity from the MacKay
correspondence. In general, if G is semisimple of type ADFE, then there exists a slice of the
nilpotent cone such that the restricted map is the crepant resolution of the corresponing

type singularity, see | | for more details.

Theorem 1.8.1. (roughly Springer [. /) There is an isomorphism of C-algebras

1%

Hiop(Z) = C[W]
[Z5] s —1

The Springer functor (due to Clausen, | |) takes the form

CW —mod — P%(N)
M — m.Cle] @cw M

and identifies CIW —mod with a semi-simple Serre subcategory of P(N). This implies an
injection on simple objects, which are in P%(N) the intersection cohomology complexes
associated to (O, L) with £ a simple G-equivariant local system on an G-orbit O C N. As

a consequence we get the bijection called Springer correspondence from thm 1.4.2

Simp(W) < {t = (0,£) | L # 0}
={(s,x) | s € N rep of G-orbits , x € Simp(C(s)), (Htop(ﬂfl(s)))x # 0}

where L; = @ Lt 4 is the multiplicity vector space in the BBD-decomposition of m,C and
Simp(W) is the set of isomorphism classes of simple objects in CW —mod. The inverse of

the map is given by (s,x) — (Hiop(m1(5)))y. For this Springer map all orbits in N are
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relevant, i.e. we also have an injection

{G-orbits in N'} — Simp(W)
Gs = Hygp(n™!(s))“)

Remark. We remark that there are several alternative constructions of the group opera-
tion of W on the Borel-Moore homology/ singular cohomology of the Springer fibres. In
[ |, section 5.5 you find an understandable treatment of Lusztig’s approach to this
operation using intermediate extensions for perverse sheaves and Arabia provides a list of
other authors and approaches to this (first Springer | Il |, then Kazhdan-Lusztig
[ |, Slodowy | |, Lusztig | |, Rossmann | |) and these operations differ
between each other by at most multiplication with a sign character (see | -

Also, Springer proves with taking (co)homology of Springer fibres with rational coeffi-
cients that the simple W-representations are all even defined over QQ, a result which our
approach does not give because the simple C(s)-modules are not necessarily all defined
over Q (cp. | |, section 3.5, p.170). In Carter’s book | |, p- 388, you find
for simple adjoint groups the component groups C(s),s € N are one of the following list
(Z/)2Z)", Ss3,54,S5, 1 € Np as a consequence he gets that the simple modules over the

group ring are already defined over Q.

In the introduction of the book | | you find for a semisimple group G a triangle

simple CW-modules

/\

primitive ideals in U(g) G-orbits in the nilpotent cone

They explain it as follows (i.e. this is a summary of a their summary).

* There is an injection of G-orbits in N into simple CW-modules by the Springer

correspondence.

A primitive ideal in U(g) is a kernel of some simple U (g)-representation. The classifi-
cation of primitive ideals is archieved as a result of the proof of the Kazhdan-Lusztig
conjectures (see Beilinson-Bernstein | |, Brylinski-Kashiwara | |)- Any ideal
in U(g) has an associated subvariety of g. The associated variety of a primitive ideal

is the closure of an orbit in N, this was first conjectured by Borho and Jantzen.

Joseph associated to a primitive ideal a W-harmonic polynomial in C[t] (=Goldie

rank polynomial) which is a basis element of one of the simple CWW-modules.

We also have to mention the following important results which use K-theory instead

of Borel-Moore homology.
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1.8.1 Parametrizing simple modules over Hecke algebras.

This field goes back to the work of Kazhdan and Lusztig on the proof of the Deligne-
Langlands conjecture for Hecke algebras, see | |. They realize simple modules over
Iwahori Hecke algebra as Grothendieck groups of equivariant (with respect to certain
groups) coherent sheaves on the Springer fibres. This is now known as Deligne-Langlands
correspondence and we call similar results which come later for different Hecke algebras
still DL-correspondence.

Let G be an algebraic group and X a G-variety, let K§(X) := Ko(coh®(X)) be the
Grothendieck group of the category of G-equivariant coherent sheaves on X. The group
C* operates on the (classical) Steinberg variety Z via (n,gB,hB)-t := (t'n,gB, hB), the
convolution product construction gives a ring structure on K(? € (2).

Recall, for a reductive group we fix a maximal torus and a Borel subgroup T C B C G
and call (W,S) the associated Weyl group with set of simple roots. We write X(T') =
Hom(7T,C) as an additive group and have for Y(T') = Hom(C*,T') the natural perfect
pairing (—, —): X(T) x Y(T) — Z,(A\,0) — m with Aoo(z) = 2™,z € C*. For the
definition of the dual roots o € Y(T'),s € S see | |, chapter 7.1, p.361.

Theorem 1.8.2. (/ |, thm 7.2.5, thm 8.1.16 - DL-corresp. for affine Hecke algebras)

Let G be a connected, simply connected semi-simple group over C.

(a) It holds KOGXC* (Z) = H where H is the affine Hecke algebra associated to (W, 5), i.e.,
the Z[q, ¢ ']-algebra generated by {e T, | w € W, A € X(T),e" = 1} with relations

() (Ts+1)(Ts—q) =0,s €S, and T, Ty = Ty for x,y € W with {(xzy) = £(x)l(y).
(ii) The Z[q,q~']-subalgebra spanned by e* is isomorphis to (Z[qﬂ)[XfE, . &
n=rk(T).
(i4i) For (A, o) =0 it holds Tse* = e .
For (\, ) = 0 it holds Tse T = qe*.

(b) The operation of H on a simple module factors over H.(Z*), with a = (g,t) € G x C*
a semisimple element, in particular is H,((m~1(5))9) via the convolution construction
a H- module. The operation of the component group
C(a) = Stabgxc+(a)/(Stabgxc+(a))® on Ho (77 1(s)9) commutes with the H.(Z%)-

operation and gives

H(r ' (s))= @ Kaex®x
X€Simp(C(a))

for some H,(Z%)-modules K.y which are called standard modules.

If t € C is not a root of unity, then there is a(n explicit) bijection between

(1) {G — cony. cl. Of (97$7X) | g e Gss’ gxg_l =tx,x € Simp(c(97t)>7K(s,g),x,x 7é

0},

where G* C G denote the semisimple elements.
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(2) Simple H-modules where q acts by multiplication with t.

All simples are constructed from the standard modules, in general it is difficult to

determine when the candidates are nonzero. Fort a root of unity there is an injection

of the set (2) in (1).

1.9 Quiver-graded Springer theory

Let @ be a finite quiver with set of vertices Qg and set of arrows ()1. Let us fix a dimension
vector d € N(?O and a sequence of dimension vectors d := (0 = &, ... d" = d), df < di-““

for all © € Qy. Quiver-graded Springer theory arises from the following initial data

(+) G =Glg:= [] Glg,

i€Qo
(x) P=P(d) := H P(d3) where P(d7) is the parabolic in Glg, fixing a
i€Qo
(standard) flag V;* in C% with dimensions given by df,
(¥*) V=Rq(d) := H Hom(C%, C%) with the operation (g;)(Mi;) = (giMijg ")
(i=i)eQu
is called representation space.

(x) F = F(d) := {(Mi;) € Ro(d) | Minj(Vi) € Vi, 0<k<wv}

Given d and an (arbitrary) finite set [ := {d = (0 = d,. .. ,d¥) | v e NJd¥ = d}, we

can describe the quiver-graded Springer correspondence explicitly for d € I via

Eq={(M,U*) €Rq(d) x Fla | i % j€ Qi: Ma(UF) c UK, 1 <k < v}

Eq
A
Rq(d) Flg

where Flg = Hier Flg, and Flg, is the variety of flags of dimension (0, di,d?,....d" =d;)

inside C% and we set F := Uaer Ea,

Zg7gl = EQ XRQ(Q) Eg/
{(M,U*,V*) € Rq(d) x Flg x Flg | i 2% j € Qi: Ma(UF) € UK, Mo (VF) € VE}

Za.da'
S

and the Steinberg variety is Z := | |4 g/c; Zq a/- This description goes back to Lusztig (cp.
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for example | |). It holds

v

v—1
dim Bq = dimFlg + dimF(d) = > > df(@* —df) + Y > (dF —dF
i€Qo k=1 (i—j)eQr k=1

We define (d,d) := dim Glg — dim Eyq and when @ is without oriented cycles this is the
Tits form for the algebra CQ ® CA, 41 (cp. | |, Appendix)

v v—1
(d.d) => (d* d*")cq — ) (d", d")cq.
k=0 k=0

Let {d; | i € I} be the set of complete dimension filtrations of a given dimension vector
d. The (Glj-equivariant) Steinberg algebra is the quiver Hecke algebra (for @, d). If the
quiver @ has no loops, the image of the injective map from lemma 2 has been calculated
by Varagnolo and Vasserot in | |. With generators and relations of the algebra they
check that this is the same algebra as has been introduced by Khovanov and Lauda in
[ | (which was previously conjectured by Khovanov and Lauda). Independently, this

has been proven by Rouquier in | |.

Theorem 1.9.1. (quiver Hecke algebra, [ I, [ ]) Let Q be a quiver without loops
and d € NOQO be a fized dimension vector. The (Glg-equivariant) quiver-graded Steinberg
algebra for complete dimension filtrations RS := HE(Z) for (Q,d) is as graded C-algebra
generated by )

li,iel, zik),icel,1<k<d, oi(s),icl,sec{(1,2),(2,3),...,(d-1,d)}=:8,

where d := 3, co da, I 1= 1Ig:={(i1,...,ia) | ix € Qo,zzzl i = d} and we see S C Sy

as permutations of {1,...,d}, we also define
hi((6,0+1)) = hie+1,iz =#{ac Q1| a: i — i}
and let

(6, 0+ 1) —2 , ifig=1i
degl; =0, degzi(k)=2, degoi((£,0+1)) = ( ) fie=ten

2hl((£7£ + 1)) ) 7/f ig 7& (28]
For s=(k,k+1),i=(i1,...,iq) we write is := (i1, .., 0k+1,0ks---,0d)-
The following relations hold.
(1) (orthogonal idempotents)
L1 = di 51,

1@0‘1'(8)11‘5 = O‘i<$)
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(2) (polynomial subalgebras)
2i(k)zi(K') = 2 (K)zi(k)
(8) For s = (k,k+1),i=(i1,...,iq) we set
as = ;s = zi(k) — zi(k+1)
if it is clear from the context which i is meant.

0, ifis=1i

Ui<3)0'i5<8> =
(—1)his@ i Thesle) = ypig 2,

(4) (straightening rule)
For s = (0,0 +1) we set

zi(k+1), ifk=14
s(zi(k) =< zi(k—1), ifk=0+1
zi(k), else.

—1;, ifis=i,s=(kk+1)
0i(s)zis(k) — s(zis(k))oi(s) =< 1;,  ifis=i,5 = (k—1,k)
0, ,ifis#i.
(5) (braid relation)

Let s,t € S, st =ts, then
Ui<8>0'is(t) = Ui(t)Uit(s).

Letie I, s=(k,k+1),t =(k+1,k+2). We set s(ay) = (zi(k)—zi(k+2)) =: t(as)
Py, ifists =i,is #i,it #1

0:i(8)is(t)oist(s) — oi(t)oi(8)oins(t) =
0, else.

where

hiss - (s hiss his (s his
s) M ® (_1)}1”( o © _ his(8) X &) (_1)hz( )at )

Py = ag”( ¢
Qg + oy Qg + oy

is a polynomial in z;(k), z;(k + 1), z;(k + 2).
We call this the quiver Hecke algebra for Q,d.
Using the degeneration of the spectral sequence argument from lemma 1.3.0.1 we get

Corollary 1.9.1.1. Let Q be a quiver without loops and d € NOQO. The not-equivariant
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Steinberg algebra Ry := Hy,(Z) is the graded C-algebra generated by

Lyiel, zi(k),iel,L1<k<d ois)i€cl,se{(1,2),(23),....,(d-1,d)}

with the same degrees and relations as Rg and the additional relations

P(zi(1),...,2i(n)) =0, di€l, forall P € Clzy,. ..xd]si.

where Sq = Sq, X +++ X Sg;, with Qo = {i1,...,in} is the Weyl group of G = Gly

What about Springer fibre modules and the decomposition theorem?

This is not investigated yet. We make some remarks on it.

Remark. (1) If Q is a Dynkin quiver!!, the images of all quiver-graded Springer maps

(2)

have finitely many orbits. For all quiver () and dimension vector d € NOQO all Glg-
orbits in Rq(d) are connected, i.e. C(s) = {e} for all z € Rg(d).

In the case of finitely many orbits in the image of the Springer map, semi-smallness
of the Springer map (associated to a dimension filtration d of a dimension vector d)

is equivalent to for every s € Rq(d) it holds
2dim 7@1(3) < dim EX%Q(S, s) = codimg, g) G-

It is very rarely fulfilled.

If @ is a Dynkin quiver and d € NOQO a complete set of the isomorphism classes of
simple modules for the quiver Coxeter algebra Ry is parametrized by the G := Glg-

orbits in Rq(d). For s € Rg(d) we have a simple module of the form

Las =P LY
d

where d runs over all complete dimension filtrations of d and L(C%S) is the multiplicity

vector space occurring in the decomposition of (7q)«Cleq]. By the work of Reineke
(see | |) there exists for every s € Rq(d) a complete dimension filtration d
such that G's is dense in the image of mq. This implies by the considerations from

subsection 1.4.3 that

L (~das) = Hpy(mg'(s)) (#0),

as graded vector spaces, where dgs = dim G's. In fact, Reineke even shows that there
exists a d for every x such that the Springer map is a bijection over Gs, in which

case dim L(GQS) =1.

'i.e. the underlying graph is a Dynkin diagram of type A,, D, Eg/7/8-
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For @ Dynkin, there are parametrizations of indecomposable graded projective modules
in terms of Lyndon words, see | |, which are not yet understood in the context of

the decomposition theorem.

1.9.1 DMonoidal categorifications of the negative half of the quantum

group

Again let @ be a finite quiver without loops. First Lusztig found the monoidal categori-
fication of the negative half of the quantum group via perverse sheaves, then Khovanov
and Lauda did the same with (f.g. graded) projective modules over quiver Hecke algebras.
In the following theorem’s we are explaining the following diagrams of isomorphisms of

twisted Hopf algebras over Q(q).

Ko(proj” @ HE (Z)) ® Q(q)

/ \

U = U (Q) Ko(P) © Q(q)

In all three algebras there exists a notion of canonical basis which is mapped to each other
under the isomorphisms. Also, there is a triangle diagram with isomorphisms defined over

Z[q,q~ '] which gives the above situation after applying — @710, Qg)-

The negative half of the quantum group.

The negative half &~ := U, (Q) of the quantized enveloping algebra (defined by Drinfeld
and Jimbo) associated to the quiver @ is defined via: Let a;; := #{a € Q1 | a: i —
J, ora: j — i}, i # j € Qo- It is the Q(g)-algebra generated by Fj,i € @y with respect to

the (quantum Serre relations)

N+1
YN+ 1-plFIRF) P =0, N=ayi#]
p=0
where i i
@ —q [n 4+ m|,
[n]y = H —  [n,m]

Lusztig calls this 'f

A Hopf algebra is a bialgebra (i.e. an algebra which also has the structure of a coalgebra
such that the comultiplication and counit are algebra homomorphisms) which also has
an antipode, i.e. an anti-automorphism which is uniquely determined by the bialgebra
through commuting diagrams. A twisted Hopf algebra differs from the Hopf algebra by:
The comultiplication and the antipode are only homomorphisms if you twist the algebra
structure by a bilinear form (see the example below). For more details on the definition
see | |. The twisted Q(q)-Hopf algebra structure is given by the following, it is by
definition a Q(g)-algebra which is N®0-graded and it has
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(1) (comultiplication)
If we give U™ ®g(q) U~ the algebra structure

(11 @ 22) (2] @ 2h) = q|12|'|’6/1|:1:1x'1 ® To7h
where for z € U~ we write |z| € NOQO for its degree and the symmetric bilinear form
‘:Zég‘) XZ S 7, i-i:=2 i-j:= —a;; for i #j
Then the comultiplication is the Q(q) algebra homomorphism

U U U, F-EFE1+1RF

(2) (counit) e: U~ — Q(q), F;—0

(3) (antipode)
Let U,,, be the algebra with the multiplication = * y := g1l gy

The antipode is the algebra anti-homomorphism
u- _>ut;u’ F, — —F;

Lusztig’s category of perverse sheaves.

Lusztig writes complete dimension filtrations as words in the vertices i = (i1,...,1q),
it € Qp. We set d := Zle 1+ and define

L; := (m;)+Cle;]

where 7;: E; := Gly xPi Fy — R (d) is the quiver-graded Springer map and e; = dimc E;.
Let us call Pg, the additive category generated by shifts of the L;, i = (i1,...,4q), 1 € Qo.
The set Hom(L;, Lj[n]) in this category is zero unless d = > i; =y ji and then it is given
by 1; * HS]IQ(Z) x 1;. The category can be endowed with the structure of a monoidal
category via

Li * Lj = Lij
where ij is the concatenation of the sequence ¢ and then j.

Lemma 12. (Lusztig, | |, Prop. 7.8) Let P be the idempotent completion of Pg,
(i.e. we take the smallest additive category generated by direct summands of the L; in

DEIQ(RQ@)) and their shifts). It carries a monoidal structure and the inclusion induces
Ko(Pg,) = Ko(P)

where the Grothendieck group has the ring structure from the monoidal categories and a
Z[q, ¢ ]-module structure via the shift, i.e. q-[M] := [M[1]], M an object in P.
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Remark. We call the monoidal category P Lusztig’s category of perverse sheaves.
Even though these are not perverse sheaves since we allow shifts of them and Lusztig
originally defined them inside | | D’(Rq(d)) which of course gives a different category (for
example in his category Hom(L;, Lj[n]) = 1; % Hp (Z) * 1; if Y dr = ) ji and zero else).
Nevertheless the two categories have the same Grothendieck group. In the view of the

context here we think it is more apropriate to define it in the equivariant derived categories.

Remark. The previous lemma is no longer true if you allow your quiver to have loops.
For example if @ is the quiver with one loop. Then, let Z,, be the Steinberg algebra
associated to (G = Gl,,, By, gln, ny,) with B, C Gl,, the upper triangular matrices, n,, the
Lie algebra of the unipotent radical of B,,. We claim

Ko(P) = @D Ko(f.d. proj. graded Hy(Z,) — modules)

n€eNp

= @ Ko(f.d. simple graded Hy(Z,) — modules)
neNy

= @ Ky(f.d. graded CS,, — modules)
n€Ng

= | @ Ko(£.d.CS, — modules) | ®z Z[g,q']
neNp

= (Symmetric functions) ®z Z[q, q_l]

The first isomorphism is implied by the Corollary 1.4.0.3. The second equality is implied
by semi-smallness of the classical Springer maps. For the third result see the section on
classical Springer theory. The last equality is well-known, it maps the simple module S
(=Specht module) corresponding to a partition A to the Schur function corresponding to
A

But the category Pg, corresponds to the submonoidal category given by finite direct sums
of shifts of finite-dimensional free modules. This is a monoidal category generated by
direct sums of shifts of one object E = S; and an arrow s: E? .= E® E — E? of degree 0
with the relation (sE) o (Es)o (sE) = (Es)o (sE) o (Es) (see also | |). In this case
Ko(Pg,) = Zlq,q~*, T, [E] = T which is much smaller than Ko(P).

Now, let again be Q without loops. Ko(P) has the structure of a twisted Z[q, ¢~ ']-Hopf
algebra. The algebra structure is given by the monoidal structure on P which is defined
by induction functors. A restriction functor for the category P defines the structure of a

coalgebra. For the geometric construction of these functors see | |.

Theorem 1.9.2. (Lusztig, [ [, thm 10.17) Consider the map

)\Q: u — Ko(P) ®Z[q,q*1] Q(q)
Fii—>[Li]®1, 1€ Qo

where we see i € Qu as a sequence in the vertices of length 1. This defines an isomorphism
of twisted Q(q)-Hopf algebras.
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Definition 4. We call B := {[L;]® 1 | i = (i1,...,1q),it € Qo} canonical basis for
Ko(P) & Q(q).

We also call )\él(B) canonical basis in I/~

Also the image in Ko(proj” @ Rgli) ® Q(q) is called canonical basis.

There are two intrinsic alternative definitions of the canonical basis for &4~ given by
again Lusztig in | | for the finite type case and in general by Kashiwara’s crystal basis,

see | |-

Generators and relations for Pg,.

This is due to Rouquier (cp. | |), it is the observation that the generators and relations
of the quiver Hecke algebra rather easily give generators and relations for the monoidal
category Pg,. In the category, we use the convention: Instead of E — E’(n) we write
E — E’ is a morphism of degree n. A composition g o f of a morphism f: £ — E’ of
degree n and g: E' — E” of degree m is the homomorphism F — E” of degree n + m

given by F g, E'(n) o), E’(n+m).

Let @ be a quiver without loops. Let B be the monoidal category generated by finite
direct sums of shifts of objects E, =: E,(0),a € Qo and arrows

Za: Eq — Eg, Oab: E.Ey, — EyE,, a,be Qg

of degrees
—2 ,ifa=1b
deg zq = 2, dego,p =
2hpq , ifa#b
where as before hg,p, := #{a € Q1| a: a = b}, a,b € Qo, and assume relations
1) (s*>=1)
(_1)hb’“ (Eyzq — ZbEa)h“”’Jrhbva , ifa#b

Oab © Obag =
0 , ifa=1>
(2) (straightening rule)
0 , if a #b,
Oab © 2oy — Epzq 0 Ogp =
E.E, , if a =0,
0 , if a #b,

Oab © Eozp — 2pEq 0 g =
—-FE,E, , ifa=0b,

(3) (braid relations) for a,b,c € Qy we have the following inclusion of C-algebras. Let
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Clas, ay] be the set of polynomials in «asg, ay.

Ja,b,c: (C[ozs, Oét} — EHdB(EaEbEC)
as = EozpBE. — 2z, BB,
oy = EqEpze — EqzpEe,

we set t(al) := (a5 + ap)" =: s(al) € Clas, ], h € Ng. Then, the relation is
Oap B 0 Eqoep © 0ca by — Ep0eq © 0cpbig 0 Ecogp

Ay he  h hy ho, h
N (G T G T Vo G VTSl
bab\%s astag Ay astat

, ifa=ca#b,

0 , else.

for 1 = (’il,...,in),it € Qo we set E; := EilEiQ Ezn

Let Iy i= {i = (i1, ... in) |

> +% = d}. Then, by construction there is an isomorphism of algebras

Gl,
Ry

— @ HOII]B(EZ', Ej)
1,5€1q

1, — idEl-

Zz(t> — EilEig v EitflzitEi .. Ez'n

t+1

oi(s) — Ejy - 'Eié—la-iZJrlviéEilJrQ By, Lifs=(0+1) €S,
Theorem 1.9.3. (/. |) There is an equivalence of monoidal categories
Po, —+ B
L, — FE;

which is on morphisms the isomorphism of algebras from above.

Since we have not more knowledge on the decomposition theorem for quiver-graded

Springer maps, we can not expect to find a similar easy description for the category P.

Khovanov and Lauda’s catgorification of the negative half of the quantum

group.

Many years later Khovanov and Lauda have a different approach to the same monoidal
categorification as Lusztig. Instead the category P they consider the category of projective

graded (f.g.) modules over quiver Hecke algebras Rg = Rfli, de NOQO

proj” @ Rg.
deNgo

It is easy to see that we have natural injective maps p: Rg ® Rg — RL%_E compatible with

the algebra multiplication. We write 14, := p(1 ® 1). From this there are (well-defined
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see | |,section 2.6) induction and restriction functors

d ) )
Indé’zg: p’I“O]Z(Rg ® Rg) — proyZ(Rngé), X — RdGJrngLQ ®R§®R§ X

Resi;g: pron(Rg+g) — pron(Rg ® Rg), Yi=1g4.Y

The induction functor gives projZ @ Rg the structure of a monoidal category via

deNgo
XoX = Indcézg X X X’ where X X X’ is the natural graded Rg ® Rg—module structure.
Obviously, it is a Z[q, ¢~ 1]-algebra with ¢ operating as the shift (1) on the graded modules,
ie. ¢-[M]:=[M(1)]. The comultiplication is given by [Res][P]:=>_, . g+g:f[ReS§e(P)]'

Gl

It even defines a twisted Z[q, ¢~ !]-Hopf algebra structure on Ko(proj” @ R;).

deNGo

Theorem 1.9.4. (Khovanov, Lauda, [ [) The map

_ . Gl
kg U™ = Ko(proj® @ R; ) ®Qq)
deN&0
aelNy

F— [REM @1, ieQ

where we consider i € Qo as an element in N(?O, is an isomorphism of twisted Q(q)-Hopf

algebras.

Khovanov and Lauda invented the quiver Hecke algebra, which later had been proven
in | | to be the same as the Steinberg algebra of quiver-graded Springer theory. The
explicit description (generators and relations for the algebra) and diagram calculus (which
we leave out in this survey) are a major step forward from Lusztig’s description. Their

work sparked a big interest in this subject.

Remark. Let Q be a Dynkin quiver. Then, the objects of the category P are direct
sums of shifts of ICp where O C Rg(d) is a Glg-orbit (we do not write a local system
if the trivial local system is meant). These are in bijection with isomorphism classes of
CQ-modules. The monoidal structure on P is constructed such that Ko(P) ® Q(q) is the
twisted Ringel-Hall algebra (over Q(¢)). The isomorphism between the twisted Ringel-Hall
algebra and the negative half of the quantum group associated to the underlying graph of

the quiver is a theorem of Ringel, see for example | |.
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Table 1.1: List of known Steinberg algebras.

Hi0p(Z,C) H.(Z,C) HE(Z,C) K (2) @z C
(G, B, g,u) Ccw Clt]/Iw#C[W] C[{]#C[W] affine
classical ST degenerate affine Hecke algebra
Hecke algebra
(G, B,{0},{0}) C Endc—iin(H*(G/B)) | Endgy, () (H(G/B))
nil ST (affine) nil Hecke ?
ie. Z=G/BxG/B algebra
quiver-graded ST 7 R, quiver Hecke algebra 7
(complete dim filtrations) (= KLR-algebra)
Further known examples are:
(1) There is an exotic Springer theory (by Kato | I, [ |, Achar and Henderson | |). The Steinberg algebra K(?X(C*)3 (Z) ®z C is isomorphic

to the Hecke algebra with unequal parameters of type C’T(ll). Also Kato gave an exotic Deligne-Langlands correspondence.

(2) Quiver-graded Springer theory for the oriented cycle quiver (allowing only nilpotent representations) gives that HE(Z) is isomorphic to the quiver

Schur algebra (compare the work of Stroppel and Webster, [ 1)
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1.9.2 Literature review

Collapsings of homogeneous vector bundles are quite ubiquitous (for example see | D.

(1)

Classical Springer theory (cp remark 1.8):

Classical Springer theory is usually defined for semi-simple algebraic groups and
goes back to first Springer | Il |, then Kazhdan-Lusztig | |, Slodowy
| |, Lusztig | |, Rossmann | |) and the defined convolution opera-
tions differ between each other by at most multiplication with a sign character (see
[Hots1]).

Also relevant is the earlier work on the topology of Springer fibres of Spaltenstein
(see | I, |) and Vargas (see | |) and the Springer map already occurrs
in Steinberg’s work (for example | ). A book on classical Springer theory is
written by Borho, Brylinski and Mac Pherson | |. A comprehensive treatment
can be found in chapter 3 of | | and a short one using perverse sheaves in | |

if you speak French. I apologize to the many other authors who I do not mention.

Quiver-graded Springer theory:

First considered by Lusztig, see | |. Later, Reineke started to look at it as an
analogue of the classical Springer theory, see | |, also see | |.

The quiver Hecke algebras as Steinberg algebras first occurred in the work of Varag-

nolo and Vasserot, cp. | |, and independently also in Rouquier’s article | |

Open problems/ wild speculations:

(01)

(02)

Are Springer fibre modules always semi-simple modules over the Steinberg algebra?

Which Steinberg algebras are affine cellular algebras?

Which have finite global dimension?

Partial answers: Brundan, Kleshchev and McNamara showed that KLR-algebras for
Dynkin quivers are affine cellular (see | -

Certain Steinberg algebras (including KLR-algebras for Dynkin quivers) have been
shown to have finite global dimension (see | D- In| |, the authors write
that they expect that KLR-algebras have finite global dimension if and only if the

quiver is Dynkin.

Are there Kazhdan-Lusztig polynomials and even a theory of canonical basis for
Steinberg algebras?

Do we have Standard modules for Steinberg algebras?

Partial answers: Standard modules have been defined in | | under some assump-
tions (finitely many orbits in the image of the Springer map,...).

The original definition of Kazhdan-Lusztig polynomials has been inspired by study-
ing a base change between two bases in the Steinberg variety associated to classical

Springer theory.
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(O4) Can we describe noncommutative resolutions of singularities corresponding to
Springer maps?
Can we adapt the notion of a noncommutative resolution of singularities using con-
structible instead of coherent sheaves?
Partial answers exists for the coherent sheaf theory: Bezrukavnikov studied it for clas-
sical Springer theory (see | |). For quiver-graded Springer theory with @ = Ao
noncommutative resolutions have been studied by Buchweitz, Leuschke and van den
Bergh (see | I, | D).

(O5) Does there exist a Schur-Weyl theory relating classical and quiver-graded Springer
theory (for example via Morita equivalences of the associated Steinberg algebras)?
Partial answers only for type A-situations i.e. the quiver and the reductive group is
of type A (so maybe it only exists in this case): due to Brundan, Kleshchev | |,

see also for example | |-
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Chapter 2

(Generalized quiver Hecke algebras

Summary. We generalize the methods of Varagnolo and Vasserot, | | and partlially
[ |, to generalized quiver representations introduced by Derksen and Weyman in
[ |. This means we have a general geometric construction of an interesting class

of algebras (the Steinberg algebras for generalized quiver-graded Springer theory) contain-
ing skew group rings of Weyl groups with polynomial rings, (affine) nil Hecke algebras
and KLR-algebras (=quiver Hecke algebras). Unfortunately this method works only in the
Borel case, i.e. all parabolic groups in the construction data of a Springer theory are Borel
groups. Nevertheless, we try to treat also the parabolic case as far as this is possible here.

This is a short reminder of Derksen and Weyman’s generalized quiver representations from
[ K

Definition 5. A generalized quiver with dimension vector is a triple (G, G, V) where G is
a reductive group, G is a centralizer of a Zariski closed abelian reductive subgroup H of
G,ie.

G=Cg(H)={g9€G|ghg~' =h Vhe H}

(then G is also reductive, see lemma below) and V is a representation of G which de-
composes into irreducible representations which also appear in G := Lie(G) seen as an
G-module.

A generalized quiver representation is a quadruple (G, G, V, Gv) where (G,G,V) is a gen-

eralized quiver with dimension vector, v in V and Gwv is the G-orbit.

Remark. Any such reductive abelian group is of the form H = A xS with A finite abelian
and S a torus, this implies that there exists finitely many elements hq, ..., hy, such that
Co(H) =%, Cg(h;), see for example Humphreys’ book | |, Prop. in 16.4, p.107.

We would like to work with the associated Coxeter systems, therefore it is sensible to
assume G connected and replace G by its identity component G°. There is the following

proposition

Proposition 1. Let G be a connected reductive group and H C G an abelian group which
lies in a mazimal torus. We set G := Cq(H)° = (%, Cc(hi))°. Then it holds

(1) For any mazimal torus T C G, the following three conditions are equivalent:
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(i) T CG.
(ii) HCT.
(iii) {hi,...,hm} CT.

(2) G is a reductive group.

(8) If ® is the set of roots of G with respect to a mazimal torus T with H C T, then
o :={ae®|alh)=1 VYh € H} is the set of roots for G with respect to T, its
Weyl group is (so | o € ®) and for all o € ® the weight spaces are equal go, = Go

(and 1-dimensional C-vector spaces).

(4) There is a surjection

{B C G| B Borel subgroup, H C B} — {B C G | B Borel subgroup }
B—BNG

If ® is the set of positive roots with respect to (G,B,T) with H C T, then ®* :=
O NPT is the set of positive roots for (G,GNB,T) .

proof: Ad (1): This is easy to prove directly.

(2)-(4) are proven if G = Cg(h)° for one semisimple element h € G in Carters book
[ |, section 3.5. p.92-93. In general G = (i, Cg(h;)°)° for certain h; € H,1 <
i < m. The result follows via induction on m. Set G; := Cg(h1)°. It holds G =
(Nity Cg, (hi)°)° = Cg, (H)° C Gy and Gy is a connected reductive group. By induction
hypothesis, all statements are true for (G, G1), so in particular G is a reductive group. The

other statements are then obvious. O

Notational conventions

We fix the ground field for all algebraic varieties and Lie algebras to be C.

For a Lie algebra g we define the k-th power inductively by g' := g,¢" = [g,g""']. If
we denote an algebraic group by double letters (or indexed double letters) like G, B, U, ...
(or G/, Py, etc.) we take the calligraphic letters for the Lie algebras, i.e. G,B,U,... (or
G', Py, etc) respectively. If we denote an algebraic group by roman letters (or indexed
roman letters) like G, B, U, ... (or G', Py, etc.) we take the small frakture letters for the
Lie algebras, i.e. g,b,u,.. (or g/, ps) respectively.

If we habe a subgroup P C G of a group and an element g € G we write 9P := gPg~! for
the conjugate subgroup.

We also recall the following.

Remark. Let (W,S) be a Coxeter system, J C S. Then (W; := (J),J) is again a
Coxeter system with the length function is the restriction of the length function of (W, .S)
to elements in ;. Then, the set W of minimal length coset representatives W7 c W for
W/Wj is defined via: An element w lies in W if and only if for all s € J we have I(ws) >
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I(w). Also there is a factorization W = W/ W and if w = 2y with € W7,y € W, their
lengths satisfy I(w) = I(z) + I(y). We will fix the bijection c;: W7 — W/Wy,w — wW).
The Bruhat order of (W, S) can be restricted to W+ and transferred via the bijection to
W/W.

For two subsets K, .J C S define KW/ .= (WK)=1nW, the projection W — Wi \W/W;
restricts to a bijection KW — Wi \W/W.

Let (G, B,T) be a reductive group with Borel subgroup and maximal torus and (W,S)
be its associated Coxeter system. We fix for any element in W a lift to the group G and

denote it by the same letter.

2.1 Generalized quiver-graded Springer theory

We define a generalized quiver-graded Springer theory for generalized quiver represen-
tations in the sense of Derksen and Weymann. Given (G,P;,U,H,V) (and some not

mentioned H CT C B C P;) with

* G is a connected reductive group, H C T is a subgroup of a maximal torus in G, we

set G = Cg(H)® (then G is also reductive with 7' C G is a maximal torus in G).

* T C B C G a Borel subgroup, then B := BN G is a Borel subgroup of G,
We write (W,S) for the Coxeter system associated with (G,B,T") and (W,S) for
the one associated to (G, B,T). Observe, that W C W. For any J C S we set
Py :=B(J)B and call it a standard parabolic group.

* Now fix a subset J C S. We call a Pj-subrepresentation U’ C G = Lie(G) (of the
adjoint representation which we denote by (g,z) — 9z, g € G,z € G) suitable if

o U)" ={0},
o U' N3U' is P-stable for all s € S.

Let U = @), U®*) a Pj-representation with each 4*) is suitable. (Examples of
suitable P j-representations are given by U’ = U, where J C J' C S, Uy = Lie(Uy)
with Uy C Py is the unipotent radical and Z/lf], is the t-th power, t € N). We
define W; := (J) and W’ be the set of minimal coset representatives in W/W,
I;:=W\W’ ¢ W\W and

L] 1

JCS
We call T := I the set of complete dimension filtrations. Let {x; € W |i € I}
be a complete representing system of the cosets in I;. Every element of the Weyl
groups W (and W) we lift to elements in G (and G) and denote the lifts by the same

letter. For every ¢ € I; we set

P :="P;NG,
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Observe that H C T = YT C “P; for all w € W, therefore “IP; N G is a parabolic
subgroup in G for any w € W.

*V=,_, V) with VK ¢ G is a G-subrepresentation.
F; = @2:1 Fi(k) with Fi(k) = V&) nzigy(k) §5 g P;-subrepresentation of V),

We define

'E'i ' | (9,.f)
/ e | gf/ \gp

Now, there are closed embeddings ¢;: G/P; — G/Py, gP; — gx;P; with for any i # 4 in

I; it holds Im¢; N Im ¢y = (. Therefore, we can see | |..; G;/P; as a closed subscheme of

i€l y
G/Py. It can be identified with the closed subvariety of the fixpoints under the H-operation

(G/P))H = {gP; € G/P; | hgP; = gP; for all h € H}.

’LE]J
/ .
We also set
Zij = E; xv B
Pij mij
1% G/P; x G/ P,
7]€IJ
/ G/PJ X G/P]

In an obvious way all maps are G-equivariant. We are primarily interested in the
following Steinberg variety
Z = Zy.

The equivariant Borel-Moore homology of a Steinberg variety together with the convo-
lution operation (defined by Ginzburg) defines a finite dimensional graded C-algebra. We
set

Zg = HC(Z)

which we call (G-equivariant) Steinberg algebra. The aim of this section is to describe
Z¢ in terms of generators and relation (for J = (). This means all P; are Borel subgroups
of G.
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If we set

H[%(Z) = Hg+ej_p(Zi,j)a e; = dimc E;

1,5€l
then H[%(Z) is a graded Hf(pt)-algebra Then, we denote the right W-operation on I =
WAW by (i,w) — iw, i € I,w € W. We prove the following.

Theorem 2.1.1. Let J = 0 and & = C[t] = Clx;(1),...,zi(n)], i € I. Then Zg C
Endcgw _mod(Dics i) is the graded C-subalgebra generated by

liyiel, z{t),1<t<n=rk(T),icl, oi(s),seSiel
defined as follows for ke I, f € &.

[ ifi=k,

0, else.

xi(t)fa if i =k,

0, else.

qi(s)s(];)_f, (e &) ifi=1is=k,
()= as)s(f) (&) ifitis=Fh,

0, else.

where

qi(s) := H . €&

acdy »3(a) %@u T (a)e(bv

and Oy = |, Py, Py C Home(t,C) C C[t] is the set of T-weights for U® and
Oy =, Pyky, Py C Home(t,C) is the set of T-weights for 1488

Furthermore, it holds

2degai(s)) =2, ifis=i
2deg ¢i(s), if is # 1

degl; =0, degzi(k) =2, degoi(s) =

where deg q;(s) refers to the degree as homogeneous polynomial in C[t].

The generality of the choice of the U/ in the previous theorem is later used to understand
the case of an arbitrary J as a an algebra of the form e;Zge; for an associated Borel-case
Steinberg algebra Z¢ and e; an idempotent element (this is content of a later article called
parabolic Steinberg algebras).

For J = (,U = Lie(U)®" for U C B the unipotent radical we have the following result which
generalizes KLR-algebras to arbitrary connected reductive groups and allowing quivers with

loops.

Corollary 2.1.1.1. Let J = 0,U = Lie(U)®", U C B the unipotent radical and & = C[t] =
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Clxi(1),...,zi(n)],i € I. Then

Zg C End(C[t]W—mod(@ E’L)
i€l

18 the graded C-subalgebra generated by
li,iel, z{t),1<t<n=rk(T),i€l, oi(s),s€S,iel.

Let f € Eg, k€ I, as € T be the positive root such that s(as) = —as. It holds

a?i(s)s(i):f, ifi=1is=k,
oi(5)(f) =1 o s(f) ifi4is=k,
0, else.

where

hi(s) == #{k e {1,....r} | zi(as) € Pym }
where V = @, V®) and O,y C P are the T-weights of 1408

(1) If Wz; # Wax;s then
his) = #{k | VI € R, wilas) € Dy}

We say that this number counts arrows.

(2) If Wa; = Was, then
hi(s) = #{k | V®) C g, 2i(as) € By}

We say that this number counts loops.

In the case of the previous corollary we call the Steinberg algebra Zg generalized
quiver Hecke algebra. It can be described by the following generators and relations.

For a reduced expression w = s189 - - - S, we set

oi(s152 - Sk) = 0i(51)0is, (82) - - - Tisysgeesp_q (Sk)

Sometimes, if it is understood that the definition depends on a particular choice of a

reduced expression for w, we write o;(w) := 0;(s182 - - - si). Furthermore, we consider

©: @PClai(1), ... 2i(n)] = P Clai(1),... 21(n)], zi(t) = 2zi(t)

el el

as the left W-module Indy}, C[t], we fix the polynomials

ci(s,t) = ®(oi(s)(xi(t))) € @C[zi(l), ...zi(n)], ie€el, 1<t<mn,seS.
iel
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Now, we can describe under some extra conditions the relations of the generalized

quiver Hecke algebras.

Proposition 2. Let S C W = Weyl(G,T) be the simple reflections. Under the following
assumption for the data (G,B,U = (Lie(U))*", H,V), J =0: We assume for any s,t €S

(B2) If the root system spanned by s, oy is of type Bs (or stst = tsts is the minimal
relation), then for every i € I such that is =i =it it holds h;(s), hi(t) € {0, 1,2}.

(G2) If the root system spanned by as, oy is of type Go (or ststst = tststs is the minimal
relation), then for every i € I such that is =i =it it holds h;(s) = 0 = h;(t).

Then the generalized quiver Hecke algebra for (G,B,U = (Lie(U))*®", H,V),J = () is the

graded C-algebra with generators
li,iel, z{t),1<t<n=rk(T),i€l, ois),s€eSiel
in degrees

2hi(s) —2, ifis=1
2h;(s), ifis #i

degl; =0, degzi(k) =2, degoi(s) =

and relations

(1) (orthogonal idempotents)

(2) (polynomial subalgebras)

(3) ( relation implied by s? = 1)

0 , if is =i, hi(s) is even
0i(8)ois(s) = —2a?i(8)_1ai(s) , ifis =1, hi(s) is odd

(—1)his @Il g ot
(4) (straightening rule)

Ci(S,t), ’ ZfZS:Z
oi(s)zi(t) — s(zi(t))oi(s) =
0 L ifis # i,
(5) (braid relations)
Let s,t €S, st =ts, then

0i(8)ois(t) = oi(t)oi(s)
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Let s, t € S not commuting such that © := sts--- = tst--- minimally, i € I. There

exists explicit polynomials (Qu)w<z i as, ay € C[t] such that

oi(sts---) —oi(tst---) = Z Quoi(w)

w<x

(observe that for w < x there exists just one reduced expression).

The proof you find in the end, see Prop. 5.

2.2 Relationship between parabolic groups in G and G

For later on, we need to understand the relationship between parabolic subgroups in G and
in G. Recall that a parabolic subgroup is a subgroup which contains a Borel subgroup,
every parabolic subgroups is conjugated to a standard parabolic subgroup. The standard
parabolic subgroups wrt (G, B,T) are in bijection with the set of subsets of S, via J —
B(J)B =: P;. As a first step, we need to study the relationship of the Coxeter systems
(W, S) and (W,S).

Lemma 13. [t holds GNW = W. It holds W NS C S. Let lg be the length function with
respect ot (W, S) and ls be the length function with respect to (W,S). For every w € W it
holds lg(w) < ls(w).

proof: Ng(T)N G = Ng(T) implies G N'W = W. The inculsion ®* N s(—®*) C
®T N s(—dT) for any s € S implies WNS C S.

Let w = ty---t, € W, t; € S reduced expression and assume [s(w) < r. It must be
possible in W to write w as a subword of ¢ - - ;- t, for some i € {1,...,7}. But then

r=ls(w) <lg(ty---ti---t,) <. O

Definition 6. We call J C S. We say that J is S-adapted if for all s € S with s = s1--- s,
a reduced expression in (W, S) such that there exists ¢ € {1,...,7} with s; € J then it also
holds {s1,...,8:} C J.

Lemma 14. (a) Intersection with G defines a map

{Pyj|JCSisS— adapted} — {Py|J C S}

P; i—)]P’JﬂGZPSmWJ
(b) Let GN*B is a Borel subgroup of G with B C G a Borel subgroup and x € W. Let
s €S, then it holds

(1) If Was # Wax then GNTB =G N*B.
(2) If Was = Wz, then ®s € W and G N "B = "$[G N *B.

This gives an algorithm to find for any x € W a z € W such that GN*B = *[GNBJ.
Also, for every J C S it then holds GN*P; =*[GNP;] and WN*W; =*[IW NW,|
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where x € W,z € W as before and for every S-adapted J C S
G ﬁ w]P)J = ZPS(‘]WJ.

proof:

(a) It holds by the previous lemma GNW; = W NW; and because J is S-adapted it
holds WNW; = (SN W), to see that:
Let w =1t1---t, € W; with t; € S an S-reduced expression, we need to see t; €
Wy, 1 <i<r. Wlog assume t; ¢ W;. As J is S-adapted, there exists a S-reduced
expression with elements in J of w which is a subword of ¢5 - --¢,. But this means a
word of S-length r is a subword of a word of S-length r — 1, therefore ¢; € W .

Now, the following inclusion is obvious
PSHWJ = B<GQWJ>B Cc GNPy.

Because B C P; N G there has to exist (W; N S) C J' C S such that P; NG = Py,
we need to see (SNW;) = J'. Let s € J', then s € Py = BW ;B implies s € W .

(b) Let s € S,%s ¢ W, then +x(as) ¢ ® and this implies
& Nas(@) = 0 [2(@) \ {(as)} U{—2(as)}] = ® N 2(®).

Therefore, the Lie algebras of the Borel groups G N *B and G N **B have the same
weights for T, this proves they are equal.
The point (2) is obvious.

O

Remark. In the setup of the beginning, we can always find unique representatives z; €
W, i € I for the elements in W \ W which fulfill

B,=GNn"B=GNB=0B.
This follows because for every i € I there is a bijection

Wa; — { Borel subgroups of G containing 7'}

vx; — Y[GNYB]

Then, there exists a unique v € W such that Y[G N *B] = G N B, replace x; by vx; as a
representative for Wxz;.

We will call these representatives minimal coset representatives!. Observe for is # i
it holds x;s = ;s by lemma 14, (b), (2).

Yif G is a Levi-group in G they are the minimal coset representatives, in this more general situation the
notion is not defined.
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But since the images of G/B;,i € I inside G/B are disjoint, we prefer not to identify all
Biicl
In general, in the parabolic setup, it holds P; # P; for ¢ # j.

Lemma 15. (factorization lemma) Let J, K C S be S-adapted and set L := SNWj, M :=
SNWg.

(1) It holds Wt = WNWY and for every element in w € W the unique decomposition as
w :waJ, w’ GWJ,U)J € W fulfills w’! e Wb = WNWy,wyeWr=WnNWj.

(2) It holds "WK N W = LWM_ In particular, every double coset W ywW g with w € W

contains a unique element of “WM.

proof:

(1) It holds W, (W NW,) =W =W NW/W,; > (WnNW/)(WNW), the uniqueness
of the factorization in W implies (W NW7) c Wl.
Now take a € WL, we can factorize it in W as a = a’ay with @’/ € W/, a; € W;.
We show that ay € W. Write @ = t1---t, S-reduced expression, assume a; # e,
then there exists a unique ¢ € {1,...,r} such that a; is a subword of t;---t, but
no subword of ¢;11---t,. Then, t; must have a subword contained in Wy, as J is
S-adapted we get t; € W ;. Continue with ti_laJ being a subword of ;41 ---%,.. By
iteration you find ay = t;, ---t;, € W for certain i = iy < --- < iy, i; € {1,...,r}.
This implies ay = e and a = a’ € W N W.

(2) By definition "WE N W = (W)L nWEnWw = (Wh=tnwM = LwM,

2.3 The equivariant cohomology of flag varieties

Lemma 16. (The (co)-homology rings of a point)

Let G be reductive group, T' C P C G with P a parabolic subgroup and T a mazximal torus,
we write W for the Weyl group associated to (G,T) and X(T) = Homeg, (T, C*) for the
group of characters. Let E'T be a contractible topological space with a free T-operation from

the right.

(1) For every character A € X (T) denote by
S)\ = KT XT C)\

the associated T-equivariant line bundle over BT := ET/T to the T-representalion
Cyx which is C with the operation t - ¢ := X(t)c. The first chern class defines a

homomorphism of abelian groups
c: X(T) — H*(BT), X\ c1(Sy).
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Let Symg(X(T)) be the symmetric algebra with complex coefficients generated by
X(T), it can be identified with the ring of reqular function C[t] on t = Lie(T') (with
doubled degrees), where X (T') @z C is mapped via taking the differential (of elements
in X(T)) to t* = Homc_y,(t,C) C C[t] (both are the degree 2 elements).

The previous map extends to an isomorphism of graded C-algebras

Clt] — Hi(pt) = H* (BT)

In fact this is a W-linear isomorphism where the W-operation on C[t] is given by,

(w, ) = w(f),w € W, f € C[t] with
w(f):t—C,t— f(wiltw).

We can choose ET such that it also has a free G-operation from the right (i.e. ET :=
EG), then BT = ET/T has an induced Weyl group action from the right given by
2T - w :=xwl, w € W,x € ET. The pullbacks of this group operation induce a left
W -operation on H.(pt).

(2) Hi(pt) = HL,(pt), Hg(pt) = (Hp(pt)" = (HL(pt))" = HE,(pt).

proof:

(1) For the isomorphism see for example and the explanation of the W-operation see (L.

Tu; Characteristic numbers of a homogeneous space, axiv, | )]

(2) Use the definition and Poincare duality for the first isomorphism, for the second also

use the splitting principle.
O

Lemma 17. (The cohomology rings of homogeneous vector bundles over G/P)
Let G be reductive group, T'C B C P C G with B a Borel subgroup, P parabolic and T a

mazimal torus.

(1) For A € X(T) we denote be Ly := G xB Cy the associated line bundle to the B-

representation Cy given by the trivial representation when restricted to the unipotent
radical and X\ when restricted to T. Let u: E — G/B be a G-equivariant vector
bundle. Then, p*(Ly) is a line bundle on E and

Ky := EG x% u*(Ly) - EG x® E
is a line bundle over EG x E. There is an isomorphism of graded C-algebras

Clt] = HAL(E) = H(EG xY E)
X(T)> M= ca(Ky).
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(2)

with degh =2 for A € X(T).
(By definition, equivariant chern classes are defined as ¢ (u*Ly) := c1(Ky)).

Let p: E — G/ P be a G-equivariant vector bundle, then there is an isomorphism of
graded C-algebras
HE(E) — (Hi(pt)"™.

proof:

(1)

Arabia proved that H}(G/B) = Hj(pt) as graded C-algebras (cp. | |), the

composition with the isomorphism from the previous lemma gives an isomorphism
c: Cl] = HL(G/B), : A= c1(EG x© Ly) =: {'(Ly)

Now, we show that for a vector bundle u: E — G/P with P C G parabolic, the
induced pullback map

W' HE(G/P) — HY(E),  ¢f(Ly) = of (4" Ly)

is an isomorphism of graded H (pt)-algebras. We already know that it is a morphism
of graded H (pt)-algebras, to see it is an isomorphism, apply the definition and

Poincare duality to get a commutative diagram

"

HE(G/P) HE(E)

gl %l

G w
H2dimG/P—k(G/P) HZGdimE—k(E)

the lower morphism p* is the pullback morphism which gives the Thom isomorphism,

therefore the upper u* is also an isomorphism.

By the last proof, we already know Hf(E) = H(G/P). Then apply the isomorphism
of Arabia see | |, this gives Hj:(G/P) = Hp(pt). Now, P homotopy-retracts
on its Levy subgroup L, this implies H}(pt) = Hj (pt), together with the (2) in the

previous lemma we are done.

O

Lemma 18. (The cohomology ring of the flag variety as subalgebra of the Stein-

berg algebra)

Let G be reductive group, T C P C G with P parabolic and T a mazimal torus. Let V be a

G-representation and F C V be a P-subrepresentation, let E = G x" F and Z :== Exy E

be the associated Steinberg variety. The diagonal morphism E — E X E factorizes over Z

and induces an isomorphism E — Z, which induces an isomorphism of algebras

HE(G/P) - HZGdimE—*(ZE)’
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recall that the convolution product on HE(Z,) maps degrees (i,j) — i+ j — 2dim E.

proof: Obviously you have an isomorphism
H(G/B) = HE(B) = HE(Ze) = Hy g i (Ze)

where the last isomorphism is Poincare duality. But we need to see that this is a morphism
of algebras where HC(Z,) is the convolution algebra with respect to the embedding Z, =
E 2% F x E. This follows from | |, Example 2.7.10 and section 2.6.15.
O
We observe that the algebra C[t] with generators ¢ € t* in degree 2 plays three different
roles in the last lemmata. It is the T-equivariant cohomology of a point, it is the G-
equivariant cohomology of a complete flag variety G/B, it can be found as the subalgebra
HE(Z.) C HE (Z).

2.4 Computation of fixed points

Recall the following result, for example see | |, satz 2.12, page 13.

Lemma 19. LetT' C P C G be reductive group with a parabolic subgroup P and a mazximal
torus T. Let W be the Weyl group associated to (G,T) and Stab(P) := {w € W | wPw™! =
P}. For w = xStab(P) € W/Stab(P) we set wP := xP € G/P. Then, it holds

(G/P)T = {wP € G/P | w e W/Stab(P)}

Lemma 20. Let P, P, C G be a reductive group with two parabolic subgroup, Fi,Fo CV
a G-representation with a Py and Py-subrepresentation. Assume (GF;)T = {0}. We write
(B; = G <V Fy,u;: By — G/P;,w: E; — V) for the associated Springer triple and

Z :=Fy xy Ea,m: Z — (G/Py) x (G/P2) for the Steinberg variety.

Then, there are induced a bijections u] : EI — (G/P)T,mT: ZT — (G/P))T x (G/P)T.

More explicit we have

El' = {¢y := (0,wP;) € V x G/P; | w € W/Stab(P,)} C E;
Z" = {¢yy = (0,2P1,yP) € V x G/Py x G/Py | x € W/Stab(Py),y € W/Stab(Ps)}
cZ.

Furthermore, for any w € W/Stab(Py) let Z¥ := m~Y(G - (P1,wP,)) and
My :=m|gw: Z¥ = G- (P, whs)

be the induced map. There is an induced Bruhat order < on W/Stab(Ps) by taking the
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Bruhat order of minimal length representatives.

(Z9)" = {pp2w = (0, 2P, zwPs) €V x G/Py x G/Py |z € W}
77" = (o |z € Woo <w} = | (297

v<w

There is a bijection W/(Stab(Py) N¥Stab(Py)) — (Z¥)1, x> ¢z 2w

proof Obviously, it holds EI' ¢ VT x (G/P,)T = {0} x (G/P)T. But we also have
a zero section s of the vector bundle n: E; — G/P; which gives the closed embedding
G/P,— E; CV x(G/F;),gP; — (0,9P;).

It holds ZT c VT x (G/P)T x (G/P)T = {0} x (G/P))T x (G/P>)T. But using the
description of Z = {(v,gP1,hP2) € V X G/Py x G/Py | (v,gP1) € E1, (v,hPs) € Ea}, we
see that {0} x (G/Py)T x (G/P,)" C Z and these are obviously T-fixed points.

We have (Z%)T ¢ Z¥ N ZT = {¢r4w | © € W} and one can see the other inclusion, too.
Also, we have Vi (Upen 29T = Uvgw(ZU)T~ Consider the closed embedding

v<w

S: G/P1 X G/PQ — Z, (g_Pl,hPQ) — (O,gPl, hPQ).

Clearly s(G(P1,wP,)) C Z¥ C Z%, but since s is a closed embedding we have

U (2T c s(G(P1,wPy)) = s(G(P1,wP,)) C Z¥

v<w

which yields the other inclusion. O

2.4.1 Notation for the fixed points

Now, in the set-up of the beginning this gives the following:

Observe, that (| .., Gi/P)T = (G/P;)")T = (G/P;)T, and (G/P;,)T = {wP; | w €
WJ}. For any w € WY there exists a unique i € I; such that z* := wxi_l € W, this implies
wPy = 2 (z;Py) = 1;(2'P;) € (G/P;)T. Therefore, we write

iely

(|| G/P)" = (@/P)" = | [{waPy | we W/"W,; C W/"W,}

iEIJ iEIJ
E?; = {waxl = (O,U)l'i]P)J) ’ 1€ IJ,w € W/IZWJ}
zT = |_| {bwa;we; = (0, wz Py, v Py) | we W/SW 0 e W/TW 1}
i?jEIJ
Let w,v € W’ and i,j € Iy such that w’ := w:ri_l € W, = vxj_l € W. We then set

Guw = stiziv wa,v = qbwia:i,vj,a:j'
As we have bijections (0, wz;Py) — wz;Ps, (0, wz;Ps,vz;Py) — (wa;Py,va;Py) between
ET and (G/P;)T, ZT and (G/P; x G/P;)T, we denote the T-fixed by the same symbols.
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2.4.2 The fibres over the fixpoints

Remember, by definition we have F; = Mgl(gbxi). For any w = w'z; € W/, w’ € W We set
Fy = 15" (bw) = 17 (buia,) = F = P VE nvu®
k=1

and if also x € W/(W; N"Wj) (i.e. the definition does not depend on the choice of a

representative in the coset)

Fx,a:w = m;1(¢x,xw) = Iy N Py

— @ V&) A r[u(k) N wu(k)]
k=1

For J = (,U = Lie(U)®":  We choose V = @_; VW a@;_,.; V) with vV c R,1 <
k<t V& =gk with g*) ¢ gis a direct summand, t + 1 < k < r. The fibres look like
t

Fo=PvWnrLieW e P vHnwu®
k=1 k=t+1

where u(®) is the Lie subalgebra spanned by the weights > 0 in g(¥).
t T
Fozw = @) Vi N *[(Lie(V)) N “(Lie(U))] & € Vi n=u® nwu®)

k=1 k=t+1

Lemma 21. Assume J = 0,U = Lie(U)®". Let 2 € W,s € S we set

hz(s) :=#{k e {l,...r} | z(as) € Py }

where V = @)._, V®) and O,y C ® are the T-weights of VE) | If x = ata; with 2t € W,
then hz(s) = hgz:(s) =: hi(s). It holds

i

Fy./Fy 25 = (gwi(%))@hi(s)'

(1) If *s ¢ W then
hi(s) = #{k | VP C R, 2i(as) € Dy }-

(2) If *s € W, then
hi(s) = #{k | V) C g, zi(as) € Py }-

proof: Without loss of generality V C G,U = Lie(U), set x := x;, we have a short exact
sequence

0= VNrUNU = VDU VNG, =0

Now, V' N Gy (a,) = 0 if and only if z(as) ¢ Py .
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(1) If *s ¢ W then x(as) ¢ © where ® are the T-weights of g. That means, if V C g we
get hi(s) = 0.

(2) If *s € W, then x(as) € ®. This means, if V' C R we get h;(s) = 0.

2.5 Relative position stratification

2.5.1 In the flag varieties

Let JCS,we W/, i jel; We define

C":=Goewn | | | Gi/Pix | | Gi/P,

i€ly 1€l

C=Y:=Goew N | | | Gi/Pix | | Gi/P;

i€l i€l

v = C" N (G/P; x G/ P;)

J

CEP = C=U N (G/P; x G/P;)

4,7

For an arbitrary w € W there exists a unique v € JW such that W;wW; = W 0W,
we set C¥ 1= CV,CY = CF,,C=¥ = C=V,C5" = . We remark that C=%,C5
are closed (but not necessary the closure of C'* Clw], because it can happen that CZ“’J =
0, ijw # (), see next lemma (3)).

Let i,j € 1;,Cij :={C{ |w € JWJ,C;fj # 0}, Orb; j := {G-orbits in G/P; x G/P;}, we

have the following commutative diagram

Orb; i WN%W,\ W/WN*%W,
% qu
Cig e {(W ) w (W) [ w e W}

defined as follows

TP(Gbus wa;) = (W NTW )w(W N5W,),

rpw(CFy) == "W s (ziwa; )W

(G, ;) = Cy s (D Goywa;)
(W NH W )wW N W) = (ﬁ’WJ)w(ijJ),

rp,rpw are bijections and ®, ¥ are surjections. We will from now on assume that &,
U are bijections as well, l.e. for every nonempty C}"; there is a wyg € W such that
Wiz, woijJ = W,ywW; and G = Gou,woz; C G/P; x G/P;, this implies

CY >~ G/(P,N™P;NG).

2y
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Lemma 22. Let J CS,s €S\ J,i,j € 1.
(1) C=% is smooth, it equals C° U C®,
(2) C%S = 0 unless Wa; Wy € {Wax; Wy, Wa;sW ;}.

(8) Assume that Wax; Wy # Wx;sW; and let j € Iy such that xisaﬁj_l € W, then it holds

W(G/P) # 4(GIP), O =C3y, C5 =C5,

%,J J?
and GNTi[P; NPyl = GNTPjns g, C’fj =G/(GN*Pjasy).

(4) Assume that Wax;W; = Wax;sW; = Wa; W, then it holds ¢ = j, in particular
u(G/P) =1 (G/Py), Ci = Cf, for allw

and the first equality implies (*'P;) NG # (**P;) N G, there is an isomorphism of

G-varieties

G xB (("Pyu NG)/P) = C5°, (9,hP:) — (9Pi, ghPy).

2,0 0

proof:

(1) The variety | |;c;, Gi/F; is a smooth subvariety of G/P; because each G/P;,i € I,
is smooth. It is known that G¢e s = Ge s U Goe o is smooth in G/IP;, therefore its
intersection (i.e. pullback) is smooth in (G/P)H.

(2) Now, C’fjs = C7,;UCs,; and Cf; # 0 iff it contains a T-fixed point ¢, v.; for av € W,
that implies x;lvxj]P’J = slPj, i.e. thereis an f € P; such that vx;f = x;s, therefore
f S ]P)me = W] and ijWJ = WxisWJ. Similar Cie,j 75 @ iff Wl‘jW] = WxiWJ.

(3) The intersection (G/P;) N (G/P;) is a G-equivariant subset of G/IP;, therefore it is
nonempty iff it contains all T-fixed points vz;P; = wx;P; with v,w € W. But this
is equivalent to Wa;W; = Wax,;W ;.

As we have seen before Wx;sW; = Wx;W ; implies Cij =, Cii = () and therefore
Ciy =C1;,C5 =G5y

Let Wa,W; # Wx;sW;, we need to show G N*[P; N*P;] = G N %Pjnsy Let
® =@, UP™ be the set of roots for (G,B,T) decomposing as positive and negative
roots, let A; C @, be the simple roots corresponding to J C S and let ® be the
roots for (G, T). It is enough to prove that the T-weights on Lie(G N *[P; N *Py])

equal the T-weights on Lie(G N ¥ P jns ).

Now, Wx;W; # Wa;sW y implies “is ¢ W or equivalently x;(cos) ¢ ® where ay € &
is the simple root negated by s. We have the T-weights of Lie(*:P;) are {z;(«a) | o €
o U-A),

the T-weights of Lie(***Ps) are {z;(a) | o € &, \ {as} U —s(A;) U {—as}}.
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It follows that the T-weights of Lie(G N * Py N*¥*P ) are

{zi(a) | € (2 U[-A;N—=5(A))]) N2}
={zi(a) | € (2y U—-A)n,,) N O}
and these are the T-weights of Lie(G N %P jqs ).

1

(4) The first part is by definition. Assume Waz;W; = Wax;sW; implies z;sz; * = ab

with a € W, b € *W ;. Now %P; N G is a parabolic subgroup of G conjugated to
Pjng, therefore

P NG = (% (BP) NG = “(%Py) NG = (("Ps) N G)

and assume that this is equal ®/P; NG that implies a € x;(J N S)x; !, then z;s2; ! =
ab € "W ; that implies s € J contradicting our assumption s ¢ J.
Finally, consider the closed embedding G x*# ((*'P;,(5y N G)/Pi) — G x" G/P; and

compose it with the G-equivariant isomorphism
G x"G/P, — G/P, x G/P;,(g,hP;) — (gP;, ghP;).

The image is precisely C7, U CF .

2.5.2 1In the Steinberg variety

Let w € WY, i,j € I, recall that we have a map my: Z; — G/P;.

gw . mf.l(C’;fj)

2¥) 2,]
w __ w .__ w
gy | 2
i,jels
<w __ <w __ v
7=v=z77"= |J 2z
v<w,veW’
<w ,_ v
zi'= U 2
v<w,veW/

Lemma 23. (a) If C}; # 0, the restriction m; ;: Z}%; — C}; is a vector bundle with
I
fibres isomorphic to F; N""""i F;, it induces a bijection on T-fized points. In partic-

ular, all nonempty Z;'; are smooth.

(b) For any s € S the restriction m: Z5 — C=° is a vector bundle over its image, in

particular Z5 is smooth. More precisely, it is a disjoint union ng — C’Z-Sjs with

(1) ng # (0 implies Wz ;W = Wax;sW .
(2) Assume that Wax;W ;7 # Wax;sW ;, then ng = Z;; and ﬁ = 0.
(8) Assume that Wz, W ; = Wax;sW ;, then it holds Z“’:Z — C’Z%-S 18 a vector bundle.
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proof:

(a) As (7Y is assumed to be a diagonal G-orbit in G/P; x G/Pj, it is a homogeneous
space and the statement easily follows from a wellknown lemma, cp. | |, p.26,

lemma 4.

(b) (1) If Z7, # 0, then C7; # 0 and by the proof of the previous lemma 22, (2), the

claim follows.

(2) If Wa;W; # Wa;sWj, then by lemma 22, (3), ,LSJS = C7; 1s already closed,
therefore Z7; is closed as well. Also, C’fis = (7, is already closed, therefore Z¢,

is closed as well.

(3) U W, Wy =Wa,;sW, then Cfis is the closure of the G-orbit C7; and by lemma
22, (4) we have G x (("Pyuy NG)/P;) = C,  (9,hP) — (9P, ghP;) is

2,1 )

an isomorphism. We set X :=

X :={(gf, 9P, ghP;) € G(F;n""*F;) x G/P; x G/ P; |
gEG, fEFN"" Fhe “Pyugsy N GY

and we claim ﬁ = X. First, observe that X C Z;; because gf = gh(h™1f)
with A=Y f € F; N xismi_lFi. One can easily check the following steps.

(*) X — Cfis is a vector bundle with fibre over F; N 5% Fj. In particular, we
get that X is smooth irreducible and dim X = dim Z;,.

(*) Z;; c X.

(*) X is closed in Z;; because we can write it as X = p~L{(G(F; N misxi_lFi)) N
m_l(Ci-S). Since F; N %52 Fy is (by definition) B; = ®i B-stable, we get

G(F;n Iisxlei) is closed in V. This implies X is closed.

2.6 A short lamentation on the parabolic case

From the next section on we assume that all P; = B; are Borel subgroups. What goes

wrong with the more general assumption (which we call the parabolic case)?

(1) We do not know whether C}’; (see previous section) is always a G-orbit. That is

relevant for Euler class computation in Lemma 14.

(2) The cellular fibration property has to be generalized because C* := {gP, gwP’ | g €
G} € G/P x G/P' * G/P is not a vector bundle (its fibres are unions of Schubert

cells). This complicates Lemma 12.

(3) We do not know what is the analogue of lemma 13, i.e. what can we say about
ZST 5 ZSY 7

(4) The cycles [Z] ] are not in general multiplicative generators. If we try to understand

more generally [Zi“’j], the multiplicity formular does not give us as much information
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as for [TSJ] because qu is even smooth. Also understanding the [Z};] is not enough,
since they do not give a basis as a free £-module because the rank is wrong (cp.

failing of cellular fibration lemma).

The point (4) is the biggest problem. Even for HE(G/P x G//P) we do not know a set
of generators and relations (see next chapter).

So, from now on we assume J = ().

2.7 Convolution operation on the equivariant Borel-Moore

homology of the Steinberg variety

Definition 7. Let H € {pt,T,G} with T C G where T is a maximal torus.

We define the H-equivariant algebra of a point to be Hj;(pt) with product equals the
cup-product, we will always identify it with HH (pt) := H;*(pt). It is a graded C-algebra
concentrated in negative even degrees.

We define the H -equivariant Steinberg algebra to be the H-equivariant Borel-Moore homol-
ogy algebra of the Steinberg variety, the product is the convolution product, see | ,
[Var09].

We say (H-equivariant)company algbra to the H-equivariant cohomology algebra of E,
the product is the cup-product.

Zy = HI(Z) for the H-equivariant Steinberg algebra,

Ex = Hy(E) for the H-equivariant company algebra.
For H = pt we leave out the adjective H-equivariant and leave out the index H.

Recall, that Zg and £g are left graded modules over Ag. Furthermore, £ is a left
module over Zp. This follows from considering M; = My = M3 = E smooth manifolds

and Z C My x My, E = E x {(e,0)} C My x Ms. Then the set-theoretic convolution gives
Z o E = FE, which implies the operation.

Also, Zg is a left module over €. This follows from considering My = My = M3 = F
smooth manifolds (dim¢ E =: e) and E < M; x My diagonally, Z C My x Ms, then the
set-theoretic convoltion gives ' o Z = Z, that implies that we have a map

Hgl—p(El) X Hg—l—ej—q(zi,j) - HH —(p—i—q)(ZZ'vj)

e;+e;

Using Poincare duality we get H{gi_p(E) >~ HY(E) and the grading
Hi(Z) =@, ; H]]

ei+e;—q(Z) the previous map gives an operation of the H},(E) on H[{:ﬁ(Z)

which is H (pt)-linear. We denote the operations by

*:ZHXEH —>5H

O:EHXZH — ZH
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Furthermore, there are forgetful algebra homomorphisms

He(pt) — Hp(pt) — H x (pt) = C,
Za — Z7 — Z,

Ea—Er — €£.

Let us investigate some elementary properties of the convolution operations. From
| |, section 5, p.606, we know that the operation of Z5 on &g is faithful, i.e. we get

an injective C-algebra homomorphism
ZG — End (5@).

We have the following cellular fibration property. We choose a total order < refining
Bruhat order on W. For each i,5 € I we get a filtration into closed G-stable subsets of
Z; j by setting ijw = Up<w Z7;, w € W. Via the first projection pri: Cj; — G/B; is
a G-equivariant vector bundle with fibre B;vB;/Bj, we call its (complex) dimension d}

17]7
also Z} ;i C}; is a G-equivariant vector bundle, we define the complex fibre dimension
fi;- By the G-equivariant Thom isomorphism (applied twice) we get
G G
Hm(Zzp,j) =H, 72dg,j72f;jj(G/Bz’)-

m

In particular, it is zero when m is odd and HE(ZZ”]) is a free HE (pt)-module with basis
by, v € W,degb, = 2dim(B;xB;)/B; + 2dzj + 2 fj

Using the long exact localization sequence in G-equivariant Borel-Moore homology for
every v € W, we see that Z; ; is open in ijv with an closed complement Z;f~ We con-
clude inductively using the Thom isomorphism that HOGdd(ZE—;) =0 and that HE (Zf—;“”) =
Do<w H*G(Zl”j) We observe, that #{w € W | Z}; # 0} = #W for every i,j € I.
It follows that HE(Z;;) is a free HE(pt)-module of rank #(W x W), and that every
HE(Z5)) 2 HE(Zy5) is injective.

We can strengthen this result to the following lemma.

Lemma 24. Let < be a total order refining Bruhat order on W. For any w € W set
Z=" = m  (Uyew C¥) = Upew Z2°- The closed embedding i: Z=° — Z gives rise to an
injective morphism of HE(E)-modules i : Zév = HE(Z=Y) — Zg. We identify in the
following Z(S;U with its image in Zg. For all v € W we have

Zéw = @ Eq o [2Y] as Eg-module

v<w

1; * Zéw *1; = @ & o [T”j] as E;-module
v<w

where & = H}(E;). Each [Z°] is nonzero (and not necessarily a homogeneous element).

In particular, Zc (as ungraded module) is a free left Eq-module of rank #W.
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proof: Now first observe that set-theoretically we have E o Z¥ = Z¥ (where we use
the diagonal embedding for FE again). This implies that the direct sum decomposition
HE(Z) = @ ew HE (Z27) is already a decomposition of Hf(E)-modules.

Now we know that we have by the Thom-isomorphism algebra isomorphims
HE(B) = HE(|_|G/Bi) = HE(ZY),
el
using that #{(i,5) | Z;; # 0} = #I. Now, Poincare duality is given by H(Z};) —

H$ Zﬁij(Z?’ ), a— a-[Z];] the composition gives

Z?j
HE(E;) — HQGdile?”iv—q(Zp ), e e [Zig).

1,2V 2,20

Lemma 25. For each z,y € W with l(z) + I(y) = l(zy) we have
25"« 25V C 25"

proof: By definition of the convolution product, it is enough to check that for all w <

x,v < gy it holds for the set theoretic convolution product

0, j#J

< .
Zix'  3=1

Z;ﬁ; (¢] Z})’,k C ,
for i,7,4,k € I, because by definition Z<% o ZSY = Ung,ugy Z% o Z¥. Now, the case
j # 7' follows directly from the definition. Let j = j'. Let C* := G(B,wB) C G/B x G/B.
According to Hinrich, Joseph | |, 4.3 it holds C¥ o C¥ C C™" for all v,w € W. Now,

we can adapt this argument to prove that C’Z“”] o C}’,k C Cj“’,z’ as follows:

Since C}Y; # 0,07 # () we have that wo = xiwxj_l € W,vy = xjvxlzl € W and

CZwJ = G(Bi,wij),CJy’k = G(Bj,’U()Bk). We piCk M1 = G/Bi’MQ = G/Bj,Mg = G/Bk

for the convolution and get
p13(p13 Ci N pas CFx) = {g(Bi, wobvoBy) | g € G,b € Bj}.
Now since the length are adding one finds B;woBjvoBj, = B;i(wovg)By; , as follows

woBjug By, = xi[w("”;lG N IB%)U(’:?G NB)z;*
C z;[wBvBlz, NG C z;[BwuBlz, ' NG
= [xiE(xiwvx,;l)sz] NG = B;wouy By,

For the last equality, clearly B;wouoBr C [f""iB(:piwvxlzl)z’CB] N G. Assume

[“iB(zwory ) B] NG = UBitBk
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for certain t € W, then clearly B;tBy, C [*B(zwvr,')™*B] NG N [*Bt"*B] N G as this
intersection is empty if ¢ # (xiwvxlzl), the last equality follows.

Then using Z; = {g(fi = wofj, Bi,woB;) € Vx G/B; x G/Bj | g € G, f; € F}, fj € F}}
one concludes by definition that Z% 0 Z}”k C Z;U;; O

We have the following corollary whose proof we have to delay until we have introduced

the localization to the T-fixed point.

Corollary 2.7.0.2. For s € S,w € W with [(sw) = l(w) + 1,

(Z5) % [Z%) = [Z5%] in 25°" ) 25°.

Since [Z7] =3, 1e1Zs4] for all v € W, this is equivalent to i, j, 1,k € I we have

(Z5,) < [Z7%) = ou5(Z5%) in Z5 ) Z5.

2.8 Computation of some Euler classes

Definition 8. (Euler class) Let T be a torus and t := Lie(T"). Let M be a finite dimensional

complex t-representation. Then, we have a weight space decomposition

M= @ M. My={meM|tm=a(t)m}.
a€Homc(t,C)
We define
eu(M) := H adimMa e C[f] = Hi(pt)
acHom(t,C)

For a T-variety X and a T-fixed point z € X, we define the Euler class of x € X to be
ew(X,z) :=eu(T,X),

where the t-operation on the tangent space T, X is the differential of the natural T-action.
Observe, that eu(T;X) = (—1)3m %X ou(T, X).

Recall from an earlier section the notation Z% := m~1(C%). We are particularly
interested in the following Euler classes, let w = w*zy, z = z'x;,y = yja:j e W,wk, 2t ¢yl €
w

Ay i=eu(E, ¢y,) = eu(Td,wk% Ey), € Hr(pt)

(7, 62y) = (0T, ZE), € K := Quot(Hi (pt))

xlw;,yl @ 1]

k

Remember Fy, =~ (¢w) = f15 (Gura) = Fry Foyi=m (puy) =" FNY Fj =
F,NF,. In particular, we can see them as t-representations. We also consider the following
t-representations

Ny = Tyep G/ Py =gN"U™ = wk [N U]
Ny U~

My, =——=¢gN ———
Y n; Nny, g T~ NYU~
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where U™ := Lie(U™) with U~ C B~ := "B is the unipotent radical where wy € W is the

longest element. Some properties can easily be seen.

(1) n, = Haequ*lg‘ Q.

(2) If s €S, x € W such that *s € W, then
eu(ng) = —eu(ng), eu(Myzs) = —eu(My,,) = z(o)
(3) If s €S, x € W such that *s ¢ W, then

Ny =Ny, eu(My ) =eu(Myg,) =0

Furthermore, for s € S,z € W, i € I we write set as a shortage

Qx(s) = eu(Fa:/Fa:,xs)y
QZ(S) = Qﬂﬁi(s)’

qi(s) = H Q.

aecbu,s(a)¢<1>u,mz(a)€<bv

for x = z'x; with 2* € W it holds Q.(s) = 2/(Q;(s)), Qi(s) = z:i(qi(s)), i.e.

Qu(s) = x(qi(s))
Lemma 26. Let J = 0, it holds

(1) forweW
Ay =eu(F, ®ny)

(2) If s€S,x € W,as € &1 with s(as) = —as and *s € W

eu(ﬁ, sz,xs) = eu(Fa:,xs ®n, D mx,ms) = .’E(Oés) Qx(s)_l Ax
eu(ﬁ, be,x) = eu(Fx,xs ®n, D mxs,x) = - eu(ﬁ, ¢x,xs)'

(3) If s€S,x € W and *s ¢ W
eW(Z7, fp0s) = eU(Fr s B y) = Qu(s) M Ag
(4) Let x,w € W. Then
eW(ZY, ¢y z) = €U(Fy zup © Ny © My 1)
proof:

(1) We know puy: Ex — G/By, B = G N 7B is a vector bundle, therefore we have a
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ad (3,2)

short exact sequence of tangent spaces
0 — Ty, 1, (W Bg) = T, Ex = Tyrp, G/By — 0
which is a split sequence of T-representations implying the first statement.

Let i,j € Iy such that 2% := xxi_l,yj = s Lew.
If *s € W we have that ¢ = j and ﬁ — CEZ-S ~ G xBi(Gn ¥iPsy)/Bi is a vector
bundle. For 2’ € {x,xs} we have a short exact sequence on tangent spaces

0= Fyps — Ty, t,ﬁ — Ty, w,cgis -0

Using the isomorphism G x5 [(*Piy NG)/Bi] — C=s

4,0 0

get
eu(Td)z,z’CEis) =
en(Tr gy G X (P N G)/BJ) = euln,) - eu(me,), @’ =
eu(TmG x Bi [("P{sy N G)/Bi]) = eu(ny) - eu(mys;), =’ =ws

It follows eu(Z®, ¢y o) = eu(Fyus) - eu(ng) - eu(mys ;) and eu(Zs, ¢y zs) = eu(Fy s ®

Ny © My 4).

If *s ¢ W we get i # j and Z;; is closed and a vector bundle over C}; = G/(GN*B),

we get a short exact sequence on tangent spaces
0= Fras = Ty, .20 ; = Ty, ..C7j — 0.

We obtain eu(Z?, ¢y 45) = eu(Fy qs) eu(ng).

Pick ¢,7 € I such that x € Wx;, zw € Wx;. We have the short exact sequence
0— Fpapw — T%MZ%’”]. — T4, ,.,Ci — 0

Then, recall the isomorphism

C = Gypw — G/(GNTBN"B)
(;SI,CE’LU e = G(G N*BN IMB)

Again we have a short exact sequence
0= Te(GN'B)/(GN*BN*B) - T:G/(GN*BN*B) - T:G/(GN*B) — 0

Together it implies eu(zzf’j, Gz aw) = €U(Fy zw) €u(ng /(g Nngy)) eu(ng).
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Corollary 2.8.0.3. Let J = (,U = Lie(U)®", it holds
(1) If s€ S,z € W and *s € W, then hz(s) = hzs(s) and

Ay = (—1)tHhesp
eu(ﬁ, ¢x,xs) = (x(as))lihf(s)Ax

(2) If seS,x € W and *s ¢ W

eu(ﬁ, ¢x,xs) = I(as))_hf(s)Ax

proof: This follows from ¢, (s) = x(as)hf(s) and
if *s € W we have that ¢ = j and hz(s) = has(s). Therefore we get

eu(F,) = :U(ozs)h () eu(Fy 45)
= (1)) (ws(as))" =) en(Frs )
= (1)) eu(F)
Using that eu(n,) = — eu(nys) we obtain A, = (—1)“’hﬁ(3)1\9€S O

2.9 Localization to the torus fixed points

Now, we come to the application of localization to T-fixed points. We remind the reader
that Z is a cellular fibration and F is smooth, therefore in both cases the odd ordinary
(=singular) cohomology groups vanish for Z and E. This implies in particular that E, Z
are equivariantly formal, which is (in the case of finitely 7T-fixed points) equivalent to Z¢g
and £g are free modules over Hf (pt).

If we denote by K the quotient field of Hf(pt) and for any T-variety X

HI(X) = Ho(X) = H (X) Oz K, a—aol.

Lemma 27. (1)

E)= @ Kvw, H(2)= @ Ktu,

weW z,yeW

where 1, = [{¢w}] & 17¢z,y = [{¢x,y}] ®1

(2) For everyi € I, w € Wa; we have a map w-: & = H:(E;) — C[t], via taking the
forgetful map composed with the pullback map under the closed embedding iy : {¢dw} —
E;
& = HE(E) —~ Hi(B) “ Hi(pt) = CIY,

we denote the map by f — w(f), f € &,w € W. Furthermore, composing the
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forgetful map with the map from before we get an injective algebra homomorphism

©;: & = Hy(E) > Hi(E) @ K= @ Kty
weWa;

¢ =3 w(e)A

weWx;

We set © = @, 0i: Ea — D pew Khw.

proof:

(1) This is GKM-localization theorem for T-equivariant cohomology, for a source also
mentioning the GKM-theorem for T-equivariant Borel-Moore homology see for ex-

ample | |, Lemma 1.

(2) Thisis| |, Thm 2, using the equivariant cycle class map to identifiy T-equivariant
Borel-Moore homology of E with the T-equivariant Chow ring.

2.9.1 The W-operation on &;:

Recall that the ring of regular functions C[t] on t = Lie(T) is a left W-module and a left
W-module with respect to w- f(t) = f(w™tw), w € W(D W). The from W to W induced

representation is given by

Indy C[f] = P ;' CH,

il

for w € W,i € T the operation of w on z; 'C[t] is given by

z;'Clt] = 2,1, C[Y]

xl-_lfl—)w:ci_lf

where we use that wa:i_lW = a:l._wl_IW.
Now, we identify ¢ = @,; & with the left W-module Indy), C[t] via & = z; 'C[{].
Furthermore, we have the (left) W-representation on @, oy K (A; ') defined via
w(k(A; 1)) = k(Ayy-193-1), k€ K,weW.

Lemma 28. The map O: E¢ — @, K(A; ;) is W-invariant.

proof: Let w € W, we claim that there is a commutative diagram

Ec € @ K (A 0) I—>zxewz‘;@<cmm
Ec © e P K (A 0) W ey T (A s
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We need to see it (w - ¢) = i%,(c). Let zw € Waz;, x € Wx;,—1 This means that the

Tw

diagram

H7.(pt)

is commutative. But it identifies with

z; 'C[t] w m;wl,l(C[t] a7l f wa L f
C[t] zwr; ! f.
The diagram is commutative. O

Remark. From now on, we use the following description of the W-operation on £5. We
set & =C[t],i € I. Let we W

w(&) =&, E=Ct]>f—w-feClt]=E&,1.
The isomorphism p := @, p; defined by
pi: C[t] — z;'C[{]
e ait(@if)
gives the identification with the induced representation Indy;- C[t] which we described be-
fore.
2.9.2 Calculations of some equivariant multiplicities

In some situation one can actually say something on the images of algebraic cycle under

the GKM-localization map, recall the

Theorem 2.9.1. (multiplicity formular, [ [, section 8) Let X equivariantly formal
T-variety with a finite set of T-fizpoints XT, by the localization theorem,

(X]= ) Af[{z})] eHI(X)oK
zeXT

where AX € K. If X is rationally smooth in x, then A # 0 and (AX)™! = eu(X,2) €
HI (X), n=dim¢c(X).

Remark. It holds for any w € W

[Z9] =) 1Z7].

i,7€1
Especially 1 = [Z¢] = 3, ;[Zf,] is the unit and 1; = [Zf,] are idempotent elements,
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1;%1; =0 for i # j, [Z; ;) = 1; * [Z] * 1;. In particular, for s € S by lemma 11, we have

Z7]= Y [Z5+ Y 12

i€l is=i i€l is#i

By the multiplicity formula we have

s s e
ZCEEW Aa:xi,xxiswll?%,ﬂﬁzis + Axwi,xmi¢$$i7$$¢ ) if i =1is

s o .
erW Ami,miswm,mis ) if is 7& ?
with A7 . = (eu(Z;, ¢y.2)) ", for all y, 2 € W as above

w w e
ZJ:EW Azmi,xxiwwxxi,x:ciw + Zv<w A:E(Ei,l'xi’u,(?bﬂfxi,wﬁiv s lf 1w =]

0 , if dw #£ j

(23] =

with AY = (eu(Z?fiw, ¢xr¢,xziw))_l for all x € W,

2.9.3 Convolution on the fixed points

The following key lemma on convolution products of T-fixed points

Lemma 29. For any w,x,y € W it holds

wz,w * wa = Awwa:y wz,w * ww,y = Aw'¢z,y

proof: We take My = My = M3 = E and Z13 = {¢z0w = ((0,2B),(0,wB))} C
E X E,Zy3:={¢yy} C E x E, then the set theoretic convolution gives

{pay}, Hw=w
0, if w#w

{¢x,w} o {d’w’,y} =

Similar, take M1 = M2 = E, Mg = pt, Zlg = {be,w}a Z23 = gf)w/ X pt, then

{¢p.} fw=uw

, else

{¢x,w} o {d)w} —

To see that we have to multiply with A,,, we use the following proposition

Proposition 3. (see [ |, Prop. 2.6.42, p.109) Let X; C M,i = 1,2 be two closed
(complex) submanifolds of a (complex) manifold with X := X1 N Xa is smooth and T, X; N
T.Xo=T,X for all x € X. Then, we have

[(Xa] N [Xo] = e(T) - [X]

where T is the vector bundle T,M /(T X1 + T X2) on X and e(T) € H*(X) is the (non-
equivariant) Euler class of this vector bundle, N: HBM (X1)x HBM (X5) — HPM(X) is the
intersection pairing (cp. Appendiz, or | [, 2.6.15) and - on the right hand side stands
for the H*(X)-operation on the Borel-Moore homology (introduced in | [, 2.6.40)
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Set Ep := ExT ET, (¢2)1 := {¢.} xT ET(= ET/T = BT). We apply the proposition
for M = E3., X1 := (¢2)1 X ()1 X Er, X2 := Ep X (¢pu)1 X (dy)1, X1 N X3 = {¢hyy I (=
BT), then T = (T, E) x© ET and the (non-equivariant) Euler class is the top chern class
of this bundle which is the T-equivariant top chern class of the constant bundle T}, E on
the point {¢s,}. Since Ty, E = €@, Cy for one-dimensional T-representations Cy with
t-c:=At)e, teT,ce C=C,. It holds

ctop T¢w Hcl C,\ H)\ A .
A

Secondly, apply the proposition with M = EZ x (pt)r, X1 = ()1 X (¢w)1 X (pt)7, X2 1=
E7r x (¢w)1 X (pt)T, to see again e(T) = Ay,.
O

Now we can give the missing proof of Corollary 2.7.0.2

proof of Corollary 2.7.0.2: By the lemma 25 we know that there exists a ¢ € £g such
that [Z7;]  [Z1] = co [Z7}] in Z5™/Z25%". We show that ¢ = 1. We pass with the
forgetful map to T-equivariant Borel-Moore homology and tensor over K = Quot(HZI (pt))
and write [@], x € W,s,t € I for the image of the same named elements. Let 4,5,k € I
with xijlzl ew.

s w
[Z Z] k Z Amxz,x:plswxxl Tx;S + Agml mjﬂﬂgml ﬂfl’z)*
zeW

(Z acx],xx]ww:v:v] azjw T E : XL, TL ;U wi&fj,l’l‘j’u)

zeW v<w
- § : Az’xl,x:c S :ca: S, TT; swAmIiswmmi,rxisw + et

reW terms in Z5°%

Now, this has to be equal to ¢}, i Avw;zziswrr; cesw iR Zésw/Z<sw. Comparing

coefficients at = gives

eu( 7 (bxcczs) eu<ZZ'S71}§7 (bac;t,-,wxisw)

eu(Zz ,77 (bx:vi,acacis) eu(Z}l’)}w ¢xwis,xxisw>

eu(g NTESYUT HgNTFUT S gN mm’(u,g#u,))
eu(g N ==l ~ & g N7 (= 5=) ® g N ™5 U~ @ g N (5= b))
H eu V(l N =i (su(l)) @ V(l) N =i (u(l) N swu(l)))
w(VO nzzifO) N sy D) @ VIO nza(syf () N swyf D))

eu(*[g N ¥ (;=40=)])
eu(®lg N (=4e=) ® 8. N (s=Gsugr=)))
r T z; s74(1) oy swy (1)
eu("[V® N (W)@V(l)ﬂ Z(W)D

1 eu(s [V 1o (el )

=1 U Nswr(l)
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That for each x and each [ € {1,...,r} the big two fraction in the product are equal to 1

is a consequence of the following lemma. O

Lemma 30. Let T' C B C G a mazimal torus in a Borel subgroup in a reductive group
(overC), F C Lie(G) = G a B-subrepresentation. Let (W,S) be the Weyl group for (G, T).
Let w € W, s € S such that [(sw) = l(w) + 1, then it holds for any v € W

sp wp sw
s x
FﬁsFEB (FﬂwF)) (Fﬂst

1

“( )-

In particular, this holds also for F =u~.

proof: Let ®p := {a € Hom(t,C) | F, # 0} C @, @T(y) :== " Ny(®"), ®L(y) :=
Or N O (y),y € W where ®,®", @ are the set of roots (of T on G), positive roots,
negative roots respectively.

The assumption [(sw) = l(w) 4+ 1 implies ®F(sw) = s®F.(w) L ®}.(s) and for Pp(y) :=
—®L(y), Pr(y) == PL(y) UPL(y) = Pr\ (PrNyPr) it holds Pp(sw) = sPp(w) U Pp(s)
and for any @ € W it holds 2®p (sw) = 2(s®p(w) UPp(s)). Now, the weights of ¥ ()

are 2@ p(sw), the weights of *(p ® *(77)) are z(s@p(w) U Pp(s)). O

2.10 Generators for Zg

Let J = (. Recall, we denote the right W-operation on I = W \ W by (i,w) — iw,
1el,weWw.
For i € I we set & := Hj(E;) = Clt] = Clz;(1), ..., x;(m)], we write

w(as) = w(as(Tip-1(1), .-+, Tiy-1(m))) € Eyp

for the element corresponding to the root w(ay),s € S,w € W without mentioning that it
depends on i € I.

We define a collection of elements in Zg

= ;(t) € Z5°(C Z¢)

oi(s) = [Z7;] € Z5*, where is = j

where we use that & C Z(S;e C Z¢ and the degree of z;(t) is 2 in H[G*}(Z), see Lemm 6

and the definition of the grading (just before theorem 2.1) . It is also easy to see that

1; € H[%;](Z) because deg 1; = 2e; — 2dim Zf, = 0. Furthermore, the degree of o;(s) is
2degqi(s) —2, ifis=i

eis +e; —2dimZ7 .. = .
2 deg g;(s), if is # 1.

1,18
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Recall Zg < End(&g) = End(@;¢; &) from | |, remark after Prop.3.1, p.12. Let us

—_—

denote by 1;, z(t), 0s(s) be the images of 1;, z(t), o4 (s).

Proposition 4. Let k € I, f € &, as € T be the positive root such that s(as) = —a.
It holds
f7 Zfl = k7
lz<f) =1 f =
0, else.
e wOf. ifi=k,
zi(t)(f) = zi(t) « f =
0, else.
qi(s) S(J;):f, ifi=1s =k,
ai(s)(f) = 4 qi(s)s(f) if i #is =k,
0, else.

o WADST = s = k,
ai(3)(f) == ol s() ifi #is =k,
0, else.
We write dg := %, it 1s the BGG-operator from [ ], i.e. foris=1i,f €&,

oi(s)(f) = ai(s)ds(f).
proof: Consider the following two maps

0: 8~ Er = Er 9K — P Kipu
weW

&3 [ ) wlf)A du

weWay,

(OF @wa% @wa, ¢w'_>[f7is]*¢w:

weW weW
(> zew A% oz Vawiae; + Aixi,xzisxiwzzi,xwiswi) * Py
- Afu,wAw’lﬂw + Aisus,wAwww& ifwe Wax;, i =is
(erW Aiggi@zi Sa;i@/)mri,x”is:pi) * Uy
= Adps whwws, if we Wa;s, @ #1is
0, if wé¢ Ways

To calculate [Z], ] * f, f € & it is enough to calculate [Z7, ]« ©(f) = C(O(f)) because ©

1,18

is an injective algebra homomorphism.

5i3»k ZwGWmi [w(f)Afu,w + w(sf)Ai;,wsz, if i =is

co(f) =
5i3»k ZwGWmi [w(sf)Afu,ws]¢wa if ¢ 75 1S
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Now, recall,

(1) Ifi=is=k
cor)= Y wla g,
weWzx; s

aS
Once we identify & = C[t|, k € I, we see that 0;(s): E¢ — Eg is the zero map on

the k-th summand, k # ¢ and on the i-th summand

C[tf] — C[¢

(2) If i #£is =k,
co(f)= Y [wsf)A} wdltu

weW;
= O(qi(s)s(f))
Once we identify & = C[t], we see that o;(s): E¢ — &g is the zero map on the k-th
summand, k # is and on the is-th summand it is the map
C[t] — CJt]
[ ai(s)s(f)

Lemma 31. The algebra Z¢g is generated as Ag-algebra by the elements
Lisiel, z(t),l1<t<rk(T),iel, ois),seS,iel.

proof: It follows from the cellular fibration property that Zg is generated by 1;,¢ €
I

restrict to the case w € S, more precisely as free H,(F)-module it can be generated by

zi(t),1 <t <rk(T),i €1, [ngj],w € W. By corollary 2.7.0.2 it follows that one can

Y

o(w) :=o(s1) *---0(st),w € W,w = s1--- s reduced expression ,o(s) := Zai(s),
iel

and this basis has a unitriangular base cange to the basis given by the [Z%].

2.11 Relations for Z;

Furthermore, we consider

©: @PClai(1), ... zi(n)] = @ Clai(1), ... 2i(n)], zi(t) = 2i(t)

el el



as the left W-module Indy}, C[t], we fix the polynomials

ci(s,t) = ®(oy(s)(xi(1))) € PClai(1),...z(n)], i€l, 1<t<n, s€S.
el

Proposition 5. Let S C W = Weyl(G,T) be the simple reflections. Under the following
assumption for the data (G,B,U = (Lie(U))*", H,V), J =0: We assume for any s,t €S

(B2) If the root system spanned by s, oy is of type By (i.e. stst = tsts is the minimal
relation), then for every i € I such that is =i =it it holds h;(s), h;(t) € {0,1,2}.

(G2) If the root system spanned by o, ay s of type Go (i.e. ststst = tststs is the minimal
relation), then for every i € I such that is =i =it it holds h;(s) = 0 = h;(t).

Then the generalized quiver Hecke algebra for (G,B,U = (Lie(U))®", H,V) is the graded

C-algebra with generators
liyiel, z(t),1<t<n=rk(T),iel, oi(s),s€Siel
i degrees

2hi(s) =2, ifis=1i
2h;(s), if is # i

degl; =0, degz;i(k) =2, degoi(s) =

and relations

(1) (orthogonal idempotents)

(2) (polynomial subalgebras)

(3) ( relation implied by s? = 1)

0 , if is =14, hi(s) is even
0i(5)ois(s) = —QQZLi(S)_le‘(S) , if is =1, hi(s) is odd

(—1)his(ileIthisl)Fypg 4
(4) (straightening rule)

0i(5)2(t) — s(zi(t))oi(s) = ci(s,t), %f z.s = 1,
0 ,if is # 1.
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(5) (braid relations)
Let s,t €S, st =ts, then

0i(8)ois(t) = oi(t)oi(s)

Let s,t € S not commuting such that x := sts--- =tst--- minimally, i € I. There

exists explicit polynomials (Qu)w<z i ag, ap € C[t] such that

oists---) = oiltst---) = > Quoi(w)

w<x

(observe that for w < x there exists just one reduced expression).

proof: For the convenience of the reader who wants to check the relations for the gener-
ators of Zg, we include the detailed calculations. (1), (2) are clear. Let always f € C[t] =
Eis. We will use as shortage 05(f) := % and use that these satisfy the usual relations
of BGG-operators (cp. | D-

(3) If is =1, then

If is # i, then
71(5)(1)ais(5) = Al (@l )s(s()) = (~1) o))

(4) (straightening rule)

The case is # i is clear by definition. Let is = i, then the relation follows di-
rectly from the product rule for BGG-operators, which states ds(zf)) = ds(x)f +
s(z)ds(f), =z, f € C[t].

(5) (braid relations)
s, t € S,st =ts, f € C[t], to prove

0i(5)ois(t)(f) = oi(t)oi(s)(f)
we have to consider the following four cases. We use the following:
tlas) = as, s(oy) = au, hi(s) = ha(s), hi(t) = his(t), 65(a) = 0 = 5,(ali()).
1. is = i,it =i, use d40; = 0405

0i(t)oi(s)(f) = 0y V6, (a5, () = ol
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2. 48 = 14,0t # 1, use dst = td,

i) (s)(f) = aliDi(alie@)5,(£)) = af* Dali)5,(f)

3. is # i,it = i, follows by symmetry from the last case.
4. is # i1t # 1.

0i(t)oi(s)(f) = af Dl @s(f)) = O s(al* V(1))

s

= 0i(s)ois(1)(f)
Let st # ts. There are three different possibilties, either
(A) sts = tst (type Az)
(B) stst = tsts (type Ba)
(C) ststst = tststs (type G2)

We write Stab; := {w € (s,t) | 7w = i}. For each case we go through the subgrou-
plattice to calculate explicitly the polynomials Q.

(A) sts =tst: (s,t) =53, s(ay) = t(as) = as+ar. We have five (up to symmetry

between s and ) subgroups to consider. Always, it holds
his(t) = hit(s), hist(s) = hi(t), hits(t) = hi(s)
which implies an equality which we use in all five cases

ali@s(ag®)st(al ) = i) (o + ap) e ag

h
— a?l(t)t(a?”(s))ts(a?i“(t))

Al. Stab; = (s,t), this implies h;(s) = h;(t) =: h by definition (z;(cw) € Py if
and only if zj(as) = zi(os + o) = zis(ow) € Py & i) € Pyywy) and as a
consequence we get

ads(aft(al)) = 0. This simplifies the equation to
01(5)01(6)73(5) — Gi(D)os()73(t) = by (0l S () (5) — Gu(aS(al)a(t

note that Q, := ds(af'd;(a?)), Qs := —0;(ads(al)) are polynomials in a, oy.

A2. Stab; = (s) (analogue Stab; = (t)). It holds itst = its. We use in this case

87



_ _aiu(t)t(ahit(s))ts(aims(t))ts(st(f) -0

s

Since stds = &;st and ds(alt(as)) = 0.

A3. Stab; = (sts), then ist = is, its = it.

0i(8)0is(t)ois(s)(f) — 0s(t)oie(s)ow(t)(f)
= ali®) (a6, (s s( 1)) ““)t(a’;is“)as<ai“<s>t<f>>>
= [ali®) 5oy )5 (6 (al))) — a = Dt(ali= (6, (a) )] -

using tdst = sdys.
A4. Stab; = {1} (and the same for Stab; = (st))

0i(8)0is(t)oist(8) — 03 (t) it (8)oits (t)
Zl( s) (a?is(t))st(agiSt(s))sts — a?i(t)t(a?“( ))ts( ”S(t))tst

Il
=R

(B) stst =tsts: < s,t >= Dy(order is 8),

tlas) = as+ap, stlag) =as+ o, tst(as) = as

s(ag) = 2as + o, ts(oy) = 2as + o, sts(ay) = ay.

Here we have to consider ten different cases because Dy has ten subgroups. It always

holds the following
hitst(s) = hi(s), his(t) = his(t), hie(s) = hist(8), hists(t) = hi(t)
which implies
ol19) 5 ()P B st () 15t (9) st (o) Pists () = a?i(t)t(as)h“(s)ts(at) hits M g g (g ) Pitst ()
This will be used in all cases, it is particular easy to see that for
Stab; = {1}, Stab; = {1,ts, st,stst}, Stab; = {1, stst}

we obtain that the difference is zero from the above equality. Let us investigate the

other cases. Furthermore, the following is useful to notice

Os(t(as)") =0, de(s(ar)") =0
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B1. Stab; = (s, t). We prove the following

oi(s)oi(t)oi(s)oi(t)(f) = Qstoi(s)oi(t
+ ahi(s)S(Qt)hi(t)st(as)hi(S)Sts(at)hi(t)(sstst(f)
+ali@s(ay D )st(@li s (0r )5,

with Qs = ds(ay™ )0l ™)+ s(ar )0 ™) - 10 )0 (07 ) = Qu i
a polynomial in ag, ay. By a long direct calculation (applying the product rule

for the J5) several times

0i(5)0i(1)0i ()i (8) (F) = a5, (0) V5,6, (01" )))ou( )

+[asi<s>s<aﬁi“>>55t< O30 ™)) + el (o Doyl s (0 O))]oa(f)
ahi(s)(S (ahi(t)t( )tS(Oé Z(t)))(gltst(f)

+alts(an) " D st(as)" O sts(an) ()

We have a look at the polynomials occurring in front of the d,:

w =t: by the product rule

a5, (0;" V5 (a5, (0f"))) = ali D6 (07" V)6 (ol )
+ ah (S)S(a?(t))5S(a?i(t))5st(a?(s)> + a?z(s)t(agi(s))gs(atz( ))5ts(04?i(t))
+ ol s(ay st (k)05 0y )

::(xhds)s(afi“))s5s(agl())sétﬁlgxs))
+ al@s(ar ) st(ali)dis(ay )
+ alis(af" D)o (o )y (ali))
+ ol (a5, (s(ar"))ssi(ali)

using s(d5(af)) = 6s(al) and 5,(s(ay)") = —6s(al).

w =tst:

Now, look at ;(s)o; (£)(f) = o Ps,(al* N6, (f) + oD s(al D)5, (f), which
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B2.

B3.

B4.

implies
ol 50" ) Qudat(f) = Quoi(s)as()(f) — ol 5,(0) " ) Qudi(f)

replace the previous expression and compare coefficients in front of §;(f) again

gives the polynomial

ol (0 Vs (ol 5,07 D)) — b0y ) Qur =
Al s(ay ) st (@l ) sy (0 ")

We conclude

0i(5)0i(t)0i(5)0i(t) = 04(8)0i(5)oi(1)i(5) = Quti(s)01i(t) = Quuars(D)er(s)
+ ol @ s(ay D) st(al )35 (ar )5 — af Dtk ts(af s (ki )a,

Since gis(alt) = 0 = dss¢(ak) for h,k € {0,1,2} since the maps g5, 65t map

polynomials of degree d to polynomials of degree d — 3 or to zero, the claim fol-

lows. In general, if we localize to C[t][a; ', a5 '] we could still have the analogue

statement.

Stab; = (s) (analogue Stab; = (t)) and use 5S(a?“(t)t(ah“t( ))ts( “”(t))) =0
to see
0i(8)0is(t)Tist(8)Tists(t) — oi(t)oie(s )O'zts(t)o'itst(s)

= a5 (ol Ot(ahis®))s(ali==Oyest(£))
a?i(t) ta “(S))ts( zts(t))tst( ztst(s))t5t5s(f)
ail,(s)s( zs(t)) (ahist( ))Sts(ailzsts(t))é tSt(f))
. Oé?l(t)t( Zt(s))ts( hits(t ))tSt( ztst(s))t3t5s(f)
=0
because tstds = dstst.

Stab; = {1, sts} (analogue Stab; = {1,¢st}). It holds its = itst,is = ist. We

have

[03(8) 05 () Tise(8)Tises(t) — oi(t)oit(8)Tins (t) oinse (5)] (f)
=aliOs(ay sty (ol s st(h))
— oy (el st “s“))tsat( pes(f)
=ali®)s(a) V) [s8; (e <’“S““>>> t(f) + st(alier®))sts(a) M) soy (st(f))]
— o'W < hirl) s (o ) [tsdy (st )t £) + tst(aliesr ) Yess,(s(f))]
=[ali)s(a) W) sg(alit®)) — t(alit®)is(a) D) tssy (ol )Y ]oy (8) ()

using so;st = tsdys and sdt(as“t(s)s(a?““(t))) = hi®) g5, (c ”t(s)).

Stab; = {1, s, tst, stst} (analogue Stab; = {1,t, sts, stst}). It holds i = is,it =
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its, 15t = sts,itst = itsts.

[0i(8)0is (t) st (8)Tists (t) — oi(t )Uzt(s)aztS( )oitst(s)](f)
=al 5, Vil )ts, (o Te(£))
—ay (it )5 oy el s, ()
=[5, (o V(o Dyt (e ) f

—l—[t(a?“(s))[s(a?“( ))Sws(@t ms(t)) a?l(t)t(; (a ”S(t)))]az(s)(f)
using dstdst = tdstds.

This finishes the investigation of the ten possible cases. We also like to remark that
in the example in chapter 5 the case B4 only occurs for Stab; = {1,t, sts, stst}, i.e.

the other stabilizer never occurs.

(C) ststst =tststs:  (s,t) = De,
tlas) = as + ap,  st(as) =2as + oy,  tst(as) = st(as),
s(ag) = 3as + o, ts(oy) = 3as + 24,  sts(ay) = ts(oy).

It holds
Ritstst(s) = hi(s),  hitsts(t) = his(t),  hitst(s) = his(s)

hits(t) = hists(t)y hit(s) = histst(3)7 hz(t) = histsts(t)'

this implies

ahi(s)s(a?“(t))st(ag“‘(s))sts( h“’ts(t))stst(ozhis“t(s))ststs(a?“t“s(t)) =

s

a?i(t)t(ah“(s))ts(at its (¢ ))tst( ”St(s))tsts(a?m“( ))tstst(a?“““(s))

S

Now, Dg has 13 subgroups. In the following cases the above equality directly implies
that o;(ststst) — o;(tststs) = 0:

Stabi = {1}, Stab,— = {1,t8t}, Stabi = {1,8t8},

Stab; = {1, ststst}, Stab; = (st) = (ts)

C1. Stab; = (s,t). By assumption we have h;(s) = 0 = h;(t) in this case, therefore

0i(s)oi(t)oi(s)oi(t)oi(s)oi(t) — oi(t)oi(s)oi(t)oi(s)oi(t)oi(s) =
0501050050 — 0:050:050:05 = 0

because that is known for the divided difference operators, cp | |.
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C2. Stab; = {1, s} (analogue Stab; = {1,t}). Then, is = i, itstst = itststs.

[0:(5)0is (t) Tist () Tists () Tistst (8) Tiststs ()
— 0i(t)oit(8)0its (1) Oitst (5) Tists (T) Tistst (8)] ( f)
=15 (Dt (alis ) s(af oD tst(alisest O tsts (o= Oyestst ()
ali Ol yps (it st (ol sts(alitst= st st(ahitst ()t st sty ( f)
:a?i(s)(Ss(a?”(t)t(a ”t(s))ts( ”ts(t))tst(as"“st(s))tsts(a?“”“(t)))tstst(f)
=0

using dststst = tststds and

58 (a?is(t)t(a?ist(s) )tS(Oé?iStS (t) )tst(agistst(s) )tsts(a?iststs (t))) — 0

because

S(O[?iS(t)t(a ”t(s))ts( zsts(t))tst( wtst(s))tsts( 'Lststs(t)))
=y ”(t)t(a ist(s ))ts( hists (¢ ))tst(as““t( ))tsts(oz?”““(t)).

C3. Stab; = {1, tstst} (analogue Stab; = {1, ststs}). Then its = itst,ists = istst.

[0:(8)0is (t) Tist (8) Tists (t) Tistst (8) Tiststs ()

— 0i(t)0it(8)Tits (1) Oitst () Titsts (t) Oitstst (5)] ( f)

:agi(s)s(at ”(t))st(a?“t(s))sts( h”ts(t))sts&t(a?““t(s)s(a?”““(t))st(f))

—ah"(t)t( Bt (ot )iy (ot ) sy O sttt () sts )

ahi(®) S(aius(t)) st(alist()) st a?zsts( )) stsdy (ol (o] zststs(t))) (f)
(a?”“(t))stst( “t“(s))ststs( ”““(t))stsétst(f)

(g ( ) (aitstsr o)) s( f)

h(”t(agn Jts(alit= st (qltitst (s ))tsts( itsts (D) ot st (@litstst () )55, sts(f)

Jst(abiet®)sts(ag 1) sty (altees s (o0

<”t< D)5 (o D) tssy (altist O s(a D))oy () ( f)

using tsd;sts = stsdyst.

C4. Stab; = {1, s, tstst, ststst} ( analogue Stab; = {1,t, ststs, ststst}). Then is =

i,1tst = its. Observe, in this case

hl(t) = hit(t), and hit(s) = hits(s)
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and it holds

[0i(5)0is()Tist(8)Tists (t) Tistst () Tiststs ()

— 0;(t)0it(8)0its () Oitst (8) o3 (tsts) Oigstst (5)] ()
=i )5 (o Vt(altieD)ts(ag O tssy (ol Ds(ar D)t f))
—ay (ke D)ty (alie s (g D) st(alin D) sto ()
=a?i<s>as<aﬁw“>t<a =ts(ar Oty (ol Cs(ag e O)) - f
+ahi(s) (o ())st( “t(s))sts( hists(t))Sts(;t(ag,-sm(s) S(Q?istm(t)))(;s(f)
+al1 )5, (0 Dt(alin )t (ar D)t (alisest O tsts (V) tsdyst(f))
+ali®) (o= Oy g (altist(9)) sps(alist= O st st(ahisest(9)) stst s (alistsr= (1))

- Ostsdest(f)
—ag Vt(alD)es(ay D tsgy (ki (o D )st (ke 9))s ()
—a?i(t)t(agit(s))ts(oz?i“(t))tst(a?“s’f(s))tsts(oef“s“( ))tstst( “““(5))

- ts0ystds(f))
=[a )5, (a)* Dt(alio )t oy V) tsdy (i O s (a0 )
s(or ™ W)st(alit®) sts(ag @) sty () s(ayierere 1))
—ai (ol @) ts(a) D) tso, (ol syt )i (s) ()

using dgtsdyst = tsdystds.

C5. Stab; = {1, sts, tst, ststst}. Then is = ist,it = its. Observe, in this case

hz(s) = his(S), and hz(t) = hit(t)
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and it holds

[Ui(s)ais (t)Uist(S)Uists (t)aistst(S)Uiststs (t)
- Uz( )Uzt( )Uzts( )Uitst(s)aitsts(t)aitstst(s)}(f)
h (S hza(t zst S) hists(t) histst(s) histsts(t)
s(oy )80t (0= s (e ) st (g )stds (o t(f
. h (t)t( )t(55( hits( (OéS”St( ))ts( hitstes(t ))tS(S ( ZtStSt(S)s<f)
h (S 3( 1s(t))85 ( hist 5) (atzsts(t))St(asistst(s))st(ss(atmtsts(t))) . f
+ah i(5) s(ay his () )st(a, hist( )sts( h”“(t))stst(a?i““(5))57587553(()4?“““@))Séts(f)
(o) 86
)

Vs(ay)s < A (e R (S P R N X )
+ah i) s(ay s D) st(alion®)) sts(ag ) stst(aliort ) ststs(ay 1)
- 80ystost(f)
h(t)t( hit($))15, (o) hits ( (ahitst(s))ts(a?itsts(t))tsét( hitstst(s))) . f
- "“)t( hie(s)Y¢s(ay m(“)tst( harst ()Yt st 5 (=02 D Y stss, (ot O )es ( f)
ap Dt(alit)es (it Ot (alinst ) ts(af D) tst(alitses(9)) s5,s( f)
h’(t)t( hae() )t (ats D st (alirs ) sts (it D yestst (it (9))
- o tséts(f)
=P.f + [ s(a his (t) ) (a ”t(s))sts(a?”“(t))stst( hist“(S))ststés(a?i“s“(t))
—a?’“)t( DDyt (Ol (D)t (o o0+t (aliest=t (<)) oy )
a1 s(ais @) 56, (alis ) g(af ot D) sp(altistst ()Y st (afriorsr (1))
—al i (ahit® s (it Oyest(ahitst () tsts(alitst= )t stssy (ol |t5,(£)

using sd;stdst = tdstsdys where P, is a polynomial in a4, as. Then we look at
0i(8)05s(t) st (5)(f) = ali®) () V)6, (i) - f
+als(a ’“*”) o) sdis(f)

0i(t)oit(8)ois () (f) = a) e (ali > s(ap®y.
+ oy Ot(alit@)es(ay ™yt f)

and we observe for the coefficient in front of sd;s(f) that it is divisible by

agi(s)s(a?”(t))st(agm(s)) and the one in front of tdst is divisible by

o1y ag”(s) ts(al=®). Observe hist(8) = hi(s), hys(t) = hi(t). Use the
t t
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following simplifictaions
t8,(al Rits( ( ltst(s))ts( hitsts(t))tst(a?itstst(s)))

=165 (a" Dt (ali)ts(af s D)tst (ki)

(a wu))td( D4 (Pi) gt(ahi()))

=s(ay ) [t9, (o (ki) st (ol ) + ts(ar D tst (ki )d, st(ali )]

=s(a"")st(ali )15, (") + ts(0y )ed,t(0l )

— ts(a) D)t6t(ali )]

P50 )st(alr )ty (ef")

=S8

and analogously

sé‘t( Lét(s ( zsts(t )St( histst( ))Sts( zetsts(t)))

=56, (@ s(a) i) st < hitlo)) sts(a) ™))
=h”<av<>>ts< )sb(ali)

Then a simple substitution gives that the difference above is of the form

Qef + Qst50i(5)0is (1) Tist (5)(f) + Qest0i(t) 0t (5) oits (t)

for some polynomials Qe, Qsts, Qtst iN g, Q4.

—

Now, let A be the algebra given by generator fi,zfi(vt),ai(s) subject to relations (1)-(5).
Then, by the straightening rule and the braid relation it holds that if w = s1--- s =1 -+ - tg

are two reduced expressions then

—_~—

U(tl-"tk)e Z 5*0/'6)/)

v<sj--s reduced subword

Therefore, once we have fixed one (any) reduced expression for each for w € W, it holds

A:ZE*U/(\/w)

weWw

Since the generators of Zg fulfill the relations (1)-(5), we have a surjective algebra homo-
morphism

A—>ZG

mapping 1; — 1;, z:(vt) — 2i(t), a/izs/) > 0i(s). Since Zg = @,,cw € * o(w) and the map is
by definition £-linear it follows that

A:@E*a/(\uj)

weW

and the map is an isomorphism. O
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Chapter 3

Parabolic Nil Hecke algebras and

parabolic Steinberg algebras

Summary. Let G be a reductive group (over C). For us a Steinberg variety Z = E xy E
is a cartesian product of a collapsing of a union of homogeneous vector bundles over
G-homogeneous spaces with itself. The most popular example of such a collapsing is the
Springer map. The equivariant Borel-Moore homology H(Z, C) has an associative algebra
structure, we call it a Steinberg algebra. We call it parabolic/of Borel type if all the
homogeneous spaces are of the form G/ P for parabolic/Borel subgroups P C G. We realize
parabolic Steinberg algebras as corners in Steinberg algebras of Borel type. As starting
point, we study parabolic (affine) nil Hecke algebras, then we generalize this result. For
finding generators and relations these observations are not helpful. We revisit an example

by Markus Reineke to illustrate this. We ignore the gradings of these algebras.

3.1 The parabolic (affine) nil Hecke algebra

For any complex algebraic variety X with an action of an algebraic group G, we set (as
always) H}(X) := H}(X,C),HY(X) := HY (X, C) for G-equivariant cohomology/ Borel-
Moore homology with complex coefficients. We will denote by Dg(X ) the G-equivariant
derived category introduced by Bernstein and Lunts | |-
Let G be a reductive group over C and B C G be a Borel subgroup. The (affine) nil
Hecke algebra! is the Steinberg algebra NH := HS(G/B x G/B), .
We write

NHY := HE(G/P x G/P)

and call it parabolic (affine) nil Hecke algebra. It carries a structure as graded algebra

(see | |, chapter 8), we ignore the grading in this article.

Lemma 32. i holds
NH" 2 Endy (o) (HG(G/P)).

'the adjective is been left out more recently
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Recall that H (pt) = (H3(pt))" = C["V where T C P is a maximal torus, t its Lie
algebra and W the Weyl group for (G,T). Also we know that H}(G/P) = C[{]"VP where
Wp is the Weyl group of (L,T) for the Levi subgroup L C P. We write W c W for the

minimal coset representatives of the cosets W/Wp.

proof: Let EG be a contractible free G-space (or an appropriate approximation of it in
the sense of | ). Let X := G/P,7: Xg := X x¢ EG — BG the map obtained from
X — pt by applying — x¢ EG. By | ], chapter 8, we know HE(G/P x G/P) =
E:Ut*Dg(pt)(
submersion, we have (by | |, p.14 3rd Example)

7.C, m,C) as Hf (pt)-algebras (but not as graded ones). Since 7 is a proper

m.C = @ RiW*Q[—i}
1EZ
in Dg (pt). Since all fibres of 7 are isomorphic to X and BG is simply connected, we get
that

mnC= @ Cl-2(w)],

weWw?
where £(w) is the length of w. Let r = dim¢ H*(X) = #WF. We know, that C[{]"V” is a

free module over C[|'"" of rank 7. Therefore, to prove the lemma, it is enough to show

Exthy ,n(C,C) = Endpyy ) (Hg (pt)) = He(pt)

D2 (pt)
[ H(f)

is an isomorphism of algebras, where H: D%(pt) — H(pt)— mod is the functor F' —
H*(F) = H*(BG, F) is the sheaf cohomology of the complex of constructible sheaves F'
(which is by definition a hypercohomology group). By | |, Thm 12.7.2 (i), there exists

an equivalence of triangulated categories
b b
Dl — Da(pt),

where Ag = (HA(pt),d = 0) is the (trivial) dg-algebra structure on Hf(pt) and DZG is
the bounded derived category of dg-modules over Ag. This equivalence commutes with a
functor H: (—) — Hy(pt)— mod which is for (—) = D%(pt) the functor just mentioned
and for (—) = DZG it is the functor taking cohomology of the complex. We prove the

claim in two steps.

(1) The triangulated equivalence induces an isomorphism of algebras

EZL’t*D%(pt) (C,C) — E.rt*Dl;‘ (Ag, Ag).
G

First note that C is quasi-isomorphic to the de Rham complex 23, we can calculate
its Ext-algebra instead. Let Apg be the dg-algebra I'(Q25,). The derived equiva-

lence is by definition factoring over the global section functor I': D% (pt) — DZBG.
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Notice that H*(Apg) = Ag. By | |, Prop. 12.4.4, there is a quasi-isomorphism
¢: Ac — Apg which induces an equivalence ¢*: DbAG — DZBG. The first func-
tor gives an isomorphism of algebras Extzg(pt) (C,C) — E:zt*DZBG (Apag, Apg)- The
second functor (is basically tensoring via ¢) induces an isomorphism of algebras

Extz)g (Agg, ABg) — Emt*Dl;‘ (Ac;, Ag).
G

BG

(2) The functor H defines an isomorphism EthZAG (Ag, Ag) — Endy o) (HE (1)) =

HE (pt).
This is a direct application of | |, Prop. 11.3.1 (i) since Ag is a dg-module with

zero differential.

Observe that we have a natural H (pt)-module homomorphism

©: NH” = Endyy (o) (HG(G/P)) — NH = Endy;, o) (HG (G/B))
f—1TofoAv

where I: C[t|'"? C C[t] is the natural inclusion and

Av: Cf] = CIgVP, f s — > w(f)

is the averaging map. It holds Avol =id¢yw,, the element ep :=To Av =©(1) € NH is
an idempotent element, O(fg) = O(f)O(g) for all f,g € NHF. We let Wp x Wp operate
on NH via graded Hf(pt)-module homomorphisms defined by

(v,w) - h(f) == v(h(w™(f))), v,w € Wp,h e NH,fc C[{.

Lemma 33. (1) The map © impies NHY 2 epNHep as Hy,(pt)-algebras), we call this a

corner algebra in NH.
(2) NHY = NHWVP*We g5 0 (pt)-modules. Furthermore, NHW*W = C[t|'V = H, (pt).

(3) Let s = #Wp. We have an isomorphism of C[{]"V -algebras
NH = My(NHY),
in particular it is a free module over NHY of rank s2.
(4) Let r = #W7T. We have an isomorphism of C[{]"V -algebras

NH" = M, (C["V),

in particular it is a free module over C[V of rank r?.
A basis is given by cyuw,v,w € WE with ¢, is a lift of [BuP/P x BwP/P] €
H.(G/PxG/P) to HS(G/P x G/P), i.e. elements in the fibres of the forgetful map
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(which is a surjective ring homomorphism),

HE(G/P x G/P) = M,(C[§") — M,(C) = Endc(C["? /Iw) = H.(G/P x G/P),
(fig)ig m (fi,5(0))i

where Iy is the ideal generated by the W-invariant polynomials of degree > 1

proof:

(1) © is injective: Let f € Endeyw (C[{"7) with ©(f) = I o fo Av =0 then fo Av =0
and also f = (f o Av) oI = 0. Therefore we have an H (pt)-algebra isomorphism
NHY =2 ©(NHY), where the neutral element in ©(NHY) is ©(1) = ep. Now clearly,

the following map also is an H(pt)-algebra isomorphism.

O(NHF) — epNHep

g=IofoAv— Avogol =epfep.

(2) More precisely, we show NHWP*Wr — @(NHP). Each element o foAv € NH, f¢
NHY is Wp x Wp-invariant, therefore NHVP*Wr c ©(NHP). On the other hand,
given h € NH with v(h(w™!(P))) = h(P), P € C[t],v,w € Wp, then it holds
holoAv = I o Av o h which implies h(C[]""?) c C[]"V7, therefore restriction
induces an element h € NHF and by definition h = I o h o Aw.

(3) Let s = #Whp, it is the rank of C[t] as module over C[{]'"” and therefore

NH = Endcggw ((C[]"V?)®) 22 My(NH").

(4) Let r := #W?T it is the rank of C[|{''? as module over C[t}'" and the dimension as
C-vector space of C[t}'V? /Iy. The rest follows as in (3).

Also recall the following well-known result.

Proposition 6. Let G D B D T be a connected reductive group with a Borel subgroup and
a mazimal torus, we write (W, S) for the Weyl group of (G,T) with its simple reflections.
The affine nil Hecke algebra NH = HS(G/B x G/B) = Endcgw (Ct]) 4s the C[t]-algebra
generated by
ds: C[t| = C[t], seS
PR

Qs

where as € T (=positive roots associated to G, B, T) is the positive root with s(as) = —a.
Choose generators Clt] = Clzy,...,zy], we set ¢; s = 0s(x;) € C[t]. Then, the algebra NH

is the C-algebra generated by x1,...,xn,0s,8 € S with relations

(1) xiz; = zj2i,
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(2) (nil Cozeter relations)
(53 =0, 050405 = 0:050; - - - whenever sts--- =tst---

(8) (straightening rule)

s — s(;)ds = Cis
The previous proposition also is a corollary of | |, Theorem 2.1.

Remark. Our elements &, s € S correspond to the cycles [Z5] € HE(G/B x G/B), they
are called (BGG)-divided difference operators or Demazure operators and have
been introduced by Beilinson, Bernstein, Gelfand and Demazure (| | and | -
Observe, that in the proof of | |, Thm 2.1 we have seen how these operators look like
after localizing to the T-fixpoints, i.e. as operators on H}.(G/B)® K, K = Quot(H}(pt)),
they are given by

A ws*)\ w
o @D Koo @ Kvw, ) = 2P

weW weW

, AEK.

This coincides with divided differences operators on H}.(G/B) defined by Arabia in | I,
thm 3.3.1.

There are other very similar looking types of divided difference operators using the GKM-
graph description (cp. J. Tymoczko, | D

H;“(G/P) = {p = (pw)wEWP € (C[t]@#wp | DPw — Psw € (as)>8 eSwe WP}
(1) Following Kostant and Kumar in | |, section (4.17):

6KK. Hx(G/B) — H:(G/B)
psw - pw

pi—>( w—las )wGW
(2) Following J. Tymoczko in | | (this is the only version defined for partial flag
varieties):
57« Hy(G/P) — Hj(G/P)
Pw — S(P
pr (wi(w))wewp
Qs
Now, observe that following | |, p-258, one has a identification as H¢ (pt)-modules of

NHF = HY(G/P x G/P) with (H;(G/P))"* up to a degree shift. It is an open question, if
Tymoczko’s divided difference operators can be helpful to find generators for the parabolic

nil Hecke algebra.

Recall, Schubert polynomials are elements ¢,, € C[t], w € W in the fibre over [BwB/B],w €
W under the forgetful map H}(G/B) = C[t| »C[{/Iw = H*(G/B). Any choice of
such lifts gives a basis of C[t] as C[t]"-module, cp. [ |, section I1.3, proof of Thm
3.1(Sheppard-Todd, Chevalley), p.77 .
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Usually the interest in divided difference operators comes from that they provide a con-
struction tool for Schubert polynomials or more generally a flow-up basis (cp. | -

A G-equivariant version of it says there exists a polynomial p € CJt] such that

Cl] = P s(mCH"”

veWp

as C[t}""?-module, where for v = s - - - 5, reduced expression 0, := ds, 0--- 00, . See again

[ |

Remark. We know that

NH = & 6.,Clt,
weWw

(as C[t]-module) which implies

NH? = epNHep = Z epdywC[tlep
weW

S D" epduo (0u(p))erCl™”

weW veWp

It is easy to see that for all s € WpN S, it holds s oep = 0, this implies that if w = wys €
W,s € Wp,l(w) = £(wy) + 1, we have

epdy © (51) (p)')eP = eP5w1 © (5sv(p)')eP7

therefore we can write

NHY = 3" 3" epdw o (6(p)-)erCl{ "™
weWP veWp
By lemma 33, (4), we know that NHY is a free module over C[|'V of rank r2, r = #W7T.

Since C[|'VP is a free module over C[|'"" of rank 7, we have the following

Open question: Is NHY a free module over C[]'V* of rank r, with basis given by
6L = epdwep,w € WP 7 To prove this, it is enough to show that >, .y r 65 C[]VP =
Duewr 6, ClH"7.

3.2 On parabolic Steinberg algebras

Definition 9. Let (G, P, V, F;)icr be a tuple with G a reductive group with parabolic
subgroups P;,7 € I (where I is some finite set) such that (| P; contain a maximal torus
T and V a G-representation with Pj;-subrepresentations F; C V. We associate to this the
Steinberg variety
7P = | | (G xP F) xy (G P F
1,5€l
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and call Z4 := HA(Z), A € {pt,T,G} Steinberg algebra associated to the data (where the

product is given by a convolution construction defined by | |, section 2.7).

The (affine) nil Hecke algebra is the Steinberg algebra in the special case #I = 1,
V = {0}. We ask for the realtionship of parabolic Steinberg algebras to Steinberg algebras
where all the parabolic groups are Borel subgroups. More precisely consider the following
situation:

Let (G, P;,V, F;)ier be construction data as above, we denote all associated data with
OF, we set Ef := G xI" F;, EP .= | |EF,7": EY — V,(g,f) ~ gf. Choose T C B; C
P;,i € I Borel subgroups of G (where T' C (),c; P;) and consider F; as B;-representation,
then (G, B;,V, F})icr can be used to define EP EB 78 ZB analogously.

We want to compare HA(Z) with HA(ZP) for A € {pt, T,G}.

Consider the following commutative triangle

EP =G %P F - EF =G xPi F,

Observe, that the fibres of a := | |,.; a; over EY are all isomorphic to o '((e,0)) = P,/B;
and that the Weyl group W; of (L;,T) where L; C P; operates on them topologically via

choosing a compact form for K; C L;, then there exists a maximal torus T; C K; such that
P/B;=L;/(BiNL;) = K;/T;, W(K;, T;) = W(L;, T) =: W,.

The groups W; operates on K;/T; via nT; - kT; = kn'T;,n € Nk, (T;),k € K; without
fixpoints. We have the following lemma using the left Wj-operation on «; '((e,0)) =

Lemma 34. Given B C P a Borel inside a parabolic subgroup in a reductive group G, and
let F' be a P-representation. We write a: EP := G xB F — EP .= G xP F,WB —
WP for the canonical map. For the constant sheaf C on EF the adjunction map C —
Ra,a*C is a monomorphism in DZ(EP), furthermore it factorizes over am isomorphism

C — (R,C)WP where Wp is the Weyl group of a Levi subgroup in P.

proof: For any variety we write X4 := X x4 EA where EA is a contractible space with
a free A-operation. We denote o := aa: (EP)4 — (ET)4 the associated map. It is a
proper submersion with fibres all isomorphic to P/B. The decomposition theorem (in the

more specific version for a proper submersion, see | |,p-14 3rd Example) implies

Ra..C = @ R'a.C[-i].

i€Z
Since R'a,C is the sheaf associated to the presheaf
U H (o (U))
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this implies (R'a.C), = H'(a"'(x)) = HY(P/B) for all z € (E¥)4. Therefore, R'a,C
is a local system on (ET)4 and since 71 ((EF)a,x0) (for any zg € (ET),4) is trivial, it
is the constant local system €D,y C[—2¢(w)] because H*(P/B) = H*(L/(L N B) =
C[t]/Iw, where the last isomorphism is graded algebras and as Wp-representations by the
Borel isomorphism. But since (C[t]/Iy,)"? = C in degree 0, it holds (Ra,.C)"r = C.
Furthermore, it is easy to see that the unit of the adjunction is a monomorphism (since «
is locally trivial). By taking the trivial Wp-operation on C, we can make the unit of the
adjunction a Wp-linear map (because the map is locally trivial and Wp operates only on
the fibre), then taking Wp-invariants proves the lemma. [l

Back to the more general situation from before. Since it is shorter we write «, instead
of Ra, even though the second is meant. For the constant sheaf C the adjunction map

C — a,a*C is a monomorphism in DZ(| |,c; EF). The previous lemma implies

C= @QE.P = @[(ai)*anEP]Wi — aa*C.

iel iel

B

We set 7l = 7TP|E1P, Ty = FB‘EZ_B and we can apply the functor 72’ and get an inclusion

Inc: WfQEP = Wf(@[(ai)*afgjgf]wi) = @[(Wf)*(ai)*angf]Wi

el i€l

s rla,a*Cpr = 18Crs

Also we can define an averaging map

Av: 78Cps = BDEP).Cp » P(rF)u(ai)waiCrr] s = 2PC
icl el
which is given by the Reynolds operator for the finite group W; (the Reynolds opera-
tor exists for arbitrary reductive groups (representations in characteristic zero), for finite
groups it is equal to the averaging map.) It holds Av o Inc =id and Inco Av =: ep is an

idempotent endomorphism.

Proposition 7. The map

Up: HNZ") = Bat})a

A) (wfg, wfg) — Emt}A

L
fr—=Inco foAv

mPC,7’C) = H{(2)

nduces an tsomorphism of Hf(pt)—algebms
HAZP) = epHA(ZP)ep,
where ep = Inco Av is an idempotent element in HA(ZP).

proof: Completely analogue to the proof of lemma 2, (1). O

Recall EP :=| |,.; EP,E” :=| |,c; E and we have a commutative diagram
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B

HA(ZB) Endya ) (H3(EP))
\I'}]%T @ET
HA(ZP) O Endyagy (H3(ED))

with algebra homomorphisms ®2, ®F given by applying the global section functor and
corner inclusions UE, ©F as defined before. Since the maps ®, &% are given by taking
global sections, we see that the element ep € Hf(ZB) maps under ®7 to the idempotent
element ep € Endya ) (H} (EB)) (also defined by ep = AvolInc). We know that the map
B can be identified with the corner inclusion ep HA(ZP)ep — HA(ZP), the map ©F with
the corner inclusion ep Endga (HY(EP))ep — Endfo(pt)(Hz(EB)). Therefore, we see

that we can have an identification of algebras
H}N2") = ep@P(HM (Z27))ep.

Now, using theorem | |, thm 2.1 combined with the previous consideration, we
can calculate (in theory) parabolic Steinberg algebras. Practically, the corner description
makes it even in easy cases difficult to find generators and relations, we do not know an
example for it. Let us revisit an example from Markus Reineke using our description of

the parabolic Steinberg algebra.

3.2.1 Reineke’ s Example (cp. end of | D

Let @ be the quiver (1 — 2) and let (di,ds) € N(?O. A directed partition of the Auslander-
Reiten quiver of CQ is given by I; := {Ey := (0 - C)}, Iy := {E1 2 := (C d, O} I3 =
{E1 == (C — 0)}, i.e. it is a partition of the vertices of the Auslander-Reiten quiver
{I;}; such that Ext!(I;,I;) = 0 and V¢ < u Hom(I,,I;) = 0 = Ext!(I;,,). Tet M =
E‘Qj2 EBELQ@E‘lh. Then, M. Reineke proved that quiver-graded Springer map corresponding
to the dimension filtration (0, (d; — 1,0), (dy — 1,1),(d1, 1), (d1,d2)) gives a resolution of
singularities (i.e. birational projective map) for the orbit closure of M. Yet, we will
consider the even easier dimension filtration d := (0, (di,1),(d1,d2)). The associated

Steinberg variety is
Z = {(A, L1, Ls) € Mg, 4, (C) x P*(C) | Im(A) C Li;i =1,2},
it carries an operation of Glg := Glg, x Glg, via
(A, L1, L) — (g5 " Agr, 95 ' L1,95 ' La),  (g2,91) € Gla.

We want to describe the Steinberg algebra Hfrli(Z) with our method. We set
G :=Gly, d:=d; + ds,

T := invertible diagonal matrices,
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B := invertible upper triangular matrices,

[P := invertible upper block matrices with diagonal block sizes (1,d — 1),
U = Lie Up, where Up is the unipotent radical of P,

G = Gly, x Gl;, diagonally embbeded into G,

V = Mg, «q, embedded into the right upper corner of G = glg.

asusual set B:=BNG,P:=PNG, F:=UNV.

The algebra HE(ZP), ZB := (G xP F) xy (G xP F) can by theorem [ |, thm 2.1
be described as the the algebra 1. x Z % 1. for Z be the Steinberg algebra associated to
(G,B,U,V) and e € W\W be the coset of the neutral element. If we set s; := (i,i+1) € Sy
and

(51‘Z:(Ssi:C[tl,...,td]—)(C[tl,...,td], fHM
ti —tita

Then, H},(ZP) is the subalgebra of End SayxSqy (C[t1, ..., tq]) generated by

Clt1,..-std]
(t), 1<j<d, &, i€{2...d—2ds,....d—1},
d

0:= [ (t1—tj)on

j=di1+d2+1

Now, Reineke’s variety equals Z = (G x F) xy (G x¥ F), by the previous section we

conclude it is the corner algebra of ep HE(ZB)ep where

1
ep:(C[tl,...,td]%C[tl,...,td],ff—)m Z w(f)

WELS, .Sy — 225y se-esSd—1>
Remark. Since

* diep=0fori#1

* 6,0 = q610; for i # 2 some g € C[{]

* 06260 = q10 + 2020 for some q1, 2 € CJ[t]

*

there are straightening rules to bring polynomial elements in the beginning of the

element,

we think that HE(Z) is as C[t]""?-module generated by products of

eplep, epdrflep, r,t € Ny. I have no idea on the relations.

3.2.2 Literature

For the classical Springer map a description of the parabolic Steinberg algebra as a corner
in the Steinberg algebra of Borel type has been investigated by Douglas and Réhrle in
[ | and earlier by Borho, MacPherson | |.
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Chapter 4

From Springer theory to monoidal

categories

Summary. Here: Springer theory is a construction of a graded algebra (called Steinberg
algebra) from a collapsing of a union of homogeneous vector bundles over homogeneous
spaces. We define I-graded Springer theory (for a monoid T) as a collection of certain
Springer Theories parametrized by the elements of 1. Associated to this we study the

following monoidal categories.

(1) We sometimes have a new product on the associated Steinberg algebras, called hor-
izontal product. The projective graded modules for such a multiplicative family of
algebras are a monoidal category. In this case, there is a different description of the

monoidal category in terms of Lusztig’s perverse sheaves!.

(2) If there is no horizontal product, we embed the Steinberg algebra in a bigger Steinberg
algebra which has a horizontal product and extend the Steinberg algebra by the
images under the horizontal map of the bigger Steinberg algebra. Then projective

graded modules over this new algebra have a monoidal category structure.

Of course, we would like to understand their Grothendieck rings but as the definitions of
these categories are very long, we just recall the known results here. The main example due
to Lusztig is quiver-graded Springer theory and the horizontal product is constructed with
varieties of short exact sequences of K (@Q-representation in the spirit of the Hall algebra
product. The Grothendieck group of the projective graded modules over the Steinberg
algebra is a twisted Hopf algebra which can be identified by the negative half of the
quantum group associated to the quiver.

We consider as a second example symplectic quiver-graded Springer theory in analogy to

quiver-graded Springer theory. Here we describe the monoidal category of type (2).

!They are not perverse sheaves because we allow shifts of them
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4.1 (I-)Graded Springer theory

Definition 10. Let (I, +) be a semi-group, not necessarily commutative. By an I-graded

variety (over C) we mean

(1) For every i € I a finite-dimensional variety (X;,p;) over C together with a base point

p; € X;.

(2) For every i,j € I a closed embedding m; ;: X; x X; — X;4; which maps (p;,p;) to

Pi+j with My j+k © (idXZ- ij,k) = Mytjk © (mm X ika) for i,j, kel

We say an I-graded variety is irreducible/connected if all X;,i € I are

irreducible/connected.

Remark. Let (X, p;,m; ;) be an I-graded variety. The set X =

mi»j‘XiX{Pj}

X; C Xiyj via X; =2 X; x {pj} ——— X4, gives X the structure of an ind variety

;1 Xi where we consider

(with respect to the partial order on I which is induced by the addition).

A morphism of I-graded varieties f: (Xj, pi, mi ;) — (Y3, ¢, ni ;) consists of a collection
of pointed morphisms f;: X; — Y; such that for all ¢, j € I the the following diagram is
commutative:

M5

Xi X Xj —_— Xi_;,_j

finj\L lfurj

ng,j
Vi xY; —=Yiy;

We call X := (X;,p;, m; ;) an [-graded subvariety of Y := (Y}, g;, n; ;) if there exists
a morphism f: X — Y with f; is a closed embedding for all ¢ € L.

Definition 11. We say an [-graded variety G is an I-graded group if all G; are algebraic
groups, p; = e are the unit elements, and all m; ; are morphisms of algebraic groups.

We call a morphism of I-graded varieties f: G — H a morphism of I-graded groups if all f;
are algebraic group homomorphisms. We call an [-graded subvariety G C H an I-graded
subgroup if all G; C H;,i € I are algebraic subgroups. We say G operates on an I-graded
variety X if there is a morphism of I-graded varieties f: G x X — X such that f; is an
operation of the algebraic group G; on X;, i € L.

If in addition, all X; are C-vector spaces and f; defines a linear operation of G; on Xj,

then we call X a linear G-representation.

For example, let V' = (V;,0,m; ;) jer be an I-graded variety with all V; finite dimen-
sional C-vector spaces and all m; ; linear maps which come from a restriction of an isomor-
phism V; ®V; ® X; ; = V;1;. In particular, the complements have to fulfill X; ; ® X;; 1, =
Xij+k ® X4, J, k € I. Then, GI(V) = (GL(V;),n; ;) is an I-graded group (the choice of
the complements X; ; gives homomorphisms n; ;: G1(V;) x GL(V;) = Gl(Vi4;)) and V is
a G1(V)-representation.

If p: G — GL(V) is an I-graded group homomorphism, then V' is a G-representation via p.
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We say an [-graded group G is reductive if all G; are reductive groups. We say an

I-graded subgroup H C G is a parabolic/ Borel subgoup/ maximal torus if all ¢;: H; — G;

are inclusion of a parabolic/ Borel subgroup/ maximal torus. This is up to taking products

the list of parabolics which we consider.

Example. (1) I =Ny, G, := Gl,,, the map Gl,, x Gl,,, = Gl,, 1, is blockwise inclusion

(where we place Gl,, in the left upper corner, Gl,, in the right lower corner). Let
B, C Gl,, be the upper triangular matrices, then this defines a Borel subgroup of
the I-graded group Gl := (Gl,,)nen,-

I:={i=(u,...,n) | 7 € No,n; € No}, the composition is concatenation of
sequences. We write [i| := Y}, n; and define G; := Gly;,i € I with the same
embeddings as in (1). We define P; to be the standard parabolic in G; = Gl (i.e.
upper triangular block matrices) with block sizes from the left upper corner to the
right bottom corner given by the sequence i = (ny,...,n,). Then the block diagonal
embedding Gl; x Gl; — Glj; ;| restricted to P; x P; gives a map P; X Pj — Piyj.
This defines a parabolic subgroup of the I-graded group (G;);er-

0 E,
I =Ny, G, := Sp,,,, we define J = J,, :=
—-FE, 0

Spa, = {g € Gly, | 'gJg = J}

A B
= {(C D) € Gly, |'"AC ='CA,'DB ='BD,'AD - 'CB = E,,}

The block diagonal embedding Spy,, X Spy,,, — SPa(n4m) 18 given by the map

n+m

A 0 B 0
(A B) (A’ B/)H 0 4 0 B
¢ D) \c¢ D C 0 D 0

0o C o D

The standard Borel in Sp,,, is
B {A S € Gly, | A triangular, A~S tric}
n 1= om upper triangular, symmetric},
0 (A—l)t &

this defines a Borel subgroup of the I-graded group Sp := (Spay, )nen, -

I:={i=(n1,...,n;) | r€Ng,n; € No}, |i] := > ;_, n¢ (as in (2)).
We define G; := Sp,); with the block diagonal embedding. We set n := |i

A S
P:={ € Spy, | A € Gl,, in a standard parabolic,
0 (A—l)t

block sizes i = (n1,...,n,)}
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This defines a parabolic subgroup of the I-graded group (G;)er.

Observe, that Levi-subgroups of Spy,, have at most one direct factor (or summand)
which is a symplectic group. The P;,¢ € T have a product of Gl;’s as Levi group and
there can not exist a parabolic subgroup of G;,¢ € I which has symplectic groups as
Levi factors (because of the map P] x P/ — P/ ; we would get a parabolic with two
symplectic Levi factors).

We should keep in mind that parabolic subgroups of I-graded groups are a seldom

species.
Definition 12. We call (G, P,V, F') an I-graded Springer theory if

(1) G is a reductive I-graded group, P is a parabolic subgroup of G. We always denote
by T' a maximal torus in P and we assume T; x Tj = T;4;, 1,7 € [. We also assume,
if Gz = Gk, Gj = Gl then ms 3 = MgJ-

(2) V is a G-representation and F' = (Fj,0,n; ;) C V is P-subrepresentation. We also fix
C-vector space complements m; ;: F;&F;®X; j — Fiyj, 1,7 € [ with mz‘J’FiXFjX{()} =

n;; and m; ; is P; x Pj-linear.

Observe, that if we assume that V is a T-subrepresentation of a Lie algebra of a
connected reductive group with maximal torus 7', then all T;-weight (=root) spaces are
1-dimensional, i € I, and the complement of F; @ F} in F;{; can be chosen to be the unique

T+ j-equivariant complement.

[-graded Steinberg algebras. Let (G, P, V,F) be an I-graded Springer theory. We
define an equivalence relation on I via i ~ j if and only if G; = G and V; = V} as G-
representations. We write |i| for the equivalence class. By assumption we have [i| 4 |j] :=
li + 7] is welldefined and gives |I| := I/ ~ the structure of a quotient semi-group of I.
Now, for i ~ j set Z; j := E; xv; Ej, By = Gy xPi Fy 2,5 := HE(Z; ;). We call

Zy=HI (|| Zij)= D 2y
1,7 €[] 1,7€[1]

the Steinberg algebra for |i|, the algebra product is given by the convolution product
defined by Chriss and Ginzburg in | |, chapter 3. The I-graded Steinberg algebra

Za:= P HI (|| Ziy)-

lé|€[T| i, €[4l

is defined as

We want to find two multiplications as follows.
(1) The vertical product is the direct sum of the algebra products on 2, i € [I

(2) The horizontal product

¥1 Zli) X 215 = Zlij4j]
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which respects the algebra multiplication but not necessarily maps the unit element

to the unit element.

We tried to give a geometric construction of the horizontal product but as since in the
symplectic quiver-graded Springer theory it does not exist in some cases (see later), this
construction can not exist in general.

Instead, we will give the horizontal map in each case where we can find it explicitly. In the
quiver-graded Springer theory it always exists and in the symplectic quiver-graded Springer
theory we often have to enlarge the Steinberg algebras to define the horizontal multipli-
cation. At least, I want to mention two examples which work for all Ny-graded reductive

groups. These groups are families of products of groups of type A, By, Cp, Dn,n € N.

Example. Let G be a Nyp-graded reductive group with a Borel subgroup B, a maximal
torus 7" and Weyl group W = (W, )nen.

(1) (Nil Springer theory)
We consider the Ny-graded Springer theory (G, B, {0}, {0}). It holds

H*Gn(Gn/Bn X Gy /Bp) = End(C[tn]Wn—lin(C[tn]) =: NH,,

with C[t,] = C[z1,...,z,]. The Steinberg algebra is by definition

@ NH,

n€Ng

Next: We explain that there is a graded algebra homomorphism
NHn ®C NHm — NHH+H17

which we denote by (f,g) — f ® g. It is known that NH, is as a graded C-algebra
generated by
2z = zg: Clty] = Clty), f — z f

which has degree 2 and the divided difference operators ds,5 € S of degree —2

defined by
s(f)—f

Qs

[ 5S(f) =
where S is the set of simple reflections associated to Gy, Bp, T,. Recall that we
have natural maps i: W, xW,, = Wy We can extend the definition of the divided

difference operator for a general reflection t = wsw™',s € StM) o e Wrtm) by
Ay(f) =YL f € Cltnym]. Then we define

w(as)

2k ® 1 — 2z, 1®2zp— zpye

5s®1*_>Ai(s)v 1® 0, i—)Al(s)

(For G = Gl this is quiver-graded Springer theory with quiver @ = e. )
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(2) (Classical Springer theory)

We consider the Nyp-graded Springer theory (G, B,Lie G, LieU) where LieG is the
adjoint representation of G and U C B is the unipotent radical.
It holds Z, = Clt,|#W,, is the skew group ring defined by (f @ w) - (¢ ® v) :=
Jw(g) @ wv, f,g € Clt,], w,v € Wy,
The inclusion i: W,, x Wy, C Wy 4y, and Clt,] ®c Clt,,] = Clt,4m] induce the hori-
zontal product

Clta]# Wy, x Cltm]# Wi = Cltasm]#Wigm

(f@w,g®v) = (f@g)®i(w,v)

(For G = Gl this is quiver-graded Springer theory for the Jordan quiver (or 1-loop

quiver).)

4.2 Monoidal categorification of a multiplicative sequence of

algebras

Definition 13. A monoidal category C = (Co,®, F,a,l,r) consists of a category Cp, a
functor ®: CyxCp — Cp, an object E of Cyp and natural isomorphisms axyz: (X®Y)®Z —
XY ®2Z),lx: E®X = X, rx: X® E — X, subject to the commutativity of the

following diagrams

(WeX)eY)eZ—"">WeX)2(Y®Z2) W& (X (Y®Z)

ia@l 1®OLT

W (XeY)eZ a We(XY)® 2)
(X®E)®Y & X®(E®Y)
r®l 1®1
X®Y

We only want to study examples of additive C-linear monoidal categories. We recall
a way of constructing them which is a slight modification of the definition of a monoidal
categorification associated to a multiplicative sequence of algebras from A. Davidov and A.
Molev (see | |). Given a sequence of associative unital C-algebras A, = {A4; |i € I}
for a monoid (I,+) with Ay := C equipped with collections of multiplicative maps (i.e.

they respect the algebra product but are not necessarily mapping the unit to the unit)
Wi A @c Aj — Ay, i, €1

satisfying the following associativity axiom: For all 4,4, k € I the following diagram com-
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mutes

i,5®id
A @A @ Ay Airj ® Ay,
id ®M7ki Nz‘+j,ki
Ai ® Aj+k itk Ai+j+k.

We call such a sequence multiplicative.

Example. (see loc. cit.) Assume all m; ; are algebra homomorphisms, one can find a so
called (strict) monoidal categorification of A, as follows: Let C = C(A,) be the category
with objects by [i],7 € I. And morphisms are defined as End¢([0]) =: C, Home([i], [j]) =0
for ¢ # j in I and End¢([i]) := A;. The tensor product is given by [i|® [j] := [i+j],4,j € 1.

The multiplicative structure on A, yields the tensor product structure on morphisms.

Example. (Main example) Assume that [ is monoid generated by a finite set Qp. Let I
be the free monoid in the set Qo, we have a surjective map I — I, i — |i| of monoids. We
assume for every d € I the algebra Ag is a Z-graded algebra and the maps jiq . respect the
grading.

Then, for every d € I we have a set of idempotent elements 1; € Ay, i € I, |i] = d given
by the iterated images of 1 of the multiplicative maps. We define the monoidal category
C := C(A.) to have objects finite direct sums of [i](n),i € I,n € Z and

1;Aqly, if i =|j| =4

nez 0, else.

determines all homomorphisms in the category C. The monoidal structure is given by

[i](n) ® [j](m) := [i + j](n 4 m).

Notational convention. When we describe categories later, we will write for an element
xz € Home([2](0),[7](n)) a homomorphism x: [i] — [j] of degree n. If y: [j] — [k] is a
homomorphism of degree m, we write y o x: [i] — [k] for the homomorphism of degree

n 4+ m given by y(n) o x € Home([¢](0), [k](n + m)).

Example. (Steinberg algebra) Back to our previous situation. Let (G, P,V,F) be an I-
graded Springer theory. Assume that there exist the horizontal product map, that implies
that 2,1 € II| is a multiplicative sequence, Zj := C with the structure maps i), 5]
respecting the grading and mapping 1; @ 1; to 14, i.e. py);(1®1) = Zielm,jelm Lipj =
Lj;),15) s just an idempotent element. Then we define C := C(Z) with objects finite direct
sums of [i|(n),i € I,n € Z and

Ziis if lil=14
P Home([i](0), [j](n) = { il =11

nez 0, else.
The tensor product is given by [i](n) ® [j](m) := [i+j](n+m). Apart from the assumption
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on I being a free monoid in a set of generator of I, this is just a special case of the main

example.
We are going to see.

* Quiver-graded Springer theory is a special case of the previous example and the main

example.

* Symplectic quiver-graded Springer theory gives a special case of the main example.

4.2.1 Alternative description of C as category of projective graded mod-

ules

We study the situation of the main example (it also applies to the last example, i.e. a
Steinberg algebra with a horizontal product).

Let d,e bein I, we set 14, := pg.(1 ®1). We see Ag ®c A. as a Z-graded algebra via the
degree r elements are P, ,_,.(Ad)r @c (Ae)e. For a Z-graded ring R we write R — mod?
for the category of finitely generated Z-graded left R-modules. There are the following

induction and restriction functors:

Indz";e: (Ag® Ae) mod? — Agie mod?%

X = Ad+eld,e ®A05®Ae X

Resgfe : Agremod? — (Ag® A.) modZ
Y — 1d,eY
Remark. Let A — mod”? be the category of finitely generated Z-graded left Ag-modules

, d € I with homomorphisms are maps of degree zero if both are graded Ag-modules and

zero else. The induction functor defines a monoidal structure on A — mod? as follows
Mo N :=Ind%*(M R N)

where M X N is the vector space M ®c N with the obvious A; ® A.-module structure, it
is in fact a Z-graded module with degree r part given by €, ,_,. Mx ®c Ng. The object

FE is given by C = Ay which is a Z-graded algebra concentrated in degree zero.

Let By C A — mod? be the full subcategory of finitely generated projective graded
Ag-modules.
Let B C A — mod? be the full subcategory with objects in By, d € L.
Let Br be the full subcategory subcategory of finite direct sums of shifts of projective
graded modules of the form
P = Aq4l;, 1 € L,]i| =d.

Lemma 35. The functor Ind respects projective graded modules. Then B has the structure

of a monoidal category and By is monoidal subcategory and it holds
Pi(n) o Py(m) = Prys(n+m).

113



proof: This follows from the obvious observation that Indgte (Ag® Ae) = Agrelge is a
projective module. The rest is by definition of the functors fulfilled. O

Remark. There is an obvious equivalence of monoidal categories

C(A*) — B
[i](n) = Fi(n)

Grothendieck rings

We assume we are in the situation from the previous section. Observe, that the induction

functors on B induce a |I|-graded multiplication on the abelian group

Ko(B) = @ Ko(Ba).

del
It has the structure of a Z[q, ¢~ !]-module where q operates as the graded shift ¢-M = M(1).

Remark. With the restriction functor one can sometimes define a coproduct as follows

Ko(B) = Ko(B) @zjq.4-1 Ko(B), B4> P+ > Resl P
e,f:etf=d

For example, the following has to be fullfilled

(1) 14eAd+eis aprojective Ag® Ac-module (because then the restriction of the restriction

functor to projective modules is well-defined).

(2) A version of Mackey’s induction restriction theorem holds (see for example | |
in the case of quiver-graded Springer theory). This is needed to see that the comul-

tiplication is a twisted algebra homomorphism.

So a natural question is:

When is the algebra Ko(B) part of a twisted Z[q, ¢~ !]-Hopf algebra structure ?

We do not discuss this here further.

There is some more algebraic structure in the examples which we are not discussing
like anti-involutions, nondegenerate bilinear forms and graded dimension vectors. For
quiver-graded Springer theory you find definitions in | |, for symplectic quiver-graded
Springer theory look in | |.

4.3 Lusztig’s perverse sheaves

Now, we assume Z to be the Steinberg algebra of an I-graded Springer theory (G, P,V, F).
We write m;: B; = G; xP Fy — G;F;(C Vi), (g, f) — gf for the collapsing map. By the

equivariant decomposition theorem, we get that (m;).Cle;] with e; = dim¢ E; is a direct

sum of shifts of simple perverse sheaves on V;.
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The equivariant decomposition theorem takes place in DbGi (V;) which is the equivariant de-
rived category in the sense of Bernstein and Lunts, for both see | J?. Let P C Dl(’;i (Vi)
be the full subcategory given by finite direct sums of shifts of direct summands of (7;).Cle;],
i € Ly

We define a category P called Luszlig’s perverse sheaves with objects in P, € I. Mor-
phisms are given by morphisms in the equivariant derived category DbGi (V;) if both objects
are from this category, otherwise it is zero.

Let Pr C P be the monoidal category generated by finite direct sums of shifts of L; :=
(i)« (Clea]), i € L.

Lemma 36. The following are equivalent.

(1) There exists a monoidal structure on P mapping P X Pji| — Plig|
which restricts to a monoidal structure on the category Py defined by L;(n)*L;(m) :=

Litj(n+m).

(2) There exists a monoidal structure on B mapping Bj; x Bjjj — Bjiy;
which restricts to a monoidal structure on the category By defined by P;(n)* Pj(m) :=

Pitj(n+m).
(8) There exists a horizontal product on Z.

and in this case it holds
Pr=Br=C(Z2).

proof: By | |, lemma 7, P); is equivalent to By, for every i € I mapping L; to ;.
A consequence of the equivalence is (1) < (2).

Now, assume that horizontal products exist for Z, then (2) holds true by the previous
section. The existence of a monoidal structure on the category Bp defined by Pj(n) *
Pj(m) := P;yj(n+m) induces on homomorphisms the structure of a multiplicative sequence

on (Z);,i € I), i.e. a horizontal product on Z. O

Remark. In the case of a Steinberg algebra Z with horizontal product, we get Ko(P) =
Ko(B) and Ko(P1) = Ko(Br) as Z[q, ¢ ']-algebras.

Let us look at one of the examples from before.

Example. (1) (nil Springer theory) The only indecomposable projective graded NH,,-
module is P, := C[t,]. To see this, it is given by P, = NHye for e: C[t,] Ao,
Clt,)"" < C[t,] where Av(f) := ﬁ > wew, w(f)

(it is easy to see that NHye = HomC[tn]wn(C[tn}W“,C[tn]) = Cltn] as left NH,-
module).

Since Cltn] = D ew, Clt,]"" - by, as graded module with deg b, = 2ly g (W)

?Lusztig used the usual derived categories, but his constructions work also equivariantly and give the
same Grothendieck group.

115



(by is a so called Schubert polynomial), it gives

NH, = @B Homgy, wa (Clta]V™, Clta] (—2(w))) = €D Pu(—26(w))
WEWn Wewn
That means that B is generated by finite direct sums of shifts of P,,n € Ny. It holds

Pn o P’I’)’L = Hom(c[{n+m]wn+7n (C[tn+m]W"><Wm, C[tn+m]) Since

Cltnm]"™*Wm = EB Cltntm]V "™,
CEG(Wn XWm\Wn+7n)

with using the notation degb, =: 2n, we conclude

P,oP, = P Prim(—2ng).
CEE(WnXWm\Wn+m)

One can express n; as the length of a minimal coset generator®. We conclude that
Ko(B) is as Z[q, ¢ ']-algebra not finitely generated (but if we tensor — ®z, ,-1) Q(q)
we see it is finitely generated as an algebra by [P1]).

On the other hand By is the monoidal subcategory generated by free modules and
it holds NH, o NH,, = NH,;n,. We conclude that Ko(Br) = (Z[q,q !])[T] for
T = [NH;].

For G = Gl, Khovanov describes in | | the category of finite dimensional mod-
ules over a n-NilCoxeter algebra, n € Ny as a categorification of the Weyl algebra.
Recall, that the n-NilCoxeter algebra is the quotient algebra obtained from NH,
when passing from equivariant to not equivariant Borel-Moore homology. I think it
would be interesting to ask if one can extend this for other Nyp-graded groups and

say something on the Nil Hecke algebras as well.
In the examples we will be interested in the following questions:

(Q1) Can we find explicit generators and relations for the monoidal categories C(Z)?
If Z has no horizontal product, we would like to find a minimal multiplicative se-

quence A, containing Z and describe C(A,) instead.

(Q2) Can we describe Ky(Br) in terms of generators and relations? In the examples we
think of Ko(Br) as an analog of the extension monoid, which is how we call the
subalgebra of a Hall algebra generated by the simple modules without self-extensions,

see for example | |-

We did not manage to study the second question.

3this notion is also defined if W, x W,, is not necessarily a parabolic subgroup of W, m, see remark
on page 59
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4.4 Example: Quiver-graded Springer theory

Let Q = (Qo, Q1) be a finite quiver. We write N(C)Qo for the dimension vectors. A word in

dimension vectors is a finite sequence (ay,...,a,), a; € NOQO. We set

I:={(a1,...,a;) | a; € N9, r € No} — [I] := N&°

where the semi-group structure on I comes from word concatenation. Then, an I-ind

Springer theory (G, P, V, F) is given by the following data for i = (a1,...a,), |i| = (dk)req,

(1) G; = G|i| = HkGQO Gldk

(2) P; C G, be at factor k the standard parabolic with diagonal block sizes (from left

upper corner to right bottom corner) given by ((a1), ..., (ar);).
(3) Vi= V\i\ = H(a: k—=1)eQ Hom(c*lm((cdk’(cdl)

(4) F; C V; be stabilizer of a standard flag of type i (i.e. such that P; is the stabilizer of
that flag).

The definition of the representations (V;, F;) goes back to Reineke in | |. This is

not a generalized Springer theory in the sense of | |. But the Borel case is.

4.4.1 Quiver-graded Springer theory - Borel case

The Borel case of quiver-graded Springer theory is defined by Lusztig, see for example
[ |. We set
]I = {(/Ll? 7ir) | /L] S QO,T € NO} — |]I‘ = NOQO

T
i= (i, d) Y =]
j=1

We can see this naturally as a sub-semigroup of the same named set from before, but for

7 in this smaller set we have

* We fix a numbering of the points of Qo = {k1,...,k}. Then, the group G is a
Levi-group Ly, in Gl,, n:= [[¢|[. We fix the following identification

NS, = 1y == {j € I'| j] = i|}

which comes from the transitive right operation of S, on I};| given by the following:
See i as a function i: {1,...,n} — Qo with >°%_,i(j) = |i|, w € Sy, then jw :=
i ow. Then the stabilizer of every point is isomorphic to <‘]\i\>' Therefore, any
choice of a point gives an isomorphism as above. We choose the element i :=
(k1 K1,k ks, ) €1,
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* Let B, C Glp, n = |[i]| be the invertible upper-triangular matrices and Bj;| := G;| N
By,. Then we can assume that P; = By, for all j € I); More precisely, if w(j) € il ),
is the element corresponding to j, we have P; = G|; N wi)B, = G N By = By

* Furthermore, in the above notation
Fy =V 0"y, j €l

where U,, = Lie(U,,), U,, C B, is the unipotent radical. This is the same F; defined

in the quiver-graded Springer theory from before.

For a quiver without loops Varagnolo and Vasserot | | and independently Rouquier
in | | calculated the associated Steinberg algebra in terms of generators and relations
and identified it with the quiver-Hecke algebra (or KLR-algebra) which was introduced in
the simply laced case by Khovanov and Lauda in | |. This is the version with loops

(cp. main thm in | D).

Theorem 4.4.1. Let Q be a quiver. Set I := 1T = {j = (j1,---,Jn) | Jr € Qo, >_ Jx = lil},
S C Sy the set of positive roots. We define hi(s) := #{a € Q1| for V := (Vjj)a, wi(as) €
Oy} with Oy is the set of T,,-weights of V. It holds for i = (i1,...,i,) € I and s; =
(6,0+1) €S,

hi(sf) = hiz+17iz = #{a € Q1 ‘ Qg — i@}

We consider @,c; Clzi(1),...2(n)] as the left W := S,,-module Indyy C[t,] via

[ € @i Clzi(1),...zi(n)], w € W map to w(f) € Clzjy-1(1),...2;-1(n)]. For every
iel,s=(0+1) €S we have as := z;({) — z;(£ + 1) without mentioning the dependence
on i if that is clear from the context. Then Zy; is the graded C-algebra with generators

liyiel, z({t),1<t<n=rk(T),iel, oi(s),s€Siel
of degrees

2hi, i, —2 , ifig=1
deg1; =0, deg z(t) = 2 deg o (£, 0+ 1)) = e f e =01

2hi, , A e # g
subject to the relations
L1 = di 51,
1izi(t)1i = Z@'(t),
1i0i(s)1is = O'Z'(S)

Z3 (t)Zi (t/) = Zj (t/)zi (t)

118



0 , if is =1, hi(s) is even
0i(5)0is(5) = § 215 (5) ,ifis =i, hi(s) is odd
(_1)his(8)agi(5)+hi8(s) ’ Zf is 7él

Let s =sp=(£,0+1)

ol ifis =i t=104+1
0i(8)2is(t) — s(zis(t))oi(s) = —ag"(s), Jifis =it =1{
0 Jifis#ioris=1i,t ¢ {{,0+1}

Let s =sp= (£, 0+1),t=sp41

0i(8)0is(t)oist(s) — oi(t)oit(s)oits(t)

Al (e s (6, (k=) — =Dl DNe(5, (i), ifists =i,
_ is # it # i
0 , else.

We can now write down the horizontal product

i li+ 2l © 215 = Zlitl
L ®1; = 1y

1i®zj( )'_>Zl+](
oi((t,t+1) ® 1 = o ((t, t + 1))
L ®@oj((r,r+1)) = oipij(n+r,n+r+1))

the condition that it respects the algebra product defines it in general. This explicitly
defines a multiplicative sequence of algebras.

Furthermore, Rouquier defined in | | a monoidal category which is equivalent to
the monoidal subcategory of the category P generated by the perverse sheaves Lj corre-
sponding to the dimension vectors e, k € (9. This construction can easily be extended to
our slightly different situation: Because we are allowing loops in the quiver, we have some

more relations to consider, cp. the article Generalized quiver Hecke algebras | ]

Remark. Lusztig studied the category P for a quiver without loops. He proved the

following.

(1) (] |, Prop. 7.2, p.390) There is geometric construction of the monoidal product
* on the category P. Let i = (i1,...,i,) € I, it holds

Lil * L,L'2 koo Xk Lin = (WZ)*Q[eZ] = LZ
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(2) In particular, the inclusion P; C P induces an equivalence of monoidal categories
(P]I)i —-P

where () is the idempotent completion functor, see for example | |, section 3.3.

For @ a Dynkin quiver it even holds P = P.

(3) There is an ismorphism of Z[q, ¢~ !]-algebras
Ko(Pr) = Ko(P).

Furthermore, Ko(P) also has the structure of a twisted Z[q, ¢~ 1]-Hopf algebra. The
main result in | | is that after tensoring with Q(g), it can be identified with the

negative half of the quantized enveloping algebra associated to the quiver.

Following Rouquier’s constructions in | | we define the following category. Let
C be the monoidal category generated by finite direct sums of shifts of objects F, =
E.(0),a € Qo, we write E,(n) for the shift, n € Z, and arrows

Zo: By — Eg, of degree 2
2hgq—2, ifa=0b
2hp q, ifa#b

Oap: Ealy — EpE,, of degree

where hqp (= #{a € Q1 | a: a — b} for a,b € Qy. We write E, also for idg, and
E.Ey, .= E, ® E,. They are subject to relations

(=D)hva(Eyzq — zpEg)avthoa | if q £ b
Oab e} Obg — —2(ZaEa — Eaza)ha,a_l o O'a,a y lf a = b7 ha7a Odd

0 , if a="b,hg, even

(2) (straightening rule)

0 Cifa#b,
Oab © 2oy — Eipzq © Ogp =

(EBozq — 2aBg)tea | if a=0b,

0 Cifa#b,

Oab © Bazpy — 2pFq 0 0gp =
—(Eozq — 24E,) e | ifa=b,

(3) (braid relations) for a,b,c € Qo we have the following inclusion of C-algebras. Let
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Clas, ay] be the set of polynomials in as, ay.

me,ci C[O&S, at] — EndB(EaEbEc)
g = 2o By E. — EzpE,
oy = EqzpEBe — EqEpze,

we set t(al) == (a5 + ap)" =: s(af) € Clas, u],h € Ng. Then, the relation is

Oaplic 0 Eqocy 0 0cq By — Ep0cq 0 0y og 0 Ecogp

h h
Ja,a,a(és(at aya(st(asa’a))) 0 0qaly
hn.,a ha,a

~Ja,a,a(0t (s s(a; ")) © EaOaa , ifa=b=c
Jb,mb(a?“’bs(a?b’b)stst(ong’“) - a?b’“t(agb’b)ws(a?“’b)) , ifb=c,a#b,
0 , else.

For i = (i1,...,i,) € I we set E; := Ej; B, --- E;,. Let Z); be the Steinberg algebra
for the quiver-graded Springer theory of dimension vector |i| € I'. Then, by construction

there is an isomorphism of algebras

ZM — @ HOIHB(EZ‘,EJ')
gVSITH

1, — idEi

zi(t) = Ey By - By 2, By -+ By,

JZ(S) — Eil te Eig,10i4+1,i£Eig+2 e Ein7 ’ lf s = (€7£ + 1) € STL
Theorem 4.4.2. ([ ]) There is an equivalence of monoidal categories
Pr—C

which is on morphisms the isomorphism of algebras from above.

4.5 Example: Symplectic quiver-graded Springer theory

This construction works in general for (general) symplectic and (special) orthogonal groups
(and products of them) rather analogously to the quiver-graded Springer theory. We study
only the Borel-case and we make the choice to only treat the symplectic group case because
the orthogonal group is not connected (nevertheless one can treat the Steinberg algebras
in the situation with orthogonal groups with Varagnolo’s and Vasserot’s methods, see
[VV1I)).

To emphasize the analogy we use mostly the same notation as in the previous subsubsection.

Before we start we recall some basics about the symplectic group.
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The root system of the symplectic group The group Spy, (cp. example (3) from

earlier) has the following maximal (split) torus

t1

t 0
T, = t= s tiEC*
{(O tl)r )

Its Lie algebra is

spoy, := Lie(Spy,) = {A € Moyxan | A'T = —JA} = {A € Mapyo, | A= A’} = S2C*"
A— JA

which maps the adjoint representation on the left hand side to B - A := BAB?! on the right

hand side. Let us determine the roots, i.e. T-weights of spy,,. A general element of the Lie

(XY : :
algebra is with Y, Z symmetric.
zZ -Xt

t 0\ (X Y 70\ (it i (Bayigty)ig
0 tt)\z -xt)\0 ¢ (2t D (=t gity)g

If we denote by g;: T — C* the projection on the i-th diagonal entry 1 < ¢ < n, for
two maps A\, pu: T — C* we write A + pu: T — C* ¢t — At)u(t),-A: T — C*t —
At)~10: T — C*,t — 1, we have found the roots

Ovei_eja e’i_l_eja —&; — &4, 25i7 —25i, 1§’L,j§n,l§é]

with weight spaces (write g := spa,, and Ej; to be the basic matrix with 1 at position (k, )

and zero else)
go = Lie(T), ge,—c; = C(Eij — Ejtnitn), 8ei4e; = C(Eijin + Ejitn),

O-ci—e; = C(Bitnj + Ejini), 02¢; = CEiiyn, 9-2¢;, = CEiyny

The root system is of type Cy, the Weyl group is defined as W = Ngp, (T)/T = S, x
(Z/2Z)", we fix the following set of elements in Ngp, (1') whose left cosets generate W:

T

0
For 7 € S, we write 7 := < ) with Pr = (ex(1),-- -, €rn)) € Gly,

T

for o; = (0,...,0,1,0,...,0) € (Z/2Z)" we write o; = [ * " ,1<i<n.
-k En— Ej

The positive roots are 0, &;+¢;,&; —¢;j with ¢ < j and 2¢;, the simple roots are g, —¢;11,1 <
i <n—1,2¢,. Let S C W be the set of reflections defined at the simple roots, it gives a
generating set of W. As usually we identify S = {(1,2),...,(n — 1,n),0,} C Spy,,. The
Borel subgroup whose Lie algebra equals the sum of the positive weights is our standard

Borel subgroup from example (3).
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Definition 14. A symmetric quiver (Q, o) consists of a finite quiver ) and two maps
0: Qo — Qo,0: Q1 — Q1 with 02 = id such that o(k — ¢) is an arrow o (k) — o(l).

We call the vertices Qf = {k € Qo | o(k) = k} black vertices and we set Qo \ Qf =
Qo U o(Qp) for one fixed subset Q) C Qo and call Qo \ QF the white vertices.

For a,b € Qo we write

hop =#{a€Qi]a:a—0b, ola) #a}
hoo :=#{a € Qi |a:a—o(a), o(a) =a}

and we will always assume that the symmetric quiver (Qg, o) fulfills

haU:

)

Furthermore, we define

I:={ac NOQO | ax = ag(r), for k € QF ax € 2No}.

Observe, that I' is a sub-semigroup of (N(?O)". For a sequence i = (i1, ...

ha,o'(a)7 Va € Qo.

define |i| := 377, (i; + 0(i;)). We define

I:.= {(il,...

,’L'T)‘Z'j GQ()}—>|H’ =T

i= (i1 ip) o i

Then we have an I-graded Springer theory as follows

(1) Let |i] = > yeq, ak - k € I', we define

Gy = ][ Spou x [] Gl

keQg keQy

,ir), ij € Qo we

When we have fixed a numbering of the vertices (Jg we can define an inclusion

Gli| = Gy :=Spy,,n = il via

2

P G|’L| - Sp2n7 ((

ai

Ay

Cy

Aj B;
C; D;

B1

.CT

(which is for r > 1 not a standard Levi subgroup.)
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(2)

We write Q1 \ Q] = Q) Uo(Q)) for one (fixed) subset @} C Q1.

Vi= P Sscme P Myxa (O
(a: k—o(k))eQY (a: k—=0)€Q]
where S2C? := {A € My»4(C) | A ='A}. This is (roughly) Derksen and Weyman’s
representation space (see | |)- For k € QJUQY, we write Gy, for the corresponding

factor of G; and G, (r) := G- On each direct summand the operation of G|;| is given
by

1. For a: k — o(k) € Qf it is gvg, v € S?C%,g € G,

2. Fora: k — (€ Q) it is g[lvgk, v € My, xa,(C), g0 € Gy, gi, € Gy

The assumption hgs = hg o (4) ensures that we have for every type of arrow in Qo an
associated indecomposable G = (G|;|)-direct summand of sp which we used to define
the representation space above. To understand this remark look at the schematic

picture below.

Let W,, = S, x (Z/2Z)" be the Weyl group of G,, with respect to the diagonal torus.
The embedding gives an inclusion of the Weyl group W) of G|; into W,,. We fix a
bijection

Wi \ Wy = Ly == {j € L[ |j] = li[}

Using the transitive right operation on I}; defined as follows:

See i as a function i: {1,...n} U{1*,...,n*} — Qo with >°7_, (i(j) + (%)) = [il
with the property i(j) = v < i(j*) = o(v). Then the operation of w € S, is given
by iw := i o (w U w) and the operation of (Z/2Z)" is given by swapping k and k*,
1 < k < n. Then the stabilizer of every point is isomorphic to W);. We choose the
point which is given by the numbering of Qo := {ki, k2, ...} which is of the form
i= (k1 k1, ke, ) € 1)

Let B, C Gy, the upper-triangular standard Borel in the symplectic group, Bj; =
G| N B,. We will choose the unique representatives x; € Wy, € I; of the right
cosets W); \ W,, which satisfy G|; N*B,, = By;.

We set B; := Bj; as our parabolic subgroup.

F; = V};) N %l where U, = Lie(U,),U, C B, is the unipotent radical. There is
a different description of F; in terms of elements of V; which stabilize a complete

isotropic flag (given by x; applied to the standard flag).
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Schematic pictures of the G|;-subrepresentations of spy, associated to the ar-

rows
o e o) e ° o o) (r(o/)
o w =l o *
(r(o) €QY o . o €Q} . o
(o) (o)
. o (') —xt
o o oo) e o . o .
o *1 *o o *1 *o
.E—Q,I>O M *g oi>.' ° 7*2 *’tz
o(o) o *3 *4
t t t
. —xh . x5 —x}
A\ / \ /
o . g(o) . o . g(o) .
o * o
’ * *2
€Q; * . €Q * ! =)
o (o) — o(o)
*3
. . =4 —xt

Remark. Using the examples of nil Springer theory and classical Springer theory we can
easily see: If (Q,0) is such that @ has at most one loop at each vertex and no arrows
between different vertices we can write down the horizontal product. Alternatively, a
closer examination of the equations (la-b), (2a-c) for the later defined elements 7;(e;)
show you that they are in Z);| if and only if @ is of the described form. This is precisely
the obstruction for the horizontal product being defined for Z.

Remark. This remark is why I think there is no horizontal product. For example at
the case that (@, o) consists of two o-invariant loops at a black vertex i. Then, Zs,.; is
generated by z; := x5, 1 < k <n, a26s,8 € S := {(r,r + 1),e,}. This equals the algebra
generated by 2z, 1 < k < n,ags,s € S. Now since Z9,; C NH,, we want a horizontal
product which comes from a restriction of the horizontal product of the nil Hecke algebra.

This means (ep, 1) must map to (2z,)e, € Endc(Clz1, ... Tptm]), but this element is not
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contained in Zy(,, )
I do not think that there exists a horizontal product on Z which is not the restriction of

the one from the Nil Hecke algebra but of course a proof of this is difficult.

But as a compromise for readability I will from now on assume that the quiver Q) does
not contain any loops. This reduces the number of case distinctions and the length of the

equations.

4.5.1 The Steinberg algebra and its horizontal product.

Theorem 4.5.1. Let (Q,0) be a symmetric quiver. Set I :=1; = {j = (j1,...,Jn) | Jk €
Qo, Y jr+0o(Jx) = i}, S C Sp X (Z/2Z)" the set of positive roots.

(1) (explicitly)
For i € I we set & = Clz;(1),...,zi(n)]. We consider @, ; Clz;(1),...2:(n)] as
the left W := S, x (Z/27Z)"-module Ind}y- C[t,] via f € Clzi(1),...2:(n)],w € W
maps to w(f) € Clzpu-1(1),...24,-1(n)]. In particular, we write as € &; for the
polynomial corresponding to the simple reflection s € S and w(as) =€ E;py-1, w € W
without mentioning that it depends on i € I when this is clear from the context.
Then Zj; C Endc_1in(Djes &i) is the C-subalgebra generated by

Li, zi(t),0i(s), €I, 1<t<mn,s€S

defined by:
Letkel, f€&. It holds

[ =k,

0, else.

Li(f) =

ZTj s ) i:k},
A = O Y

0, else.

A0=g ifi=is =k,
oi(s)(f) == M @s(f) ifitis=k,

0, else.

where hi(s) = #{a € QTU Q| | for V := (Vjj)a, zi(as) € Py} with v is the set
of T-weights of V.. It holds for i = (i1,...,in) € L and sy = (£, +1) € Sp,e, =
0,...,0,1) € (Z/2Z)"

hi(se) = hiy1igs hilen) = ho(in).0
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Observe, that there 1s a natural grading on Zy; by

2 ifis=i
degl; = 0,deg z;(n) = 2,dego;i(s) =
2h;i(s) , ifis#1i

(2) (in terms of generators and relations)
Let W be the Weyl group of (G|, Tj;) = Tn). We consider @;c; Clzi(1),...z(n)] as
the left W := S, x (Z/2Z)"™-module Ind}y- C[t,] defined as before. Then Z);| is the
Z-graded C-algebra with generators

liyiel, z{t),1<t<n=rk(T),icl, oi(s),seSiel
of the degree as in (1) and relations

11, = 6 1,
Liz(8)1s = 2 (8),
Lioi(s)Lis = 0i(s),
zi(t)zi(t) = 2i(t)z(t),
0 ifis =1,
oi(s)ois(s) = {(1)}”8(5)0{?1(8)—#}113(8) Cifis 4
Ifis i 04()zis(t) — s(zs())0i(s) = 0 for all t
Let s = sg = (0,6 +1),is = i
03(5)24() — 24(£+ Dari(s) = — 15,
o3(8)z4(E+ 1) — 2z()rs(s)
oi(s)zi(t) — 2 (D)oi(s) = 0, if t & {6,041}
Let s = ey, is =i
0i(8)zi(n) + zi(n)oi(s) = —1;,
oi(s)zi(t) — zi(t)oi(s) =0, ift#n

For s,t € S: 0i(s)0is(t) = oi(t)oi(s) whenever st = ts

1i7

Let s =sp= (0,0 +1),t = sp11

Ui(s)ais(t)aist(s) — Ui(ﬂUit(S)(Tits(t)
{a?’(s)s((St(a?”(s))) — a?is(s)t((k(a?i(s)))a if ists =i,is # 4,0t # i

0 , else.
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Let s=(n—1,n),t =e,

0i(8)0is(t)0ist (8)Tists (t) — 0i(t)oit () oits () Titse (s)
Poi(t), if ists = 4,18 #£ 1,1t £ 1
Psoi(s), if itst = 1,4t £ 1,18 £ 1
Rioi(t) + Re, if it =i = ists,is #1i

0, else.

where
i(S)Sét(agist(S)) — t(ahit(S))ts(gt(a?nst(S))
(

a?is (t) )St(ss (a?ists (t) )

Ry = t(alit®)tss, (alitst(5)) — o) g5, (ahist(9))
) )

Remark. Let (Q,0) be a symmetric quiver and (@', ¢’) be another symmetric quiver, such
that Q' is a subquiver of @, Qo = @ and g, = o’|g. Then, the explicit description
of the Steinberg algebras shows that Z|(‘ 9 ¢ Z|(| Vs a subalgebra. In particular,

if we set Nil(Q,0) = (Q = (Qo,0),0|q,), we get a symmetric subquiver and Z :=
2(@0) ¢ zNil(Qo) —. zNil  Gince ZN has a horizontal product, it is natural to look at

the restriction to Z, see below.
The restriction to the Steinberg algebras is the map
Nil
mitb - 2 % 2y~ 2y © Endeoi( D &)
k€ljits|
(11, 1] — li—i-j

( (k)vlj ’_>Zz+j(k)

(13, 2j(€)) = 2igj(n +£)
(os((t,t + 1)), 1, (Lt +1)
(Li, i ((ror +1))) = opsj((n+ 7,0 + 7+ 1))
(Li,05(em)) = itj(entm)

)
)
)
) = Oitj
)
)
)

(gi(en), 1) = oi(en) ®1; ¢ Z\i-l—jl (M

We write 74j(en) = oi(en) ® 15, for j the empty word j = 0 € I, it holds 7(e,) =
oi(en). It is not necessarily contained in Zj; ;. Let f € & and recall (i + j)e, =

(Z'lr . 'ain—ho-(/in)vjl) cee 7]m)

e’éfc{?{)fv if (i +j)en = (i +7) =k,
Tij(en)(f) = 4 Qai(n)" = een(f) if (i+]) # (i + Hen =k,
0, else.

To define a multiplicative sequence we can assume wlog. m =1, i.e. j = in41 € Qo,
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we set now i := (i1,...,%n,in+1). Then we have to distinguish five cases, we will use the

shortage s = (n,n 4+ 1),t = ep41
as = (zi(n) — zi(n + 1)), t(as) := (2i(n) + zi(n + 1)), ap = 2zi(n + 1), s(a) = 2zi(n)

and we leave out the dependence of 7 if it is clear which is meant. In each case there exists

a":(in7in+1)t(as)e(invin+l)a;n(i"7in+1)7_i(en)

= P(in,int1) 0i(5)0is(t)0ist (s) + Q(in, int1) 0i(8)0is(t)
+ R(Zna Z.n—&-l) Uis<t)0ist(5) + S('Lna in+1)0'i(t) + T(lrn Z.n—&-l)

with k(in,in+1), £(in, int1) € Ng and

P(imin-l-l)aQ(inain+1)aR(inain+l)7 S(invin+1)a T(inain—&-l) € (C[ij(n), Zi+j(n + 1)] =
Clas, ay] are homogeneous polynomials. We choose k(iy, in+41), £(in, int1), M(in, int1) € No
minimal such that such an equation is fulfilled, then the polynomials X (iy,ip41), X €
{P,Q,R,S,T} are unique and if we see as, ay as variables, then they only depend on the

two vertices i,,in+1. This can be explicitly seen as follows.

(1) in = 0(in),in = ins1- T6 holds f > 7i(en) (f) = G =2 6, (f). Tt holds

Ti(en) = 5061 08 = (as0:(s) + 1i)oi(t)(asoi(s) + 1;) € 2
= ast(as)ai(s)ai(t)ai(s) + OésUi(S)Ji@) + t(Oés)Ui(t)Ui(S) + O'Z'(S) +1;

(This case is much easier due to our assumption that @ has no loops.)

(1b) 4y = o(in) # int1. It holds

Ti(en) = s 04(t) s

=as "T"oi(s) oi(t) as

7h7; in Ny i
= as ") T 0y(8)oy (1) 0is (s)

+ailta) e 3T () Hau)al
r4+u=h

in,in41

O’is(s)

in 7in+1

(2a) ip # 0(in),in = int+1- Using e, = sts we have

. 7ho‘ in),0 _hin,cr
Ti(en) = s(at)hv(m’v (asoi(s) + 1;) oy (in) oi(t) as oit(s)

—h. —h; _ho' in),o
= t(as) hln’”ozsai(s)ai(t)ait(s) + t(as) hln"’at (in)
hn‘(in),o'fl

ho in),0 . —1—
sy "7y =20 3T s(a) et R af oy (8o (5))
k=0
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(2b) i # 0 (in), 0 (in) = int1

—hip 11 in
Ti(en) = Oy 1 Ui(s)o'is (t)(asgist(s) + 1ist)

_ha in),o _ha in),o
=g U t(as)oi(s)ois(t)oist(s) + as (in) oi(8)ois(t)

(2¢) in # 0(in),in # int1,0(in) 7 int1

7hin Jin —h:
Tilen) = as TV () TMmint1 oy (8) 0 () st ()

Let Z"i‘ be the the subalgebra of Endc_y, (6D

I}, 1 <7 < n, where n is the length of the sequence i (and 7i(e,) = 0i(e,)). We can see

i€l &;) generated by Zj; and Ti(e;),i €

this as an iterative extension by the unique solutions 7;(e;,) of equations of the form (x);,

Lt ir k(ir,ir m(in,in
a(i,r+1-§l)6r+l(OZ(T(’H_JI))(221‘(7" +1)) ( +1)7'1'(67,)

= P(irv ir+1) Ui(3)7i5(6r+1)0'ist(3) + Q(irv ir—f—l) Ui(s)gis(t)
+ R(ir, 7;7«_:,_1) Uis(t)Uist(S) + S(ir, ’ir+1)0i(t) + T(ir, ir+1)

where you replace o by @11y, a¢ by 2z;(r+1) in the polynomials X (i, 4,41). The right
hand side is a homogeneous element in the algebra generated by Z);) and by the previously
discussed map (Z(i\)ié\m is a multiplicative sequence. We write Z’ := Z|’i|.
Proposition 8. Z{i‘ is the C-algebra generated by the symbols

li,zi(t),di(Sg),Ti(er), 1€ ]Im, t,r € {1, R ,n},ﬁ S {1, RN 1}

subject to the relations
1) which they fullfill in Zy; from theorem 4.5.1 (setting o;(eyn) := Ti(en) ),
l4]

(2) all relations which the o, ;. (er) fullfill in 2);, ;)| hold after applying —®1;, ., i,
for the Ti(ey).

(3) Ti(er) commutes with 1; _;, ® x where x is a generator of Z

theorem 4.5.1,

i1 yeensin)| JUWEN T

(4) the relations (x);, for each i = (i1,...,in) € Ly,r € {1,...,n — 1} hold.

proof: Let Aj; be the algebra with generators and relations as in the proposition. There
is a natural surjective graded C-algebra homomorphism ¢;: A — Z(i‘ mapping elements
with the same names to each other, we claim that this is an isomorphism. Let A :=
HseS,weww(O‘S) where S = {(r,r +1),e5,1 <r <n—1}, aprqr) = Zieﬂm zi(r) — zi(r +
1), ae, = Zie]lm 22i(n), W = S, x (Z/2Z)". This is an element of the center of Aj; because
it is W-invariant.

Let A€ {4, Z|’Z.|}. Since in case (1a) the element 7;(e,) € Z we will replace these by

the righthand side of the equation and exclude them if we mention elements 7;(e,). Let <

130



be the Bruhat order on W and w € W, we write A<,, for the  in A such that there exists
N € Ny such that

ANz e Zey 1= EBZ”

v<w

where Z,, consists of all sums of elements of the form 1; p o(w) 1;4,j € I}; with
p = >0, Pi € Clzi(1),...,2i(n)] and o(w) := >, 0(w) where o;(w) is a product of
0i(51)0is, (52) -+ * Tisyoeesyq (Sk) With sp € {((r,7+1)) | 1 <r < n—1}U{e,}. It holds A<, is
a two-sided ideal. We define A,, to be the C-span of x = p p;(t1)pit, (t2) - - - pity-ty_, (tk), p €
{o, 7} with p homogeneous monic polynomial (monic for a fixed total monomial odering)
in GBZEHM Clzi(1),...,2/(n)] such that there exist n € Ng with y := ANz € Z<, 9 # 0,
we call these spanning elements w-monomials 4. Tt follows that A<y = @vgw A, =
@dez,vgw A, N Ay as vector spaces because w-monomials are homogeneous. We say two
elements m, m’ € A<, are w-equivalent if there is an element in a € A, such that
m=m'+ a.
The relations (x);, are equivalent to relations A™7;(e;) = Po;(8)Tis(€r11)Tise, 41 (8)) + R
with s = (r,r + 1), P € @, Clzi(1),...,2i(n)], R € A, with A does not divide P, R.
We say a presentation in the generators for x € A is A-reduced (or shortly x is A-reduced)
if x is a sum of pp;(t1)pie, (t2) - - - pity--ty_, (te) With p € @, Clz;(1),...,2i(n)],p € {o,7}
such that the following is fullfilled: If AY is a divisor of p and ANT! is not, then for the
every 7;(e,) in the product p;(t1) - -+ pity.t,_, (tx) it holds AN7;(e,) ¢ Z(r) where Z(r) is
the subalgebra of A generated by Zj; and 7i(en), ..., Ti(€r+1),7 € Ij;. Since every element
has a A-reduced presentation we will from now on only consider these.
From every equivalence class of (A-reduced) w-monomials we fix one representative
ctw = Ppi(t1)pit, (t2) - - - pity -ty (tr), w € W.
We claim: Every x € A can be written uniquely as a sum ) . 0in AMwCtw, Atw € C.
(In other words, the representatives ¢, of degree d form a C-vector space basis of the
finite dimensional vector space A, N Ay.) The generating part is easy to see. We prove

be induction wrt the length on w for every given degree d. If the length in zero, w = ¢, it

holds A<, = Z. and A<.N Aq is spanned by monic polynomials, homogeneous of degree g
if d is even, zero else. They are linearly independent.

Let w be of a given length and d € Z, let

Z )\t,wct,w =0, )\t,w cC

(t,w) ‘Ct,w eAd

We want to prove \; ,, = 0 for all (¢, w) such that ¢;,, € Ag4. It is enough to show this for any
choice of representatives c;,, of the equivalence classes. If there is a representative c;,, in
an equivalence class ending on an element of the form p;(t) € {0i(s),is # i, Ti(e,), ie, # i}
we assume that we chose that one, then we compose the whole equation from the right with
pit(t), the ¢,y ending in p;(t) will fullfill that c;.pi(t) is w’-equivalent to a w'-monomial

with w’ < w . By induction hypothesis the coefficients of those ¢t must be zero.

*It is not necessarily w = t; - - - t. For example in case (2b) it holds 7;(e,)oie, ((r,r + 1)) is in A,
5The case where this is not true is (2b) where 7;(e;)0ic, (s) , s = (r,r + 1) and 7;(e,) are in A.,, but
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Now because of the braid relations, we are left summing over w-monomials

ctw = ppi(t1)pit, (t2) - - pity oty (L) With ity = i, V0. If pi(ty) = oi((r,r + 1)) or 7(ey)
we multiply the whole equation by z;(r) (in the second case r = n is allowed) from the
right and use iteratively the straightening rule to write ¢;q,2i(7) as a sum of A-reduced
w’-monomials w’ < w and at least one w’ < w. We proceed applying the straightening
rules to all other ¢y ,,2;(7) to write them also as a sum of A-reduced w’-monomials w" < w.
Again by induction hypothesis the coefficients in front of these have to be zero.

Now since we conclude that dim( "i|)w N( \/i|)d = dim(A}3)wN (A}3|)d, we get that the map

¢ 1s injective. U

Remark. (from Bill Crawley-Boevey) For a Z-graded algebra A with finite dimensional
components, the category of finitely generated graded left A-modules with degree zero
graded maps is abelian and has finite dimensional Hom-spaces. Therefore it is a Krull-
Schmidt category.

Then, the full subcategory of finitely generated projective graded left A-modules is also
Krull-Schmidt and every object is a direct summand of a finite direct sum of shifts of A,
s0 is a direct sum of shifts of direct summands of A. Now, direct summands of A are given

by idempotents in Hom(A, A) = Ay, so are induced up from projective Ag-modules.

Remark. Let B|/z'| be the category of projective graded modules over Z"i‘. The functor
- ®z, Z"“: B — B"Z.‘ is not always essentially surjective, consider for example: Let
i = (i1,...,1n) with o(i,) = i, it follows that 7;(e;) = d¢, and therefore e := 1;e,.1; is an
idempotent element in Z\/i| which, if for example @, # 4,41, hi, 4,,, > 1, is not contained in
Also the induced map Ko(B);) — Ko(Bfi‘) is in general not injective. For example take
i = (i1,...,1n) wWith 4, # 0 (i), 4y # 4pq1 and by, 4., > 1, hi, o = 0 then 7;(e,) = Lie,lie, ¢
Z); and therefore we get

Pl =21, T 200, — P

ier

an isomorphism with inverse given by -7, (e,;). But P; is not isomorphic to P, in B\il'

4.5.2 Lusztig’s Perverse sheaves/Projective modules corresponding to

the vertices of the symmetric quiver.

Let us consider the following shifts of perverse sheaves.
L ke QycCl

They correspond to the projective graded modules Py = Z 1, k € Qo. Furthermore we
set P := P, ® Z(k‘ = Py because 2|, = Z|,Ic|' Let us first describe these sheaves and their

endomorphism algebras a bit more in detail.

since ie,s = ie, it is not a counterexample
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(1) & = o(k), |k] = 2, [[k]| =2
We have the Springer theory data (G|, Bk, Vx|, Fx) and generalized Springer theory
data (G||k”7IB||kH’ U, H, V|k|) defined as follows:
GW = Spy, =Sl = GH’CH (i.e. H = {e}), the set ]1|,€| = {1}.

0
By, = By C Sly is the upper triangular matrices, let U := {(0 i) € My2(C) |

recy,
Vg = 813" = {4 € Mays | Tr(A) = 0},

where hy , is the number of o-invariant loops at k. Fj, = UEho and 7p.: Ep =
Sl x4 UMy o2 _ 1],

We then know, by the previous section that
Z|k| = H*Gk (Ex xv, Ey) C Endc[w}Z/zz(C[x]),

where 1 # ¢ € Z/27 maps x — —z. It is the subalgebra generated by the elements
x-, o (t) with ox(t)(f(z)) = (Qx)h’ww. By Chriss and Ginzburg’s result (cp
I |, chapter 8) we know

2y = Emt*pgk wi) (T8)+C; (1) C) = €D Endp (L, Li[n]).
nez

But since we also know, that 2 is a free (left) C[z]-module of rank 2, it follows it is
a free C[z]%/*2-module of rank 4. Since we know by the decomposition theorem that
Ly, is a direct sum of shifts of perverse sheaves it follows that it can contain at most
two summands. For hy , > 1, 7, is semi-small and it is small if and only if Ay , > 2:
In general for h := hy, > 1 let N'(h) = Sly - U®" = {(Ain,..., \pn) | N € C,n €
M3(C),n? = 0}, this is a h+ 1-dimensional variety with 0 is the only singularity. The
map 7 : Slp xB2US" — N(h) is easy to be seen an isomorphism over A'(h)\ {0} and
7.1 (0) 2 P!, take as stratification Sy := N'(h) \ {0}, So = {0} and let d; = 0,dy = 1
be the complex dimensions of the fibres over Si, .Sy respectively. Semi-smallness is
the inequality 2d; < dim N'(h) — dim S;,7 = 0,1 which is always fullfilled. Smallness
is the extra condition that there exists a unique stratum where the inequality is an
equality, it is fulfilled if and only if h > 2.

Semi-smallness implies that the shifts in the decomposition theorem are zero, i.e. Ly
is a semi-simple perverse sheaf. Smallness (i.e. hy, > 2) implies that

L = IO (h).Cprony 1oy)

is a simple perverse sheaf (see Appendix, section ?7).
For hy, » € {0,1} we find the idempotent element e := %(Qmét) in the endomorphism
ring, which implies that Ly is a direct sum of two simple perverse sheaves (namely
for h = 1 we write N := N(1) it holds Ly == IC )

IC({O},Q) = ’5*@{0} with i: {0} — N the inclusion).

Carn{oy) ® IC({0},c) where
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For hk,o =0
Lir = Ciy[—2] @ Cygy

and therefore
P,é = Pk = (Z‘k‘e) [—2] D Z|k|€

and Zjy e is up to shift and isomorphism the only indecomposable object in B =

/
B‘k‘.

different names x- <> zx, 0% (t) <> ty.)

(In the monoidal categorification we will give the generating endomorphisms

(2) k#o(k), [kl =k +o(k), [[k]] = 2.
G =T CSly =: G) and [ < {1,t = [_01 ;] }.
B, =T = By
Vig = UM with U = {(8 §> € M2x2(C) | x € C}, h = hyi o is the number of

o-invariant arrows o(k) — k in Q1.
Fi, = Vg = U, Fory = Fre = Vi N1 U") = {0}

It follows mp = idyen, Teky = i: {0} — US" is the inclusion. Then
Lie = Cyenlh] = ICuon c), Lo = ixChoy = IC03.0)
are simple perverse sheaves. We know
Zyy = HJ (Fp U {0} U {0} U {0}) <= End gy () (H7(pt) © Hi(pt))
= Endcy,) (Clzi] @ Clzym])

is the subalgebra generated by 1,,a € {k,o(k)} (=projections on the a-summands),
Zg,a € {k,o(k)} (multiplication with z, on the a-summand), o,(t),a € {k,o(k)}
this is given by Clz, ()] = Clzal, f(Zo(a)) + (224)" f(—24) and is zero on the other
direct summand.

It holds €D,z Homp (Ly, ® Lo(r), Lk © Lo(x)[n]) = Zj)- (In the monoidal categorifi-
catoin we will see 0,(4)(t) <> ta,a € {k,0(k)}.)

We conclude from the decomposition theorem
Py =Py = Zjle, Py = Por) = 2 lo)

are up to isomorphism and shift the only indecomposable objects in By, = B|’ K-

We give one example of a monoidal category based on signed symmetric groups which

is an important inspiration for later.

Example. Let C be the strict monoidal C-linear category generated by shifts of one object
E = E(0), such that Hom¢(E, E(n)) = C[r]/(7? — 1) if n = 0 and zero else, and by an
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arrow s: B2 — E? of degree 0 subject to relations
s> =F% so(rE) = (Et)os,(Es)o (sE)o (Es) = (sE) o (Es) o (sE).

Then, the objects of this category are E™(r),n € Ng,r € Z. The homomorphisms
are Home(E", E™(r)) = 0 for m # n and @, ., Home(E™, E™(r)) =2 C[S, x (Z/27)"]
where the right hand side is a graded algebra concentrated in degree 0. Recall that
Sy X (Z/2Z)" =< $1,...,8n—1, €n > subject to relations

s7=1,0<i<n—1 eySp_1€nSn_1 = Sn—1€nSn—1€n,

8i8i+18i = 8i+15iSi+1, 1 <1< n — 2, SkSj = 88k, |/{7 — ]| > 1,

the isomorphism is given by e, — E" 11, s; = B lsEn71 1 <i<n—1.

4.5.3 Monoidal categorification

Following Rouquier’s construction in | | we define the following. Let C be the monoidal
category generated by direct sums of shifts of objects Ey,a € Qo, we write E,(n) for the
shifted object by n € Z, and arrows (and their shifts)

za: By — E, of degree 2
—2 , ifa=o0(a)
ta: Ea = Eg(q) of degree ng :=
2ho(a),a ,ifa# O’(CL)
-2 , if a =0,
Oap: EoEy — EpE, of degree myp =
2hpq , ifa#b

for a,b € Qy, subject to the following relations (where we write E, also for the endomor-

phism idg, and we always set E,Ep := E, @ Ep)
(1) (s*=7)

(—Dhas(Eyzq — zpEg)havthoaif a £ b

Oba © Oab =
0 , ifa="b
(=1)hac (2z,) e thota).o , if a# o(a)
ta(a) olg =
0 , ifa=o(a)
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(2) (straightening rule)

0 , if a # b,
Oab © 2oy — Epzq 0 g =

E.E, , if a =0,

0 , ifa#b,

Oab © Eozp — 2pEq 0 gy =
—-E.E, , ifa=0b,

0 , if a # o(a),
—E, , ifa=o0(a),

tq 0 2q — Zo(a) © ty =

(3) (braid relations)

* Type Ag: For a,b,c € Qo we have the following inclusion of C-algebras. Let

Clas, ay] be the set of polynomials in s, ay.

Jape: Clas,oq] = Endp(E,EyE)
ag = 2o By E. — Eazp B,

ar = EqzpEe — EgEpze,
we set t(al) := (a5 + ap) =: s(af) € Clas, ], h € Ng. Then, the relation is

Oapllc 0 Eqocy 0 0ca By — Ep0cq 0 0cp g 0 Ecogy

Jbab(a?“’bsdt(agb’“) - a?b‘“tés(a?“’b)) , ifb=c,a#b,

0 , else.

* Type By = Cy for a,b € Qo we consider the following inclusion of C-algebras

Jap: Clas, ay] — Endp(E,Ey)
as > 2o By — Eqozp

Q= 2Eazb,

s(af) i= 2as+ap), s(ah) == (=)l t(ah) == (as+ )", t(af) := (-1l €
Clas, o],

h € Ny. the relations are

Tba © Epto(a) © 0o(a)p © Eo(a)to) — Fala®) © 0o(b)a © Eob)lo(a) © To(a)o(b)

Jap(Pr) © Eatop), ifa=o0(a),a #b,b+# o(b)
B Ja,0(a)(Ps) © 05 (a),a5 ifa=o0(b),a#b
) Jub(R) 0 Baty + Jup(Re),  ifa=o(a),b=o(b),a#b
0, otherwise,
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where . . . .
Py = a5 s0(as™) — t(as ™" )tsde(as”®)
ha,o'

ha,o hoa,a h‘oa,o
Py = o, t6s(ay (@) ) — s(ay (e) )stds(a, ™)

ho o ha hb.q ha
Ry = t(as"")ts6(as™) — as”* 50 (as™”)

B a B
Re = 64(as”)s6s(as™)
* (The extra relations for Z’) Let a,b € Q.
(la) a=o(a)=0b
toFq = Ja,a(ast(as)) 00gq 0 Egtg 004q + Ja7a(015) 0 0ga © Fota
+ Jaa(t(as)) o Egto © 0aa + 0aa + EaEa

(Ib) a=o(a),a#b

hp.a
Ja,b(asby t(aS)ha’b) otqBy = opg 0 Bty 0 0gp
hy a—1
@Y () tan) ol

r+u=hgp
for hyq > 1, if hy o = 0 it is the relation

Jap(ast(as)'ar) oty By = Jup(as) 0 04 © Epta 0 oap
Fap( D (1) tas) )
r+u=hgp
(2a) a #o(a),a="b

ho' a),o
Ja,a(y ) t(QS)ha’d) 0 to(a)Ba = a,a(0s) © Taq © Eato(a) © 95(a),a

ho‘(a),o'_]-
+ Jaa(s(a)e@e =2 3" s(a)e@e TRl 0 Buty(4) 0 0y (aya
k=1

(2b) a # o(a),o(a) =b

for i = (il, .. .,in) elweset By :=L; By, - E; .

Lemma 37. The following maps define an isomorphism of multiplicative sequences of
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algebras (i.e. they are compatible with the tensor product).

®: 2l — P Home(E;, Ej)
VIS

1, — idEi

Zz(t) — Ei1Ei2 v Eit71zitEi . Ez'

t+1 n

E:

21 "

. E

i0-1Tigi1ioBig o By yif s=(,L4+1)€e S,

UZ‘(S) — 2

E

71 " Ein_lto'(in)7 ’ Zf 5§ = €n

Ti(e,«) — Eil <o Eir71ta(i7-)Ei . Ez

r+l”

n

proof: We check that the map is well-defined and that the obvious inverse map is also
well-defined. O

Corollary 4.5.1.1. There is an equivalence of monoidal categories
B —C
P — E;
which is on homomorphisms given the map Z); C Z"Z.‘ — @z‘,jeﬂm Hompg(E;, E;) from the
previous lemma.
proof: see previous lemma. O

Example. Assume for simplicity hap +hoo <1, hao + hga),e < 1forall a,b € Q. Let us
describe the Z/

il

we write a* instead of o(a), a € Qp. If the diagram has as bottom sequence i and as top

in terms of Khovanov and Lauda’s diagrams (in | ). In the diagrams

sequence j, then it corresponds to an element in End(@p, &;) mapping &; to £; and zero on
the other summands.

The generators correspond to

i1 Tk—1 1k Th+1 in i1 Th—1 Bk Tkt in

i

i1 Tk—1 ik Tk+1 in i1 Tk—1 1k Th+1 in

i1 Tk—1 1k Lht1 in i1 Te—1 ik Tkt in

s oi((kk+1))

i1 (JREYINE in i1 Tp—1 1) Tyl in

+— Ti(ex)

subject to the following relations.

138



The relations implied by s% = 1.

SN

Q

Straightening Rules.

'

b

i

a

S ——
S

Lo ifabhy =1
b fabhy, =1
, if a # b,
hpa+hep=0

,ifa=1>

ifa£b

ifa=2»

S —
S —

[an}

,ifa#b
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Type As-braid relations.

—

o
S
o
o

Type By braid relations.

The extra relations for 2’

1a)

Q
Q

SN
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b ,ifb:c,hbﬂ:l
a b yifb=chep =1
, otherwise.

ifa=o(a),b#0(b),hy,=1

ifa=o0(a),b#0(b),hep=1

ifa= U(b), ha(a)p =1

ifa=o0(b),heo=1

otherwise




1b)

yifa=o0(a),hpe =1

yifa=o0(a),hep =1

,ifa=o0(a),hep =hpe =0

2a)

)
Il
07
— S
-~ b
__ - s <
S
: | <
3 b 5
5 S N S
= = S <=
o o« o
= 3 =

]
I I I
—— =S —— <
*
\T*a * 3 \T*&
(@]
l_l
3
® *a
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2h)

a*

+<§§

a

Q

, ifa# O'(Cl), ho(a),a =0

TR o I Qe
a* a* a* a* y

Q

2c)

,ifa#o(a),b#o0(a),hpe =1

+ + + sifa#to ()7b750(a),ha,b=1
a* b a* b

lf a 7é (CL),CL 7é bab 7& U(a)7ha,b = hb,a =0

Originally my interest was to relate the Grothendieck group of this monoidal category

to Hall algebras for symmetric quivers representations.

4.6 A discussion on the search for Hall algebras for symmet-

ric quiver representations

This has been a discussion with A. Hubery and W. Crawley-Boevey. So far, there is no
definition of this Hall algebra. These are some partial answers/ algebras (and modules)

which should be related to it.

(1) The Hall module. Instead of a Hall algebra we just find a module structure over the
Hall algebra associated to Q := (QF U Qp, QT LI QY), this definition is for example in

[ J

The geometric construction by Springer theory is the same as we discussed before
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we extended to Z’. The problem was to find an image for (o;(ey,), 1), just leave out
oi(en) as generator for the first factor and you get a map 29 x 2(Q0) 5 2(Qo) On
the Grothendieck ring of projective graded modules/ Lusztig’s perverse sheaves this
gives the module structure from before. The geometric construction of this operation

is due to Varagnolo, Vasserot in | |-

Our construction of the Z[q, g ']-algebra Ko(Bj). We want to see it as an analogue
of the geometric construction of the composition algebra.

It is not understood yet if there is any justification for it being in this list.

Restrict the choices of symmetric quivers (for example without black vertices) and
find an exact category structure on symmetric quiver representations.
As a mini-example take (Q,0) = (a — o(a)) and consider the category with objects
are symmetric matrices representing linear maps V' — V™ of finite dimensional vector
spaces V over a fixed finite field and homomorphisms Hom(A, B) are commutative
diagrams

V—Csw

o

(for the representing matrices this says A = C*BC). Then it is easy to write down
short exact sequences (by just requiring the restriction V. — W — U is a short
exact sequence of vector spaces). If this is an exact structure, then there exists an

associated Hall algebra.

The generic extension monoid/algebra and other geometric constructions (for exam-
ple with constructible function). The generic extension monoid is defined by Reineke
for quiver representations see | |, its relationship to Hall algebras is investigated
in | |.

We explain this for Ng-graded classical Springer theory. Let i,j € Ng and F; :=U; is
the Lie algebra of the unipotent radical of the Borel subgroup. Recall that we had
fixed T;4j-equivariant complements X; ; of F; x Fj; in F; ;. In fact, X;; is even a

G x Gj-subrepresentation of Lie(Gj;). The maps
Fz' X FJ<7F1 X Fj XXi’jH i+j
induce a diagram

(Gi x Gj) - (F; x Fj x X, 5)

y \
1+]

GzFZXGF

where § = pri, Q = prp are locally free with fibre isomorphic to X; ; and M is a

G; x Gj-equivariant closed immersion.
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proof: Set X := X; ;. As m: F; x F; x X — F;; is an isomorphism, consider

(Gz X G])(FZ X Fj X X) — I(Gl X Gj)F,
(9i>95), (fir fi, @) = 1(g3, g5)m(fi, [, @)

where I: G; x G; — G;4j is the structure map from the Ny-graded group G. The
map in the display is a closed immersion, because Fj x F; x X — Fy; is I(P; x P;j)-
equivariant closed immersion and I(F; x Pj) is a parabolic subgroup of I(G; x Gj).
We know that I(G; x G;)Fiy; is a closed subvariety of Gi4;F;1j, because we have

the commutative diagram

(Gi x Gy) x PP Fy Giyj x4 Fiy

\/

Vigj = Lie(Giy;j)

where the maps to V;y; are collapsings of homogeneous bundles.

Since the images of the collapsing maps are both closed subvarieties of V;;; and by the
commutativity we get I(G; x G;)Fi4; is a closed subvariety of G4 ;F;y;. Composing
the first map with this closed immersion we get a closed immersion (G; x G;)(F; X
Fj x X) = GitjFiyj. O

Then, one can define a monoid structure on the set of G;-orbit closures on G, F;, 1 € Ny
as follows If O C G;F; is a G;-orbit, O’ C GjF} is a Gj-orbit then define

Ox0 = G/L+jM(S X Q)fl(é X @)

To see that the right hand side is an orbit closure, notice: It is irreducible because
of the properties, it is closed and Gy j-equivariant by definition.

The associativity follows from the properties the complements X, we do not discuss
this further.

This defines the composition monoid Mg, the composition algebra is the associated

algebra K Mg with coefficients in some commutative ring K.
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This is the middle of the phd

Here starts a second part of the phd. In pages it is not the middle but I spend my first
1,5 years with these topics. Essentially everything which comes from here on is concerned
with quiver graded Springer maps and in particular their fibres. At that time I had not
yet heard of KLR algebras.
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Chapter 5

Constructing collapsings of

homogeneous bundles over quiver loci

Summary. We look at orbit closures, closures of Segre classes and decomposition classes
(defined by | |) in various situations. We construct Springer maps (i.e. collapsings of
homogeneous bundles) having these as their images and which are resolutions of singulari-
ties (or generically Galois coverings) and revisit the known results on this. First we explain
a method how to get the equations for the image of a Springer map (which is in practice
too unefficient). We then state the orbit lemma which deals with Springer maps which are
resolutions of singularities of an orbit closure. The images of quiver-graded Springer maps
for Dynkin and tame quivers are known to be the elements in the composition monoid
which are described by results of Wolf and Deng, Du, here you find the quiver-graded
Springer maps. (Apart from some remarks on decomposition classes, they are all known,

cp. citation)

oo Dysiin ool | st
separated orbit 5.2.3 and | | | 5.2.4 and | || 525
decomposition classes 0 777 5.2.5

Y= (M7 ((1)7 SRR (1)))7

M separated

For some type A quiver we can use classical Springer theory for closures of arbitrary

homogeneous decomposition classes.

Q Jordan Kronecker

regular homogeneous orbit Lemma 49 | Lemma 52

homogeneous decomposition class || Lemma 51 | Lemma 53

We would like to understand the situation for arbitrary closures of decomposition classes

but so far we could not find collapsing constructions.
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In this section we will consider algebraic varieties over an algebraically closed field K and

identify the variety as a scheme with its K-valued points.

5.0.1 Explicit equations for the image of the Springer map

Let G be a reductive group with a Borel subgroup B and F' a B-subrepresentation of a
G-representation V. Let B = UT be the Levi decomposition with T the maximal torus
and U the unipotent subgroup and let wg be a representative in Ng(T') C G for the longest
element in the Weyl group Ng(T)/T. We have G = UwoB because the big Bruhat cell
BwyB = UwyB is dense in G. Then, also woUwyB = "°UB is dense in G, it follows

GF = GF =wUF.

But as U and F are affine space, let us say of dimension r and f respectively, one can
use elimination theory to calculate the equations for GF. More precisely, consider the

restriction of the multiplictaion map, let V = K™ it holds

p: PUXxF—V
z = (u,v) = p((u,v)) =t (fi(2),..., [n(x))

Now, consider inside K[A1,..., A, X1,...,Xf,Z1,..., Zy) the ideal

I'=(fi—21, ..., fn— Zn)

To find generators for the ideal J = INK[Zy,. .., Z,] one can use elimination theory: Find
a Grobner basis C for I with respect to a monomial order such that A;, X; are bigger than
Zj foralli,j. Let CNK[Z1,...,Zy) ={q1,...,qm}, then J = (q1,...,¢m), in other words

GF={zc A" | q(z) = = gn(z) = 0}

see | |, Chap.3, 3, Thm 2. Unfortunately, this algorithm is very uneffective. Popov
gives more general algorithms to calculate the equations for GF with G a linear algebraic
group with a G-representation V and F = a + L C V an affine linear subspace, i.e. a

translate of a linear subvector space, cp. | |.

Example. Let 1 &= 2 be the Kronecker quiver, let d := (2,2), we have the G = Glp x Gly-

representation Moyo X Msys. Let us take B C G be the product of invertible lower
0 0

z 0
ideal I in Kla,b, x,y, 211, 212, 221, 222, S11, S12, S21, S22] generated by the coefficients of the

0 0
triangular matrices, take F := {< ) , < O) | 2,y € K}. We look at the following
Y

matrices

) o (le 212 )
221 222 Y

) - (33s)

Now we have to eliminate x, y, a, b, i.e. calculate J = INK|[z11, 212, 221, 222, S11, S12, $21, S22
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First eliminate x,y by substituting x = 221,y = So1, then assume 291 # 0,501 # 0 and

substitute @ = 21 = 311 and b = 22 = 222 {5 gbtain
21 S21 Z21 521

™

J = (Z11222 — 212221, 811822 — 812821, 11521 — 511221, 2225821 — 322221)

5.1 The orbit lemma

As always we assume that all schemes are of finite type over an algebraically closed field. If
we talk about orbits Gv, we always assume that the multiplication map G — Gv,g — gv

is separated.

Definition 15. We call a scheme morphism 7: 7" — S a resolution of singularities of
S if T is smooth, 7 is projective, dominant and there is U C S open and dense such that

the restriction 771(U) — U is an isomorphism.
This lemma is a generalization of | |, thm. 5.32.

Lemma 38. Let G be a connected algebraic group, P C G a closed subgroup, V a G-variety
with a smooth P-subvariety F'. Assume GF CV has a dense G-orbit O. Then, the fibres

of m: G xP' F — GF, (g, f) — gf over O are smooth, pairwise isomorphic, irreducible of

dimension dim G x¥ F — dim O.

Proof: There is an open subset U C GF such that U C O, let U’ = |

G-invariant subset contained in @, so @ = U’ is open in GF. As G x? F is smooth and

gec 9U be an open
irreducible, it follows, 7~1(O) is open, irreducible of dimension dim G x” F and smooth.
Then for v € O the fibre 7~!(v) is smooth, irreducible of dimension dim G x¥ F — dim O
because 7 1(0) = G xS2b() 7=1(y), O

Lemma 39. (Orbit lemma) Let G be a connected reductive group, P C G a parabolic
subgroup, V a G-variety with a closed irreducible smooth P-subvariety F'. Fix v € V and
denote by O C 'V its G-orbit. The following are equivalent

(1) The collapsing map 7: G xT' F — GF, (g, f) = gf is a resolution of singularities
for O (i.e. GxT F irreducible, smooth, GF = O, 7 is projective and an isomorphism
over Q).

(2) 71 (v) # 0 and dim G x F = dim O.

Proof: Clearly (1) implies (2). So, assume (2) holds. We already now that 7 is projective
and G x¥ F smooth and irreducible. By assumption it holds @ C GF. This implies
dim O < dim GF < dim G x? F and by assumption all are equalities. It follows GF = O
and dimGF = dim G x” F. By the previous lemma we know that the fibres over the
open O C GF are smooth, irreducible and zero-dimensional again. So, the morphism is
generically etale, i.e. it induces a finite separable field extension on function fields. But as
the fibres are connected over an open set, the field extension has to have degree zero and

7 1s birational. O
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5.2 Quiver-graded Springer maps

The images of complete quiver-graded Springer maps carry a monoid structure, we call

this the generic composition monoid, in the following we review the known results on it.

A short reminder on quiver-graded Springer maps. Let Q = (Qp, Q1) be a finite
quiver and d = (0 = d° d%,...,d" =: d) be a sequence of dF e NOQO, 0<k<v. We
associate a 4-tuple (G, P,V, F) as follows.

* G =Gly = []icq, Gly; and let P = P(d) := [[;co, P(d}) where P(d;) C Glg, is a
standard parabolic stabilizing a flag U of dim df = (0,d},...,d" = d;), i € Qo.

* V= Rq(d) = [[isjeq, Mat q;xq; with G operates by conjugation and F' = {f =
(fa)a:imsj € Rq(d) | f.(UX) C U}‘, 1 <k < v} is a P-subrepresentation.

The collapsing map of the associated fibre bundle 7: RF(d) := G x' F =V, (g, f) — gf
is called a quiver-graded Springer map.

Also, we use the following conventions: We define the Euler form for d,e € Z20 as

(de):=> dies— Y die; €L

i€Qo (i=J)e:

For M, N two finite dimensional K@-modules we write
[M, N := dimg Homgq(M,N), [M,N]":=dimg Extpo(M,N).

5.2.1 The generic composition monoid

We recall Reineke’s definition of the composition monoid.

Definition 16. Let @ be a finite quiver, let d, e € N(?O and X C Rq(d) a Glg-equivariant
subset and Y C Rq(e) a Gle-invariant subset, we define

X*Y:={MecRq(d+e)|Ises0—y—-M-x—0, withy € Y,x € X}

If X,Y are additionally closed in Rq(d), Rq(e) respectively and irreducible, then X Y is
closed in Rq(d+e), irreducible and Glg.-equivariant. This defines an associative product

on

M=M(Q) := U {X CRq(d) | X Gl4q — equivariant, closed, irreducible }.
deNgo

We write d for the element Rq(d) € M(Q), the unit is given by 1 := 0 € N(?O. For a
KQ-module M we write [M] := Oy € M(Q). For i € Qg let E; be the simple module
supported at 7 and all maps are zero, for these modules we leave out the brackets, we write

E; := O, € M(Q), sometimes we write e; := dim E; for the same element.
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One can now look at the submonoid CM(Q) generated by the simple modules without

self-extensions.

Theorem 5.2.1. (/ ]) Let charK = 0. Let X C Rq(d),Y C Rql(e) be closed irre-

ducible subvarieties, X Glg-equivariant, Y Gle-equivariant. Then
codim X + codimY — (e,d)kg < codimX xY < codimX + codimY + [V, X]1

where [Y, X' = min{[y,z]! | z € X,y € Y}. If[X,Y]'! =0, or X = Rg(d) and
Y = Rql(e), the second inequality is equality.
If1Y, X] :=min{ly,z| |y € Y,z € X} =0, then the first inequality is equality.

By definition quiver loci are precisely the products of elements of the form d € M(Q)
with d € NOQO, more precisely for a dimension filtration d = (d°,...,d") it holds

Glng: (du_dzzfl) **(d2 _dl)*dl-

For acyclic quivers it holds d € CM(Q) for all d € NOQO. More precisely, let us call a repre-
sentation M nilpotent, if there is an N > 2 such that for all sequences (a1, -+ ,ay) € Q¥
with start point of «; is the end point of a;—1, 2 < i < N, it holds M, M, -+ My, =0.

Now, the elements of the composition monoid for ) an oriented cycle, of Dynkin or

N—1"

extended Dynkin type are described by the next result (of Stefan Wolf). We need some
knowledge on the AR-quiver of an extended Dynkin quiver Q.

For an extended Dynkin quiver (), there exist a unique § € N(?O which is minimal such
that (9,0) = 0. For a KQ-module M we call the value 6(M) := (§,dim M) the defect of
M.

A (finite-dimensional) indecomposable K @Q-module M is either preprojective if 6(M) <
0, preinjective if 6(M) > 0 or regular if (M) = 0. So each module M can be written as
M = Mp & Mpr & M. The full subcategory of regular modules (i.e. objects are modules
M with Mp = 0 = Mj) is an abelian category that breaks into a direct sum R(«) with
a € PY(K). We say that R(a) is homogeneous if the category has only one simple, else
we say it is inhomogeneous. There are at most three points o € P'(K) such that R(«)
is inhomogeneous, let H C P'(K) be their complement.

For o € H and t € N there is a unique indecomposable module U(a,t) in R(«) such that
its length is ¢ (here length is the length of a filtration in R(«) with simple subquotients). A
partition A = (A > Ao > --- > A, > 0) of n is a sequence of r decreasing positive integers
Ai such that [A\| = >27_, \; = n. A Segre symbol o = (A1), ..., A®) of n is sequence of
partitions A = ()\(f) > )\éi) > ... > )\7("? > 0) such that (‘)\(1)‘ > ‘)\(2)| > ... > ‘)\(5)’)
is a partition of n. A decomposition symbol v = (M,0) is a pair with M is (the
isomorphism class of) a module without homogeneous direct summands and o is a Segre
symbol. The decomposition class D(v) to a decomposition symbol 7 consists of all

modules N such that there exists a,...,as € H pairwise different elements such that IV
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it is isomorphic to Lo
Me@P ).
i=1 j=1
We will consider D(y) C Rq(d) for the appropriate choice of a dimension vector. Bongartz
and Dudek prove in | |, thm 1, that the various decomposition classes in Rg(d) form
a stratification into irreducible smooth Glg-invariant that have smooth rational geometric

quotients.

Remark. Let v = (M =P ® L @ I,0) be a decomposition symbol with P preprojective,
I preinjective and L inhomogeneous regular. Using that certain extension groups vanish it
holds D(y) = Opgr+*D((0,0))*Or . We use Reineke’s theorem above (the first inequality
is equality). Let d = dim(P & L), D((0,0)) C Rg(e),dimI = f we get

codim D(y) = [P@® L, P & L]' + codim D((0,0)) + [I,I]* — (d,e) — (d, ) — ([, ).

If o =((1),(1),...,(1)), then codim D((0,0)) = 0.
T e
Now, in an inhomogeneous R = R(«) we have have Ey,...,E,_1, n > 1 pairwise
orthogonal simple modules, we calculate in the indices modulo n, i.e. for m = gn +r,r €

{0...,n — 1} we set E, := E,. Each indecomposable module in R has the form E;[/] for
onei € {l,...,n},L€ NOQO it is unquely characterized by a filtration

with E;[s+1]/E;[s] & E;+s for 0 < s < £—1. We have a bijection between the isomorphism

classes of objects in R and the set
0= {r:= @O, ..., 7Dy | z0) = (7r§j) > W,gjj)) partition, 0 < j <n — 1},

given by 7™ — E[n] := @?:_01 @:le E; [7ri(j)]. We call an element M = E[r], 7 € II sep-
arated if for each £k > 0 there is an ji € {0,...,n — 1} such that 7r§j’“) # k for all

1€ {1,.. . ,tjk}.
We call a regular module separated if it is a direct sum of separated modules (for possibly

different inhomogeneous tubes).

Theorem 5.2.2. (1) Let Q be an oriented cycle of type A, (with n + 1 vertices). Then

CM(Q)={[M]| M eRqg(d),de NOQO,M nilpotent and separated }.

(2) Let Q be of Dynkin type. Then

CM(Q) ={[M]| M € Rq(d),d € N§"}.
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(8) Let Q be of extended Dynkin type and acyclic and ¢ is the dimension vector of one

(and all) simple regqular representation. Then

CM(Q) = {D() | v = (M, = ((1),(1),..., (1)), Mg separated, ¢ € N3°)}.

{—times

Proof: (1) and (2): It is wellknown that for each dimension vector d € N(? ¢ there are only
finitely Glg-orbits of nilpotent elements in Rq(d) (in (2) all representations are nilpotent).
Therefore each closed irreducible Glg-equivariant subset is the closure of an orbit. Now, it
is a result of Deng and Du, cp. | |, that the orbit closures of separated elements are
precisely the orbit closures. (3) In | |, corollary 4.29. Stefan Wolf proved that each
element of the composition monoid can be written as @ pgr*8**«O; with P preprojective, L
inhomogeneous regular, I preinjective. The description as the closure of the decomposition
class follows easy from remark 5.2.1. The claim that Mg has to be separated follows from

the normal form from Stefan Wolf, see | |. O

Remark. Let @ be an extended Dynkin quiver.

a) Closures of decomposition classes D(vy) with
v=(M,o=((1),(1),...,(1)), Mg separated are unions of decomposition classes.
—_—

{—times

To see this: Observe that if D(y) N GlgFg # 0 then D(y) C GlgFg4. Set v/ < v if

D(y)ND(v) # 0. If D(v) = GlgFy, then U, ., D(7') C D(v) and clearly the other

inclusion holds.

b) Let d = (d°,...,d" = d), d* € N$°,d¥ < d**', then GlyFyg is a union of decomposi-
tion classes and a closure of one.
To see this: Let d’ run through all complete dimension filtrations such that d can

be obtained by d’ by omitting some elements in the sequence, then

Ql
because every decreasing filtration of modules 0 C M} C --- C M, = M can be

refined to a composition series. Then use remark a).

Questions: Let @ be a Dynkin or extended Dynkin quiver and given an element in
CM(Q), how do we find a dimension filtration d such that the orbit closure / closure of
decomposition class is dense? Can we find one such that the Springer map Glg x Fa Fq —

G F4 has nice properties, i.e. generically finite or even a resolution of singularities?

5.2.2 When is the quiver-graded Springer map a resolution of singular-

ities of an orbit closure?

We use the orbit lemma to find answers for Dynkin and extended Dynkin quivers. In the

end of this subsection, we also look at the quiver-graded Springer maps with closures of
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decomposition classes as the image.

Remark. Let M € Rq(d)(K) and d = (0,d",...,d" =: d) with d* € N9°,d¥ < @,
Then, obviously GlgFg = Oy if and only if the following two conditions hold

(i) Flg(y) #0.
(i) [M, M]' = codim(d” — d* ") % --- % (d*> — d") * d".

For both statements there are (partial) earlier results which one can apply for Dynkin

quivers, more generally for preprojective or preinjective modules.

ad (i) In | | Stefan Wolf introduced reflection functors in the setting of quiver flags
and used them to give for a preprojective representation M an equivalent purely
combinatorial condition for Flq (]g) # 0 (see Cor. 6.22 in [ |), we recall his
result. After the choice of an adn:issible ordering (ai,...,ay) of Qo one can define
the Coxeter-transform C*. Take r € Ny such that (CT)"M = 0. Let d be a filtration

of dim M. Then, Flg (]\j) # () if and only if the following two condition are fulfilled.

1) (C+)d =0,

2) For every intermediate sequence w of admissible sinks, S;’d is a filtration of
dim S;f M where S is a composition of reflection functors (for details see loc.

cit).

ad (ii) In | | Markus Reineke gives a formula to calculate codimensions of products in
the composition monoid, in general that is difficult. In the special case of two factors
([Rei02] Thm 2.7), d, e € N$°

codimd * e = e, d]",
there is an algorithm to calculate [e, d]! := [Rq(e), Rq(d)]! (I do not know where to
find this in the literature).

Let us recall what the orbit lemma for the quiver-graded Springer maps says.

Lemma 40. (a) (cp. | [, thm. 5.82) Assume that GlgFq = Oy, Then, the quiver
flag varieties Flg (ﬁ]) with N € Op(K) are pairwise isomorphic smooth and irre-

ducible of dimension

dim RF(d) — dim Rg(d) + [M, M]".

(b) Let M € Rq(d)(K) and d a filtration of d. Then, it holds m: RF(d) — GlgFg is
a resolution of singularities of Oyr if and only if the following two conditions are

Fulfilled:

(D1) Flo(y) #0;

(D2) [M,M]' = dimRq(d) — dim RF(d)
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It follows [M,M]' = codim(d” — d*™1) % --- % (d> — d*) * d* and the restriction
7 Y On) — Onr is an isomorphism.

The condition (D2) is equivalent to

v v—1
[M, M] = (d, Q>KQ®KAV+1 = Z<dk7dk>KQ _ Z(dk7dk+1>KQ
k=0 k=0

which is often easter to check. When Q is without oriented cycles the right hand side
defines the Tits form for the algebra KQ ® CA,11 (cp. [ [, Appendiz).

Remark. Take a sequence of submodules 0 = Ny C Ny C --- C N, = M of dimension
vector d and define M,,_ := N1 /Ny, M' := M1 & --- & M,,. We have

(M7, M= T [My, My ) [My, M)

k<l k>l
v—1 v—I v—I
- Z[Z (Z dim; M) dim; M; — Z (Z dim; Mj4;) dim; M;]
=1 i€Qo k=1 (i—)€Qr k=1
v—1
= [My, M)+ My, M) = (d AT - d
k<l k>l =1
= (M, Mi)' + > [ My, Mi] + (d, d) — (d, d)
k<l k>l

= [My, M;]" + ) "[My, My] — (dim Rg(d) — dimRF(d))
k<l k>l

So we can replace (D2) by:

(D2)" There is a filtration of M of dimension d such that for the associated direct sum of

subquotients M’ :

(M7, M) — (MM = (M, M)+ > [M, M),
k<l k>l

Definition 17. Let M € Rq(d)(K) and d a filtration of d = dim M. Then we call (M, d)
a resolution pair if (D1) and (D2) are fulfilled. We call a resolution pair (M,d) split if
there is a filtration of M of dimension d such that [M, M]' = [M’, M']', where M’ is the

associated direct sum of subquotients.

From the previous remark, we get the following which is inspired by Reineke’s obser-

vation in | |, Lemma 2.3.

Lemma 41. Let M € Rq(d)(K),d a filtration of dim M. The following are equivalent:
(i) (M,d) is a split resolution pair.
(ii) There is a direct sum decomposition M = M; & Ms @ --- & M, with

o dimM, j,=d" —d*" 0<k<v-—1,
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o Vk < 1:[My,M]' =0, Vk > 1: [My, M;] = 0.

In this case, we say that M has a directed decomposition.

5.2.3 Resolution pairs for Dynkin quivers

Reineke gave a method in | |, how to find such decompositions. Assume that @ is a
quiver, M a K@-module. Then the indecomposable nonzero direct summands (without
multiplicities) are contained in a finite subset Rys of the Auslander Reiten quiver of KQ.
We assume, one can find a directed partition I, = (I1,...,I;) of Ry = Uj_; L1, i.e. it
holds

(dP1) Vt, XY € I;: [X,Y]' = 0.
(dP2) Vt <u, X € I,Y € I,: [V, X] =0 = [X,Y]..

For M € Rq(d)(K) we have a decomposition M = P, o, Dxcy, XX with ax € No.
Define M; := @Xelt XX then M = My @& My @ --- & M, gives an example of a directed
decomposition.

If M is a directing module, it is always possible to find such an Ryy.

In particular for any preprojective or preinjective module M there is a filtration d (de-
pending on M), such that (M,d) is a split resolution pair, where we take rigid modules as
their own directed decomposition.

Also one can use Reineke’s result 5.2.1 to find resolution pairs, as follows.

Lemma 42. Let Q be a finite quiver, K an algebraically closed field of characteristic zero.
Assume it holds [M] = E;™ - x E;! with pairwise different i1, ... im € Qo, then

m
(M,d = (0,r1€5,, 7164, + T2€59, - ., Z rjeij))

1s a resolution pair.

Proof: It holds

m k m—1 k k+1
<Q7Q>: E ZT €ijs § Tezj E Zr €i;), T61]>
k=1 j=1 Jj=1 k=1 j=1 j=1
m—1 k
=[M,M] - g T5€i;s Th1€ijyy)

k=1 j=1

therefore (d,d) = [M, M] if and only if codim Oy = [M, M]! = — D o1<jck<m Ti€i;s ThEiy )

. . T . . . . .
Now, it holds [E[*¥, El™ x --- % E.*"] = 0 because the vertices i1,...,%, are pairwise
k im k41
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different. We can apply the first equality in 5.2.1 successively

NE

D . . ro ' ‘
codim Oy = codim E;™ - -+« B2 — (rie;,, Tk€iy)

£
I

2

NE

m
_ . T T3 . . . .
= codim Ej™ % - - % B — (ro€iy, rrei,) — (r1€i;, g Tk€iy)
k=2

k=3
m—1 m
— .. = — E <rj6i]'7 ’I"keik> = — g <Tj6ijarke’ik>
j=1 k=2 1<j<k<m

5.2.4 Resolution pairs for the oriented cycle

For this subsubsection we assume @ is the following quiver

1——>2

i

n—1=—"

n =

The Auslander-Reiten quiver of the nilpotent representations of @) is a tube of rank n, the
simples are Fy, ..., F,_1, we will calculate modulo n in the vertices, i.e. Qo = Z/n. For
i € Z/n and ¢ € N we denote by E;[¢] the unique indecomposable with length [ and socle
E;. 1t holds [E;, E;11]' = 1 and topE;[f] = E;_sy1. Then we can easily find resolution
pairs for E;[/].

Example. Let E1,..., E, be the simple modules in the mouth of a tube of rank n > 2
(for KQ with @ extended Dynkin quiver and K algebraically closed). Let E;[¢] be the

unique indecomposable regular module with a filtration
0= E;[0] C E; = E;[1] C E;[2] C -+ C E;[{]
with E;[s + 1]/ E;[s] 2 Ej1s for 0 < s < ¢ — 1. Then,
(E5[{], d = (dim E;[0], dim E;[1],.. ., dim E;[{]))

is a resolution pair that is not split. We check condition (D2). It holds

which can be seen by looking at nonzero path from FE;[l] to itself in the Auslander-Reiten

156



quiver of the tube. It also holds

¢ l—1
(d,d) = (dim E;[s], dim E;[s]) — > _(dim E;[s], dim E;[s + 1)
s=0 s=0
/—1
= (dim E;[¢], dim E;[¢]) — > (dim Ej[s], dim E; )
s=0
1-1
=1+|—]

to see the last equality use the following

1 ,£#0modn
(dim E;[/¢], dim E;[(]) = ;
0 ,£=0modn

-1 ,s=n—1modn
(dim E;[s], dim E; ) =
0 ,sZn—1modn

see | ], 3.1, p.119. Therefore (D2) holds.

Remember, that we associated to a sequence m = (7r(0), e ,W(”*l)) with (0 = (7T§i) >
ng) > > 77( )) partitions a module M (r) := @I~ @i_, [ 7). Now, we define the

submodule of top = F; summands as

Mim):= @ B

(k) =it -1

Furthermore let A(?) := ()\(i) > )\(i) > Ag?) be the partition obtained from a reordering
the sequence (7 U), cj=i +7r(j) 1).

If there exists r; ;= max{k | /\,8 > )\SHI)}, write M(m) = L ® Dy« £

(1)
. i A 5 th
i Ay ], then

[M(m)] = EF « [Lo P EFAS)A[)\,(;) —1)] e M(@Q)

k<r;

this follows from | |, Prop. 3.7 directly. According to loc. cit., thm 4.1, for every
separated M (7) there exist i1,...,4, € Z/n and r; € N such that [M(7)] = E;™ *---* E}!
obtained by the method from before. But then by loc. cit. , thm 5.5, there is a unique flag

0CM1C"'CMm71CMm:M(7T)

such that M;/M;_; = E;?, 1 < j < m. This together with the factorization of [M ()]
imply that

m
(M(m),d = (0,71€4,, 7164, + 72645, . - ,ZT]%
7j=1

is a resolution pair. A priori this produces a lot of resolution pairs for M (), if we take

in every step of the factorization the minimal i € {0,...,n} such that r; exists, then we
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can produce an algorithm to get a uniquely determined dimension filtration for M (x). Of
course this works as well for any inhomogeneous tube of rank n, but then the F; are simples

in the mouth and not equal to the simples indexed by the vertices of the quiver.

Example. n = 3 and 7 = (70 = (1,1),7() = (3),7®) = (2,1)), this means M(7) =
E2® E1[3]® E2[2]® Fy. The partitions at the tops are A0 = (1,1), A1) = (2), \®) = (3,1).
We find 75 = 1, i.e. we replace E1[3] by E1[2],

M(ﬂ-) = Ey * M((lv 1)’ (2)7 (27 1))

Then, the sequence of tops for M((1,1),(2),(2,1)) is A© = (2,1,1), AN = (2), A& = (1),
we find r; = 1, i.e. we replace E3[2] by Eq,

M(n) = By * Ey + M((1,1), (1), (2, 1)).

The sequence of tops for M((1,1),(1),(2,1)) is A = (2,1,1), A1) = ¢, A®) = (1,1), we
find 7o = 3 and replace F1[2] ® E2 by F; and

M(7) = Ey % Ey x Eg + M(0, (1), (1,1)).

The sequence of tops of M (), (1), (1,1)) is A® = ¢, XD = (1), \®) = (1,1), we find 7y = 2
and
M () = Ey x Ey % E « B2 x Ey.

and (M(m),d = (0, e1, e1+2e2, e1+2e3+3eq, 2e1 +2e2+3eq, 2e1 +3e2+3¢ep)) is a resolution

pair.

5.2.5 Resolution pairs for extended Dynkin quivers

We define two additions for dimension filtrations d = (0 = d,db, ... d" = d),

e=(0=¢¢el,... et =t¢)

(dd' ... & & el d ) v

[oF
+

[0}
I

(et .. etV et vt 4 gt et +dY) v<p

(d07d17" * 7du7dy +Q17' * '7d’j _"_giu’)

[oF
S

|
Il

Observe Gld+§FQ@§ = GIQFQ * GIQFQ.
Lemma 43. Assume (M,d),(N,e) are resolution pairs.

(1) Then (M@ N,d+e) is a resolution pair if and only if (d, e)+(e,d) = [M, N|+[N, M]
(see corollary 40). In particular, (M®",nd = (nd’,nd',...,nd")), n € N are also

resolution pairs.

(2) Then (M @ N,d @ e) is a resolution pair if and only if [M,N] = 0= [N, M]'.
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Proof: It holds [M & N,M @& N] = (d,d) + (e,e) + [M, N] + [N, M].
For (1) just use (d+e,d+e) = (d,d) + (e,e) + (d,e) + (e,d) and the claim follows from

lemma 40.
For (2) use (d@e,d®e) = (d,d) + (e, e) + (e, d") kg and the claim follows from lemma
40. O

As a special case of the previous lemma one obtains: Let M, N K(@Q-modules and assume
[M,N]=0=[N,M]" andlet M = My &---& M,,N = Ny & --- & N, directed decom-
positions. Then, the decomposition N M = N1 @ --- @ N, ® My @ --- & M, is directed

again.

Corollary 5.2.2.1. Let Q be an acyclic extended Dynkin quiver and let M = P® LD 1
with P preprojective, 1 preinjective and L regular inhomogeneous separated. Then, by
subsection 5.2.3 we find dimension filtrations dp and d; such that (P,dp) and (I,d;) are
resolution pairs. By subsection 5.2.4 we find a dimension filtration d; such that (L,d;) is
a resolution pair.

It holds [I,L] = 0 = [L,[]},[L® I,P] = 0 = [P,L @ I]' and then by lemma {3 we get
(M,(d; ®dy) ®dp) is a resolution pair.

What about decomposition classes?

Example. Let Q be an extended Dynkin quiver and § € N(?O the dimension vector of one
(and all) regular simple modules. It is easy to find a nice Springer map for the closure of
the decomposition class D(v) with v = (0,0 = ((1),...,(1))). Set d = (0,9,...,40 =: d),
then mq: Glg x4 Fy — D(y) = GlgFy restricts over D(v) to a Sp-Galois covering.

(proof: It holds D(v) is dense in Rg(d) and obviously every element in D(7) has a filtration
of submodules of dimension d, therefore D(v) = Gl Fy. Now, every element in D(vy) is a
direct sum of £ regular simple modules of dimension vector §, it has the obvious ¢-points
in the fibre which are given by leaving out one of the direct summands in each step. We
need to see that there is no preprojective submodule of dimension r§, 1 < r < ¢ — 1, but

such a submodule would have defect zero, therefore all its direct summands have defect

zero and have to be regular. )

Lemma 44. Letd = (0 = &,....d" = d),e:=(0=2¢"...,e" =:¢e) be two dimension
filtrations. If mq: Gly xPa Fy — GlgFy,me: Gl xTe Fy — Gl Fe are generically quasi-
finite (i.e. over an open subset the fibres are finite sets) and [GlgFg, GleFe| = 0, then

Tdoe: Glate x Faze Fage — GlateFaae 15 also generically quasi-finite.
Proof: The assumption of generically quasi-finiteness gives
dimRq(d) — dim RF = codim Gl4Fq4, dim Rg(e) — dim RF(e) = codim GleFe
and the assumption [GlgFg, GlcFe] = 0 implies by Reineke’s result in 5.2.1 that
codim Glgi . Fagpe = codim GlgFg + codim Gl Fe — (d, €).
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Then we have

dimRq(d+¢) —dimRF(d®©e) = —(d+e,d+e)kg+(dde dde)
=—(d, d)kq +(d,d) — (e,e)kq + (&,€) — (d, &) kQ
= (dimRq(d) — dimRF(d)) + (dimRq(e) — dimRF(e)) — (d, e)kq

= codim Glg;Faae

implying dim RF(d & e) = dim Glgy.Fame which gives mgae is generically finite. O

Corollary 5.2.2.2. Let Q be an extended Dynkin quiver. Lety = (M,o = ((1),(1),...,(1))
with Mg separated be a decomposition symbol. Then, there exists a dimension filtration d

such that mq: Gly xfa Fy — GlyFy = D(y) is finite over D(y).

Proof: The existence of a dimension filtration d such that mq is quasi-finite over D(v) is
an immediate consequence, therefore it is enough to prove that the morphism is projective
over D(v). F := FqND(y) is a closed Pg-equivariant subset of D(v), this implies that the
collapsing map Gl xF¢ F — GI4F = D(y) is projective but it is also clear that it is just
the restriction of mq over D(v). O
This finishes our investigation of quiver-graded Springer theory in this chapter.
If we want to find resolutions of singularities for closures of decomposition classes, we need
different set-ups, let us start with the easiest ones which are the well-studied Segre classes.
As in most of this subsection, we restrict to the case that the reductive group is a (Levi
subgroup in a) general linear group. Before we start we need a technical tool, the tube

polynomial.

5.3 Springer maps for homogeneous decomposition classes

5.3.1 Tube polynomials

Let Q be an affine quiver (i.e. of type A, D or E) and K an algebraically closed field. We
write K[Rq(d)] for the ring of regular functions on the affine space Rq(d), recall that this is
d;d; variables). We call a polynomial ¢t € (K[Rq(d)])[S, T]

a polynomial ring (in 3, .o,

tube polynomial if
(T1) for any not regular homogeneous module M € Rq(d)(K) it holds ¢y = 0 € K[S, T,

(T2) for a regu}ar homogeneous module M=@_ (D, Ua [)\éi)]), where o = [s; : t;] €
PYK), )\E-Z) € Nand U,, [)\;Z)] is the indecomposable module in the tube 7, of length
A% it holds
z NG
tv = Ccp H(SiT - tiS)Zjil A € K[S, T]
i=1

for some cjr € K\ {0}.

If a tube polynomial ¢ exists, then tj; (i.e. the evaluation as M) is unique up to multipli-

cation by a constant cpr € K \ {0} for all M € Rq(d)(K), we usually speak of the tube
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polynomial for M. This is inspired by the following example.

Example. Let @ be the 1-loop (or Jordan) quiver. Every module is regular homogeneous
and K = {[z : 1] € PY(K) | z € K} as the parametrizing set for the tubes, i.e. the
isomorphism class is given by Uj,.q[n] = 2 Ey+J, € My (K) where J,, = (0,e1,€2,...,€n-1)
with eyq,...,e, the standard (or any) basis in K. Then, for M € Rq(d)(K) = Mg(K)
we set tyy := det(MT — E,S) € K[S,T), using that ty; = tgyrg-1 for all S € Gl and
then looking at the Jordan normal form of M gives that this function ¢t € K[Rq(d)][S, T]
defines a tube polynomial. (In the affine chart {T" = 1} the characteristic polynomial is a

tube polynomial.)
Recall the following

Remark. Let Q be a quiver of type A, i.e. a cyclic quiver with m+ 1 vertices and p > 0
arrows in one direction and ¢ > 1 in the other direction, p < q. The homogeneous tubes

are parametrized by the following sets
(0) If m = 0 (Jordan quiver) by Hg :=P1(K) \ {[0: 1]}.
(la) If m =1 and Q the Kronecker quiver by Hg := P}(K),
(1b) If m = 1 and Q the oriented cycle by Hg :=P(K)\ {[0: 1],[1: 0]}
(2a) If m > 2 and p=1 by Hg :=PL(K)\ {[0: 1]},
(2b) If m > 2 and p > 2 or p =0 by Hg := P}(K)\ {[0: 1],[1:0]}.

Recall that the adjoint matrix for A € M, (K) is a matrix A* € M, (K) with AA® =
A®A = det(A)E,.

Lemma 45. Let QQ be a quiver of type Ay, m > 1, and p > 0 arrows in one direction
and q > 1 in the other direction, p < q. We number the vertices clockwise (by Z/(m+1)).
If m > 2 and M € Rq(d)(K), we write M; j = M;; for the linear map associated to the
arrow between two neighboring points i and j. We set e: Z/(m + 1) — {1,a}

. 1, ift— i+ 1 is clockwise,
e(i) ==

a , if i+ 1 — i is counterclockwise.

The following define tube polynomials for the given @ and d.

(1) Form =1, d= (n,n), for M = (L, R) € Rq(d)(K) = My (K) x My(K) we set

det(LT — RS), if Q is Kronecker,

ty =
det(LR)det(LRT — S), if Q is an oriented cycle,

(2a) If m > 2,p =1 wlog let 1 — 2 be the arrow with opposite orientation to the other(s)

andd = (n+ec,n+c,n,...,n) for somen € N, c € Ny, where
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CM = det(MLQ) det(M1’m+1Mﬁ2M3’2M473 e Mm+17m)
tav = cydet(MzaMys - Myt mMimi1 T — My 2S)

(2b) Form>2p>2d=(n,n...,n)

CM = H det Mi,i+1
it e(i)=1

tar 1= ear det (M VM MEST — (T det Migia) BaS)

m bl
i:e(i)=a

These are the all dimension vectors of regular homogeneous modules for quivers of type

Ap,.

Proof:
(la) Let @ be the Kronecker quiver 1 = 2. First, recall that for every r € Ny there

exists up to isomorphism one preprojective indecomposable module P, of dimension

(r41,7) and one preinjective indecomposable module I, of dimension (r,r+1) given

by
Pri= (L= (B 0).R = (0 E)), L :=(<ir>,<£>)~

For any r € N there are isomorphism classes of regular indecomposables of dimension
(r,r) given by
('rET + JT’ yE’f‘)? y # O

U[z:y] [T’] =
(zEr, Jr), y=0

where J, = (0,e1,¢€2,...,e,—1) € M,(K) and [z : y] € PL(K).

(T2) If (L, R) is regular, then it is isomorphic to a module of the form (L', R’) €
By = B, (K) x By, (K) and clearly t7, g = t;/ r is a homogeneous polynomial of
degree n.

(T1) Assume (L, R) is not regular, i.e. it has at least one indecomposable preprojec-
tive direct summand (and also a preinjective one for dimension reason). Wlog we
assume L = (LOT Y)., R=( o V) we get LT — RS = (TETESJT —%’er TX(ESY).
Then, in the ring M, (K (S,T)) where K(S,T) is the quotient field of KIS, T
multiply the whole matrix by %, then apply the following column operations:

2

2 _times the r-th to the r + 1-th, 2;-times the (r — 1)-th to the (r + 1)-th,...,
%—times the first to the (r 4+ 1)-th. The result is a matrix with the r + 1-th
column is zero, therefore det(LT — RS) = 0 in M, (K (S,T)), but then it is also

zero in the subring M, (K[S,T]).
(Ib) Now, let @ be the oriented cycle with two vertices.

(T1) A module (L, R) is regular regular homogeneous if and only if
(L,R) € Gl,,(K) x Gl,,(K). Therefore (T1) holds.
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(T2)

(2a) (T2)

(T1)

(2b) (T1)

(T2)

If (L, R) is homogeneous regular, then it is isomorphic to a module (£, A) with
A € B, it follows that t;; is homogeneous of degree n. The zeroes are the

supporting tubes.

If M is regular homogeneous it is isomorphic to one of the form with M =
A
En+CaM3,2 = (O) € M(7L+c)><n(K)7M4,3 = Eru CR) Mm7m—1 = Eanm+1,m =

Epy My (s1) = (Ea 0) € Myy(nio(K), for some A € B, with diagonal
entries (S1,...,51,52,...,82,...,8p,...,5;). Then
S— —— ——

ni ng Ny

tyr = det(A)det((49) T — EngeS) = (—1)°5° det (AT — E,S)

= [(=1)°det(A)]S° [ [ (s:T — S)™,

i=1
this shows (T2).

Let M be not regular homogeneous and assume ¢y; # 0, then

Mo, M3o,..., Mpyi1m, Mims+1 and Ml’m_l,_lMﬁQMg’Q are invertible matrices.
In particular, it implies that we get a submodule N of dimension vector
(n,...,n) which is homogeneous regular supported on tubes {[1:s;] | 1 < i <
r,s; € K\ {0}}. The quotient M/N is regular homogeneous supported in {[0 :
1]}, as there is no extension between the different tubes, we get M = N & M /N

is regular homogeneous. This shows (T1).

A module is regular homogeneous if and only if all matrices M; ;41 are invertible.
This implies (T1). If M;;1, is not invertible, then M, is not invertible

and it follows by definition that 3y = 0 for all modules which are not regular

homogeneous.

Now, assume M is regular homogeneous, as all matrices M; ;11 are invertible.
We see that for all M’ = M there is a ¢ € K \ {0} such that ty; = ctpp
for an ¢ € K\ {0}. We can assume wlog M2 = A € B,, M, = E,, for all
a#2—1,a#1— 2and we have )y = det(A)det(AT — E,S) and we see
that (T2) is fulfilled.

Tube polynomials for arbitrary tame quivers.

This paragraph is roughly due to oral communication by M. Reineke (on 10th of December

2012).

Let @ be a quiver, d € NQO, A = KQ. We recall from | |, for every N € Rq(d) we

have a standard resolution by projective modules given by

0— GB A€j®K€iN—>@A€i®K€iN—>N—>O
(i—7)€Q1 1€Qo
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We can apply the functor (—, M) = Homgq(—, M) and obtain a four term exact sequence

of finite dimensional K-vector spaces

ON, M
=

0= (N, M)~ | @ Ae; @k eiN, M
1€Qo

@ Aej @k e;N,M | — (N, M)' =0
(i—7)E@

If (dimN,dimM) := [N, M] — [N, ]\4]1 = 0, we consider ¢ s as a vector space endomor-
phism of a, let us say, r-dimensional vector space.

Now, assume @Q is a tame quiver and N = U, t][l] is a simple regular homogeneous
module in a tube parametrized by [s: t] € P1(K), up to isomorphism N is the only mod-
ule with this property. For M regular homogeneous module supported on a single tube
parametrized by [s': t/] # [s: ], then it holds [N, M] = [N, M]" = 0, which means ¢y s is
an isomorphism.

Now we replace [s: t] in N by the indeterminants S and 7', then
(I)(S, T) = (;5]\/7,: RQ(Q) — Mr(K[S,T]), M — QZ)N,M'

Since det ®(5,T) is a polynomial map Rq(d) — KIS, T|, we can see the coefficients of the
polynomial as regular functions, so det®(S,T") € (K[Rq(d)])[S, T], we write

det®p;(S,T) := det ¢ ar. It is clear that det®y,(S,T') is a homogeneous polynomial in
S,T.

Lemma 46. Let QQ be a tame quiver and let n € NOQO be with (n,n) =0, let
t:=c-det(®(5, 1)) € (K[Rq(d)])[S, T

where ¢ € K[Rq(d)] given by ey = [ e, [1;.7det (Na)1,s) where for a:i — j the
sets I C {1,...n;},J C {1,...n;} with #I = max(0,n; — n;),#J = max(0,n; —n;) and
(Mq)1,7 is the minor matriz of M, given by deleting the rows in I and the columns in J.

Then, t is a tube polynomial for Q and n.

Proof:

(T1) If M has a regular inhomogeneous summand, it holds ¢y; = 0 (this can be seen case
by case). We claim: If M is a direct sum of preprojectives and or preinjectives,
then det®,,(S,7") = 0. Equivalently, there exist an infinite set of [s: ¢] such that
[N, M] + [N, M]' > 0 where N is the simple regular homogeneous module N in the
tube parametrized by [s: t].

It is enough to see that indecomposable preinjective or indecomposable preprojective
M fullfill it.
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Assume M = Ae;, we know dime; M = n; # 0, then since the standard resolution
is a minimal we conclude [M, N] > 0 for every N as before. If M is preprojective,
not projective, we have M = (77 1)*Ae; for some k € N and 77! is the inverse of
the Auslander-Reiten transpose and [M, N| = [TkM, N] = [Ae;, N] > 0, the first
equality is because the maps are not factorizing through a projective.

We use the Auslander-Reiten formula (see | |, Thm 2.13, p.117) to see
[N,M]' = [M,7N] = [M,N] >0

If M is injective, the same argument with the standard resolution by injectives (ob-
tained from the standard resolution by projectives) gives [N, M] > 0. If M is inde-
composable preinjective, we have M = 7*I for an indecomposable injective I and
[N,M] = [N,78M] = [N,I] > 0, where the first equality is because the map does

not factor over a projective.

(T2) Let M be a regular homogeneous module in Rq(d), M = @;_, (D)L, Ua, [/\y)}),

where a; = [s; : t;] € PY(K), )\S-i) € N and Uy, [A§i)] is the indecomposable module in

the tube T, of length )\g-i). We claim

! G
tv = cur H(SiT — tiS)zj:l A S K[S, T]
=1

It holds cps # 0 (by a case distinction) and det ®57(S,T") # 0 because it is not zero
when we evaluate S, T at a point [s: t| ¢ {a; | 1 < i < r}. In fact, it is easy to see
that {a; | 1 < i < r} are the only zeroes of this function (because the dimension of
the kernel of the four term short exact sequence is [Uy,[1], M] > 0). The rest follows

from the observation that for a regular homogeneous module My & My = M

det® (S, T) = (det®yy, (S, T)) - (det® s, (S, T)),

this can be seen by using ¢y v, em, = ON,M © ON, M, Dy definition of the maps. O

Example. (from Markus Reineke). Let @ be

n n
, and Q:z( 2n )
n n

1 2
N
3 / \ 4
We name the coordinates of a representation as follows

d

Kn KT
N
K2n
N
K" K
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We have Py = So, dimP; = (;1‘;),@132 - (21;),mP3 - (212),mp4= (glf)

determine the indecomposable projective modules. Then the tube polynomial is given by
c-det®(S,T) with det®(S,T) =

A A 0 C TD
det((Py & Py & Py & Py, M) 257, (P2, M)) = det ( >

0 B C SD
€ (K[(Ai; ), (Bij), (Cij), (Dij)DIS, T]

5.3.2 Springer maps for the Jordan quiver

Let us shortly recall Grothendieck’s simultaneous resolution of singularities.

Let G be a reductive group, 7" be a maximal torus contained in a Borel subgroup
B C G and Lie(B) = b C g = Lie(G) its Lie algebras considered as G-representation with
a B-subrepresenation via the adjoint operation. Let g®", b°" be the sets of regular semi-
simple elements and W the Weyl group associated to (G, T). It holds g°" is G-equivariant
and dense open in g and it carries a natural operation of W. Let B = TU with U the
unipotent radical and n = Lie(U) its Lie algebra. We call N' = Gn C g the nilpotent
cone, N contains a unique dense G-orbit O consisting of smooth points. Recall, that a
resolution of singularities is a projective, dominant, birational map from a smooth variety

to a possibly not smooth variety.

Theorem 5.3.1. (/ |, sections 3.1, 8.2) The Springer map 7: g := G xP b = g is a

G-equivariant, projective map which restricts to

(1) a W-Galois covering ©°: 71 (g*") = G xBb*" — g°", i.e. the morphism is etale and

a principle W-bundle, and

(2) a resolution of singularities mn;: 7 H(N) = GxBn — N for N, i.e. p=1(0) — O is
an isomorphism. Also 7= *(N) = T*(G/B) and p can be identified with the moment

map.

We can then look at the following more general situation. Let S C W be the simple
reflections determined by G, B, T. For any J C S we set Py := B(J)B. Let Py = L;Uj be
its Levi-decomposition and uy := Lie(Uy) be the Lie algebra of the unipotent part. There
exists G-orbit O; C g such that O; = Guy and every point in O is smooth in Gu;.

(1) Are all nilpotent orbits of the form O for some J C S?
(2) Is the map 7;: G x*7 u; — O a resolution of singularities?

I do not know the general answer, a partial answers for (1) is given by Carter in his book
[ |, section 5.7-5.9, by showing all distinguished nilpotent orbits are of the form O;.
He also gives a classification of nilpotent orbits in terms of weighted Dynkin Diagrams,
cp. section 5.6. A different way of putting (1) is asking for Richardson orbits, because
a generator for the dense Pj-orbit in ujy will also be a generator for the dense G-orbit in
Guy.
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We will at this point restrict to G = Gl,, B = B,, where we will see that the m; give a
resolutions of singularities for all nilpotent orbit closures (see lemma 47 and 48).
Let S :={(1,2),...,(n—1,n)} for any subset J C S we have

Py={A€Gl,|V¥i>j:
a;j = 0 whenever thereis k € {j,j+1,...,i} s.t. (k,k+1) ¢ J},

obviously, we can instead determine J by the sizes of the diagonal blocks in Pj.

Recall, that the nilpotent orbits in M, (K) are in bijection with the partitions of n, via
A= (A1 > Xs>0) maps to GL,,Ny =: Oy where Ny: K" — K", ey, +> ex,—1 > -+ >
e1 = 0,ex400 F €xj4dg—1 > = e 41— 0,0 ep e o ey el — 0.
For any nilpotent endomorphism N we write JNF(N) = X for the partition A\ such that
G1,N = O,. Recall that for any partition A there is a dual partition A’ given by the
partition associated to the transposition of the Young diagram of A (i.e. the i-th row is
the i-th column in the transposed, ¢ > 1). For a sequence J = (n1,...,n,) with >, n; =n

we write ¢(J) for the partition obtained from reordering J. We have maps
M:{JCcS}= A== A>0) ) N=n}:J

with II(J) := (q(J))" and J maps a partition A to the set J(A) such that Py, has block
sizes given by (A}, ..., A\L) where A! is the dual partition of A. Obviously it holds IToJ = id,

in particular II is surjective and J is injective.

Lemma 47. It holds Gl,u; = Or(y) and therefore also Oy = Gloujy).

Proof: We look at J = (ny,...,n,), wlog. n; > ng > --- > n, because a permutation
of the blocks does not change Gluy. Let A = (A\y > -+ > ;) be the dual partition for
(n1,...,n,), we also set m; := maximal rank of an element in uf,, it is easy to see m; =
> h—it1 k- The dense nilpotent orbit in Glyuy is Oy with N € M, (K),tk(N?) = m.
We need to see that NNy fulfills that, i.e. to see rkNi =m; for 1 < ¢ < n. We know
n; = dimker N§ — dim ker N;‘l, 1 <4 <r that implies dimker Ni = Zi::l ng. It follows

r %

m; = E nk:n—g ng = rk Ny
k=i+1 k=1

O

Lemma 48. The collapsing map 7y: Gl, x7u; — Gl,uy is a resolution of singularities.

Proof: Let Ny be the dense orbit in Gl,u; where the block sizes of u; are given by
A= (ny > ng > -+ > n,). We will see Gl,,/P; as the set of partial flags U®* =
0=UcU"C---U" = K") with dimU’ = >3} _, n;, and Gl,, x?7 uy = {(z,U®) €
M, (K) x Gl,,/Py | x(U") c U=',1 <4 <r}. By lemma 6.3.0.2 it is enough to see that
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the fibre over IV is precisely one point, more precisely we will prove
77 (Nx) = {(0 C ker Ny C ker N§ C --- C ker N = K™)}.

So, take any flag U® € 7T;1(N/\), obviously N,(U') = {0},dimU"! = dimker N, implies
U! = ker Ny, N\(U?) C U! = ker Ny, dim U? = dimker N? implies U? = ker N, etc. [

Now, we want a similar result for arbitrary orbit closures. Let 0 = ()\(1), cees )\(’")) such
that A@ = (A > ... > ) partitions and [AD)] > - > [A")] such that Y7, |A(i)| = n,
we call 0 a Segre symbol. We write m; := ‘)\(i)‘ ,1 <4 <7 and set

J(U) = ((A(l))tl’ ()‘(1))3) EERE) (}\(1))21’ ()‘(2))57 ) ()‘(T))ET)v

as usual Py for the associated standard parabolic. Let ai,...,a, € K be pairwise
different.
Ay * *
Fa1 77777 ar;o ::{ 0 : EMn(K)’AZ—aZEmZEuJ(A(z)),IS’LST}
0 - 0 A

Fa, .40 is an an affine space and a Pj(,-subvariety of M, (K).

Lemma 49. Let A € M, (K) with characteristic polynomial x4 = [[;_(T — a;)"™ where
a; # aj fori# j, mp>mo > >my and INF(Alger(a—a;B,)m — @i idker(A—a;B,)mi) =
D1 <i<r. Then, it holds GloFy, . a0 = Oa and Tay,.. a0t Gly x5O Fyy 4.0 —

Gl Fy, ... a0 15 a resolution of singularities.

Proof: Obviously Oq C Gl,Fy, .. 4,0 and Gl,Fy, . q,.s is closed it holds
O C Gl Fy, .. a0- It B € GI,F,, . 4.0, then obviously xp = x4 and also from the

definition it follows
dimker(B — a;E,) > dimker(A — a;E,,) for all 1 <i <r,j €N,
that implies B € O4. We can identify
Gl, x7@) Fy a0 = {(B,U*) € Mu(K) x Gl,/Py () | (B — a;E,)(U7) C U7!

7 i—1
VY sk << s 1<i<r—1)

k=1 k=1

Then one can see that 7, ' . (A) is just the single flag

0 C ker(A — a1 F) C ker(A — a1 E)? C --- C ker(A — a E)™
C ker(A — ay; E)™ +ker(A — asE) C ker(A — a1 E)™ + ker(A — apE)? € --- € K™

Then apply lemma 6.3.0.2 U

Now we want to forget about the particular eigenvalues but keep the sizes of the par-
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titions, for a Segre Symbol o = (A1), .../ A\(")) we define the Segre class to be

T

S(0) = {A € My(K) [xa = [[(T = ai)™, a; # aj, Vi # jomi = \w
=1

JNF(A’ker(AfaiEn)ni) — A(l)}

Y

It is known that S(o) is a locally closed, irreducible smooth subvariety of M, (K), admit-
ting rational quotients and that the set of all Segre classes in M, (K) gives a Whitney
stratification (see | | for the definition and | | for Segre classes being one) which
implies in particular that the boundary property holds, which says that the closure of any
stratum is a union of strata. We write o < o’ if S(0) C S(0’). What was the nilpotent
cone N, for orbits will be replaced by the so called equipotent cone &, for Segre classes,

we define it via

F, = {A = (aij)m S Mn(K) ‘ Qi5 = 0,a; = Qg Vi > J}
gn = GlnFn C MH(K),

F, is a By-subrepresentation of M, (K), &, is a closed and irreducible subset of M, (K).
The map projection on its eigenvalues up to reorder is an algebraic morphism y: M, (K) —
C™/ Sy, see for example | |, 3.1.14, p.132-135 for the Sl,-case. Therefore by restric-
tion we have an algebraic map x: &, — C mapping an equipotent matrix on its only
eigenvalue. Thus, we find a morphism ¢: &, — N, x A, A — (A — x(A)E,, x(A))
which is Gl,-equivariant when you empose the trivial operation on A'. As the morphism
N, x Al = &,, (N,a) = N + aFE, is an inverse, we see that ¢ is an isomorphism of

(1,,-varieties.

Let us first look at equipotent Segre classes, i.e. Segre classes S(o) C &, equivalently o =
() for a single partition A\. Let Oy C N, be the Gl,-orbit consisting of nilpotent matrices
with JNF = X\ (for A = (n) we have Oy = N,,, S((\)) = &,). Under the isomorphism ¢ we
obviously have S((\)) = Al x Oy. Now, for o0 = (AM, ... X)) and a := (ay,...,a,) € K"

we define
a1Em1+N)\(1> 0 - 0
R 0
QU(Q) = .
. .. 0
0 -0 arEmr‘i’N)\(r)

Let U = {a € K" | a; # aj Vi # j}, we have a dominant morphism Gl, x U —
S(0), (9,a) = 945(a). As Staba,(¢s(a)) = Staba, (¢5(b)) =: H for all a,b € U we get

an induced morphism
¢: Gl,/H xU — S(0), (9H,a)— Jq,(a),

it is Gl,-equivariant where the Gl,-operation on Gl,, x U is g - (h,a) := (gh, a).

Lemma 50. ® is a [-Galois covering, where I, := ((i,i + 1) € S, | A\ = \(+1),
Therefore S(o) is smooth of dimension dim Gl,, — dim H + r and for I, = {e} it holds
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s an isomorphism.

Proof: It is easy to see that ® !(g,(a)) = I, -a C K" where S, operates on K" via

permuting the coordinates. That implies that ® has constant fibres with a simply transitive

I,-operation. O
This leads to the definition

F()\) = {AE Mn(K) | Jae K: A—aF), EuJ()\)}

which is a Pj(y)-subrepresentation of M,(K) and more generally for a Segre symbol o =
AW A0)),

A1 o e %
F,:={ ? IR € M,(K)|3ai,...,ar € K: Aj — a; By, € U\ 1<i<r},
0 - 0 A

which is a Pj(,)-subrepresentation of M, (K).

Lemma 51. Let o = (A, ... X)) be a Segre symbol, I, := ((i,i+1) € S, | A(D) = \G+1),

it holds G1,F, = S(0) and 7,: Gl, xT7) E, — G1,F, restricts over S(c) to a I,-Galois

covering.

Proof: Obviously, S(o) C GL,F, and therefore S(c) C Gl,F,.

Let B € Gl,F, with r different eigenvalues, then there exists A € S(o) such that B €
04 C S(0) (see proof of lemma 49). As {B € GL,F, | B r different eigenvalues} is dense
in G1,F, we get GL,F, = S(0).

Now, it holds

Gl, x"7) F, = {(A,U®) € Mn(K) x Glo/Py(py | Ja1,...,a, € K:

i+1
(A— )(UJ)CU]1VZsk<]<Zsk,1<z<r—1}
k=1 k=1

For A e S(o) let xa =[[i_y(T —a;))™, JNF((A— @i En)ler(A—a; Epymi) = AD 1 <<

then
|_| ”bl, Wb
belsa

consists of I,-points U;x,b € Gln/PJ(U),Q € I, - a. Now, a morphism of algebraic varieties
is generically smooth, tlrlerefore this one is generically etale. To see that it is etale over
S(o) we show that m,1(S(c)) — S(o) is surjective on tangent spaces. Recall H, U, ® from
Lemma 50. Observe that for a,b € U it holds U.g(a),a = Uq.a(b),b' We define a morphism
U: GlL,/H x U — 7,1(S(0)), (9,a) — (Yg,(a), 9U; (0)a ), then we have a commutative
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diagram

5 (S(0)) 7 S(o)

As @ is surjective on tangent spaces, therefore ngﬂ;1(s(a)) is surjective on tangent spaces,

that implies the smoothness. It also follows that W is an isomorphism. O

Remark. The maps ¥, ® gives the following dimension identity, using

dim F, = dimuy,) + 7 gives

dim S(0) = dim Gl,, — dim H + r = dim Gl,, — dim Pj(,) + dim F;

= dim G, — dim Lyp) +r=n+r -3 [(AD)
i=1 s=1
where L j(,) is the Levi part of Py(,y. Tt also gives the (curious) dimension identity dim H =

dim L j(,), even though the two groups H and L, look quite different.

5.3.3 Springer maps for homogeneous decomposition classes of the Kro-

necker quiver

Let n € N, we fix d = (n,n) and Glg = Gl,, x Gl,,, By = B,, x By, operating on Rq(d) =
M, (K) x My (K) via (g,h) - (L, R) := (gLh~t,gRh™!). There is also a Glp-operation on
Rq(d) given by

(L,R)- (% §):=(aL+0bR,cL+dR),

for A = (3 3) € Glo,(g,h) € Gly it holds [(g,h)(L, R)]A = (g,h)[(L, R)A]. The Gly-
operation maps homogeneous decomposition classes to itself. We will introduce now an
open covering which will allow us to reduce to the Jordan quiver considerations. For
A € Gly(K) we define

Up = Gl,(K) x M, (K), Ua:={(L,R) € Rq(d)| (L,R)A™! € Ug} = (Ug)A.

Then, {Ua}acg, is an open Glg-invariant covering of the regular homogeneous locus

Regq C Rq(d). We have a maps

Dp: Up = Gl (K) x My(K): g Dp: Up 2 GLy(K) x My (K): ¥y
®p(L,R) := (L,L7'R) (L, R) == ®p((L,R)A™Y)
Up(X,Y):= (X,XY) UA(X,Y) = [Up(X,Y)A

Obviously ® 4 and W 4 are inverse isomorphisms of varieties. We consider the right hand side
Gl,(K) x M, (K) with the following (Gl,)?-operation (g, h)x (X,Y) := (¢Xh~ !, RYR™1),
orbits under this operation are of the form Gl, x Oy where Oy C M,(K) is a Gl,-

orbit under the conjugation operation. On U4 we have restriction of the Glz-operation on
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Rq(d). Then, it holds

(I)E((ga h) : (L7R)) = (th_lv hL_th_l) = (gv h) *(I)E(LaR>
Up((g,h) x (X,Y)) = (9Xh™, gXYh™') = (g,h) - Up(X,Y)

So, for M = (L, R) € Ua we have ®4(Opr) = Gl X O sp)-1(t1+ur) Where A™1 = (11)
and for any homogeneous decomposition class we have ®x(D(0,0) NUa) = Gl,, x S(0).

Now for o = (AN, ... X)), recall that we had defined J(o) = (AM)E, ..., (A7), let
Pio) = LiePy(y)), we will always write elements L € p j(,) as

L1 * *
0 - 0 Ly

For [z: y] = ([z1 : y1), ... [@r : yr]) € (PY(K))" with [z;: y] # [z;: y;] for all i # j we set
Fiy: yro = {(L, R) € py(o) X Pi(o) | Tili — yiRi € ujy, 1 < i <1}

It holds Fi. 4., is a (Pj(s))?-subrepresentation of Rq(d).

Lemma 52. Letd = (n,n). Leto = (A, ... X)) be a Segre symbol with 37 |\(i)| = n.
For [x1 :y1, ... [z : yr] € PY(K) pairwise different points set

i=1 j=1

Then, GlgFly. .o = On C Rq(d) and the map
. Pro))?
1 Glg x (@) Fly: ylio = GlaFl: )0

Tz: ylio

18 a resolution of singularities.

Proof: Obviously, it holds Oy C GlgFj;. y).o- There exists an A € Gl such that
M € Uy, ie. pick A = ($§),det(A) = 1 such that y;d — z;c # 0,1 < i < r and set

a; 1= % It is enough to see that Oy is dense in UsNGlgF,. y] = Gly(Fj, y};JﬂUA)
It holds ®4(F; [z: ylio NUL) = PJ( ) X Fo, . QT;J,CI)A(GldF[ yl; o) = Gl X (Gl Fy, .. ay0)
and ®4(On) = Gly X Ogr—pR)~1(—cL+ar) 18 dense in Gl, x (Gl, Fah ano)- This implies

that Oy is dense in Ua N GlgF,. ylio

To see the rest of the lemma we define an Glg-equivariant isomorphism @1 such that the

following diagram, where we set a = (aq,...,a,)
Tty (Ua) = Gla x P10 (Fy. o U —2 Gl, x [Gl, x"7@) Fy]
e y]:ai id X7g;0
GIQ(F@ yl;o N UA) p Gl,, x Glan;g
- A
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commutes, then the claim follows from lemma 49.

It holds

Gly xPr@)* (B, .0 NUA) = {(L, R), (U*,V*) € Ua x Glg/(Pys)? |

L(V))cU',R(V?) c U, (x;L —y:R) (V) c U,

% i+1
Dosk<i<Y sw0<i<r—1)
k=1 k=1

Gl, x™7@) Fyy a0 = {(A,U®) € My(K) x Gl, /Py |

(a;E, — A)(UY) c UL,
i+1

7
D s <i<d sp0<i<r—1}
k=1 k=1

We define @ 4((L, R), (U®,V*®)) := (®4(L, R),V*) , the inverse is given by U4 (X, Y, U®) :=
(TA(X,Y),U*, XU®). O

Now for homogeneous decomposition classes, the natural thing to look at is

Foy:={(L,R) € (0s())* | 3[z: yl € (PH(K))": w5Li — yiRi € uj0),1 <0 <7}

F(if)g = F(a) N Regd.

both are (Pj(,))*invariant subsets of Rq(d), obviously

_ reg __ reg reg
Floy = Ax oy X Foey,  Foy =AX ) X Fpmyy

where A := {(L,R) € (pj())* | Li = 0,R; = 0,1 < i <7} and F\ay) is Fig) for the
Segre symbol o = (A("). Observe, that Gl operates from the right on (pJ(U))Q by right

multiplictaion on the 7 diagonal blocks. Now consider the following Bj-subrepresentation
of (py(r))?
Floy = A X Fy g0y % X Fiy gp0m) = W(e) X Pio)-

Then it holds F,y = F} - Gl is closed and irreducible subset of (p;(,))?. But it is not
smooth, therefore Glg x (Pio))? Fls) is not smooth, to overcome this we can either restrict
to a smooth subvariety or find an iterated fibre bundle which is smooth. We have the

following results.

Lemma 53. Letd = (n,n). Leto = (A, ... A" be a Segre symbol with 3"1_, |\(i)| = n,
Iy = ((i,i+ 1) € S, | A() = O+,

(1) Consider the Springer map associated to (Gly, By, (pj(»))%, F(’U))
' F('U) xB2 GI;, — Flo

It holds 7' is an isomorphism over F{Ue)g, in particular F{Ue)g is smooth. Observe that

7' is also (Py(y)?-equivariant.
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(2) It holds GlgF,) = D(0,0) and the map m): Glg wPr(o)? Foy — GlgF(, is a

1,-Galois covering over D(0,0). It restricts to

w70 m A (Rega) = Gly xP50)* FI%0 5 GIuF C Regy

and GIQF{;)Q = (GlgF()) N Regy is the closure of D(0,0) in Regq.

(3) We set an) = Gly x Pi@) 7! Gl x (Pi(e))? [F(’U

holds Glg x P [F/ |

) xB5 GIy] — Glg xP7(0F Figy. It
xB2 G1] = (Gl x GI) x (Pi())*x B3 F(’U) and the Springer
map

() : (Gly x Glp) x Pae)™*Bs /o GI4F}Gly = D(0,0)

is the composition 11, = WEU) oT(s) and therefore a I,-Galois covering over D(0,0).

Proof:

(1) Flyy xP2 Gl = {(L,R), [z: y] € (Py(0)® X (1) | @iLi — yiRs € wyripy), 1 < i <1}
L,R) € F/Y implies that (L;, R;) is equitubular, 1 < ¢ < r. The map from the
(o)
equitubular modules to its one supporting tube is regular, we denote it by (X,Y) —
t(X,Y) € PY(K). Then, we have a regular map Fiy = F(, xB: Gy, (L, R) +
(L,R),(t(L1,Ry),...,t(L,, R;)), this is the inverse to (W')*l(F{;)g) -, FZ;)Q
(2) This follows from intersecting down with the charts Uy, A € Glg, very similar to the

proof of the previous lemma.

(3) (Gly x GIg) x(Pre)™*B5 | =

{((L,R),(U*,V*), [z: y]) € Rq(d) x Gla/(Py())* x (P')" |
LV cU,R(V)) c U, (a;L—yR)(VI)cUI™L,

[ i+1
sk <j< ) sp0<i<r—1}
k=1 k=1

and Il,) is just the projection on the first factor ((L, R), (U*,V*),[z: g]) — (L, R),
that obviously factorizes as ((L, R), (U®,V*®),[z: y]) — ((L,R), (U*,V*)) — (L, R),

which is precisely the claimed factorization.

O
We shortly review some known results on the singularities which occur in the orbit

closures.

Classical Springer Theory: Let G be a connected reductive group, O C N the closure
of a G-orbit in the nilpotent cone (in Lie G).

The singularity is locally factorial, normal Cohen Macaulay, Gorenstein with rational sin-
gularities, Springer resolution is crepant, Grothendieck’s slice conjecture holds (i.e. if you
slice down the the Springer maps over a subregular orbit, you obtain the known crepant

ADE-singularity resolution of the same type as the group.)
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Quiver-graded Springer Theory: Zwara and Bobinski together with Zwara investi-
gated the geometric properties of orbit closures in the representation space Rq(d): For

arbitrary finite quivers, orbit closures are regular in codimension one (cp. | D.

e For Dynkin quiver of type A or D orbit closures are normal Cohen Macaulay and
have rational singularities in type A and rational singularities in characteristic zero in
type D (cp. | |, [ |). In type E only unibranch is proven yet (cp. | D).
Orbit closures are regular in codimension two (| D).

They are not locally factorial, as the following example shows
Q=~AyM=(35)-

The orbit closure is Spec K[a,b,c,d]/(ad — bc). This is not a factorial ring. The
factorization into irreducible elements is not unique, ad = —bc are two factorizations.
(There is a result of Mehta that for locally factorial rings it holds Gorenstein is

equivalent to normal and Cohen-Macaulay.)

e For extended Dynkin quiver, the singularities of orbit closures in codimension two
are either regular, Kleinian of type A or an affine cone over a rational normal curve.
For the oriented cycle the singularities are regular or Kleinian of type A. For the
Kronecker quiver Zwara gave an example (without restrictions on char K) of a rep-
resentation M = P @ I with P indecomposable projective and I indecomposable in-
jective such that the orbit closure has worse singularities than normal (cp. | D,
the Springer map of the directed decomposition P & I is a resolution of singularities
which is not crepant because the singularities in the orbit closure are not Gorenstein
(as they are not normal).

If Q is extended Dynkin and M indecomposable not in a tube of rank > 2, then Oy

is normal Cohen Macaulay (cp. | D

Open problems: Of course, we would like to find collapsings onto closures of arbitrary
decomposition classes (for tame quivers) and use this to study their singularities and if they
are unions of decomposition classes. This certainly needs different methods from what we
know at the moment.

When is Oy; Gorenstein and the collapsing map crepant? Are there general conditions
ensuring that?

In case there is a crepant resolution found:

The slice theorem does not make sense for Dynkin quiver, but is interesting for extended
Dynkin quivers.

In general of course we would like to find explicit instances for the decomposition theorem,
so how does the decomposition of 7,C look like for the constructed maps? Can we say
something on Steinberg varieties (this is a parabolic case), can we find an example of an

[-graded Springer theory?
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Chapter 6

Quiver flag varieties of finite type

Summary. Our aim in this section is to investigate quiver flag varieties for Dynkin
quivers and in particular those with finitely many orbits. We start with a locally trivial
fibre bundle over them and review some geometric properties. For studying irreducible
components, we use tangent space method, more precisely we detect the generically smooth
irreducible components by looking at dimensions of tangent spaces. It is then applied in
different situations, such as for orbits, Reineke strata (definition see later on) and in the
last subsection for a simple version of canonical a decomposition for quiver flag varieties.
We conjecture that Dynkin quiver flag varieties are generically smooth, so the tangent

method would detect all irreducible components.

Notation and definitions:

K an algebraically closed field,
Q a finite quiver with vertices Qg and arrows @)1,

KQ its path algebra,

d an element in Ng",
d = (d° = 0,d"...,d") with d* € N§°,d¥ < d"*' for i € Qy.
Rq(d) the representation space, defined to be H(i%j)te Adidi

Gl the linear algebraic group (over K), defined as [[;co, Gla;,
operating on Rq(d) as follows: For any K-algebra R,
M = (M )i € [1;y; Homp(R%, R%), g = (g;) € Gla(R)
we have gM = (ngi_U'gifl)i_)j

A, the equioriented quiver 1 - 2 — --- — v,

A =KQ®x KA, 41

For any K-algebra A and A-modules M, N, we will use the following notation

(M,N)} = Exti(M,N),
[M,N]  :=dimExt} (M, N),
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For M € Rq(d)(K) we define Flg (1\(14) on K-valued points as

d

F1Q<M>(K) ={U=0cU'c---cU"=M)|

U* ¢ UM inclusion of KQ-modules, dim U* = ¢*};

in fact one can define a scheme Flg (]‘Vi[ ) of finite type over K which has Flg (]\g ) (K) as
K-valued points (cp. [ |). Except for the tangent spaces we will only work with the
K-valued points, i.e. in that case we study the underlying reduced subscheme Flq (]g[)

d/yed’

If M = {0} € Rq(d)(K) is the unique semisimple K@Q-module, i.e. all linear maps are

F(d) := Flq (?f)

zero, we set

6.0.4 A locally trivial fibre bundle

An A, -representation in K@Q-modules is a sequence of K @Q-module morphism

A A,
M, =5 My — - =225 M,

As: Ais 7
Specifically My = (M;s)icq, & Mgi1 = (M;s+1)ieq, and for i < j € Qq we

have My s: M; s — M s and My s414;s = AjsMys, 1 < s < v —1. That is the same as
a representation of the quiver @, := (Q x A,,I) with the relations given by commuting
squares.

Fix M € Rq(d)(K) and a filtration d of d.

M
D Co ( d ) (K) :={(Ma,s)ac@i,1<s<vs (Ais)icQo,1<s<v—1 € Roxa, (d)(K) |

M, = M, Ma,s—l—lAi,s = Aj,sMa,87 rk(Ai,u—lAi,V—2 te Ai,s) = df}

The condition on the ranks in the definition ensures that all A; s are injective. We define

¢: Xq, (f) (K) — Flqg (f) (K)

(M 25 My - 2N M) s (0=Uyc UL C - C U, = M)

where Us :=Im(A,_1A4,_2--- As).

Let G(K) := [[;<4<, 1 Glas (K), it operates on Xq, (%)(K) via (gs)s - N = N’ if there is

a commutative diagramm

Ny Ny Ny1—M
g1l gzl Qv—li idML
Nl e Ny e N 1

We observe that two points in Xgev+1 (A(f) (K) have the same image under ¢ if and only if
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they are in the same G(K)-orbit.
The G-operation is free. The explicit definitions of the scheme structures of Xgev+1 (1\({ )

and Flg (]g) are given later (see subsection 6.4.2).

Lemma 54. The previously defined map ¢: Xg, (J‘é[) — Flqg (Adj) is a principal G-bundle
(of schemes).

Proof: For QQ = Ay, this is already known, see for example | |, section 7.1 and 8.
Therefore it is true for M = {0}. But we have a cartesian diagram where the vertical
arrows are closed embeddings:

Xo,(4) —=Xo, (')

)

Flg (fg ) ——F(d)

As ¢g is a principal G-bundle, ¢ is as well. d

Remark. The map ¢ induces a bijection of the irreducible components of X, (]g[ ) and of
Flg (]g[ ) This follows from the next lemma and the property that for a principal G-bundles

images of G-invariant closed subsets are closed.

Lemma 55. Let G be an irreducible group scheme. Let X be a noetherian scheme with

G-operation and f: X —Y a dominant morphism with:
1) The fibres of f are G-orbits, i.e. for v € X we have f~'(f(z)) =G - .
2) The images of closed G-invariant sets are closed.

Then, there is a bijection

{ irreducible components of X} — { irreducible components of Y'}

Cw— f(O)

with inverse Z — f~Y(Z).

Proof: The irreducible components of X are G-invariant (for an irreducible component
C, the closure of the image of the map G x C — X is an G-invariant irreducible closed
subset containing C, so it equals C'). Let Z be an irreducible component of Y; as f
is dominant there is an irreducible component C' of X dominating Z. By assumption
2) it follows that Z = f(C). Now, suppose C’ is another irreducible component of X
with f(C') € Z. Take ' € C’, then there is an x € C with f(2') = f(z). Therefore,
¥ eG-2' =G -z cC, proving that C' = C. O
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6.1 Categories of flags

6.1.1 What is a flag?

Definition 18. Let C be an abelian category with a forgetful functor to sets and v € N.

A sequence of monomorphisms in C

Ue=(0=Uy > U, EIN N U,=M)
is called flag in C with flagpole M of length v if the monomorphisms under the forgetful
functor are the subset inclusions.

A sequence of epimorphisms in C

Vo= (M= 2w 2. 225y, =)
is called dual flag in C with flagpole M if the induced monomorphisms
M/V; — M/Vit1,1 <i <v—1 under the forgetful functor are just subset inclusions.

We define a series of categories. For shortness we leave out the phrase "‘of length v'".

e Let (Ay41,C) be the category of functors from the small category A, 41 to C, i.e. an

abelian category whose objects we denote by
(T, f) = (To &1 L 228 1)

for objects T;,0 < i < v and morphisms f;,0 <i<v—11inC.

o Let X be the full subcategory of (A,41,C) whose objects are of the form (7', f) with
all f; are monomorphism. We call it category of monos in C.
Let Y be the full subcategory of (A,41,C) whose objects are of the form (T, f) with

all f; are epimorphism. We call it category of epis in C.

e Let X be the full subcategory of X whose objects are flags of length v, we call X the
category of flags in C. Let Y be the full subcategory of Y whose objects are dual
flags of length v. We call Y the category of dual flags in C.

e Let M be an object in C.
We define XM to be the full subcategory of X with objects (T, f) such that T}, = M,
XM be the full subcategory of XM whose objects are in X, and call them respectively
category of monos to M, category of flags in M.

(Analogously you could define the dual versions Y™, Y™ )

For M an object in C, the object M = (M = M = --- = M) will be considered as a
final object of XM and XM . There are equivalences of categories X — Y, X — Y, XM —
YM xM — YM defined via U, — coker(U, — M), where M = U,,.

Furthermore, there is the functor which project on the flagpole fp: X — C, (T, f) — T,.
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From now on let C be the category KQ — mod of finite-dimensional left modules over

the ring K@Q. The dimension vectors of objects in X will be denoted as a filtration d.

Remark. We see these categories in an obvious way as categorifications of varieties and

regular maps in the following way (where we are sloppy with the length v).

(1) There is a bijection between Aut(M)-orbits on Flg (]g), d dimension filtration of

dim M, and isomorphism classes in XM

2) There is a bijection between Aut(M )-orbits on Xgev+1 M) " d dimension filtration of
Q d

dim M, and isomorphism classes in XM

(3) The map ¢: Xgev1 (]g[) — Flg (]dw) from the previous section corresponds to the
inclusion XM — XM which is an equivalence of categories (up to the issue with

starting flags with 0).

(4) We define

RF(d) := {(U,M) € [] Fi(d))xRq(d) | Mj(UF) C UF, fori—jeQ,1<k< v},
i€Qo

There is a bijection between Glg-orbits in RF(d), d € N% and isomorphism classes

of objects in X.

(5) There is a bijection between Glg-orbits on Rgxa, 7(d) and isomorphism classes of
X, where [ is the ideal such that KQ ® KA, 1 = K(Q x A,41)/I.

There are also versions of reflection functors for Flg (]g) (and Xgevi1 (]\g)), see | |
and analogously for XYM (and XM). - B

To understand the categories X and XM it is enough to study the categories

(Ayy1,0), X, XM We identify KQ —mod with the category of functors (Q, K — vs), where
@ is seen as a small category and K —wvs denotes the category of finite dimensional K-vector

spaces. Then there is an equivalence of categories
(Ayy1, KQ —mod) = (KQ @k KA,+1) — mod.

In the next subsection we have a look at the representation type of the tensor algebra
KQ QK KAV+1'
6.1.2 On the tensor product K() ® KA,

Fix numberings A, := (1 -2 — --- = n). Let A be a finite dimensional K-algebra. We

define the K-algebra of upper triangle n X n-matriceswith coefficients in A to be

A A A
0 A

Tn(A) =
0 0 A



An isomorphism T,,(K) = KA,, induces an isomorphism T),(A) = A ®x KA,.The next
lemma has essentially already been seen in the beginning of the last section, therefore we

leave out the proof.

Lemma 56. Let Q be a quiver bound by an ideal I C KQ. T,(KQ/I) = KA/J, where
A = (Ao, Ay) is the following quiver:

o AQ ::Qox{l,...,n},

e For each a: i — j € Q1,5 € {1,...,n} there is an arrow o' : (i,s) — (j,5) € Ay
and for each i € Qo,t € {1,...,n — 1} there is an arrow 1D : (i,t) — (i,t +1) € Ay

and where the generators of J are ,0(5), ot (68 58 o (D) it pel,se{l,...,n}, (a:i—
HeqQute{l,...,n—1}

In particular, if KQ/I is the incidence algebra of a poset' (3, <) then T, (KQ/I) is the
incidence algebra of the poset (X x {1,...,n},x) with (z,s) X (y,t) iff s <t and z < y.

Notation. In the situation of the previous lemma, we define

(Q’I)®n = (A7 J)7 Q®n = (Q70)®n'

Remark. As we are not the first having a look at this algebras, I give a short collection

of some results from the literature about them.

(a) In| | one can find the following properties and results. Assume that A = KQ/I

is the incidence algebra of a poset. Then

1. A is schurian 2, triangular ? and semi-commutative 4,
2. one easily sees that 7m1(7,,(A)) = 71(A) using | |, section 4.1,

3. If Ais a tree algebra, then Tj,(A) contains no crowns °. This is not true for more
general algebras, for example K Aég?’ contains a crown. By | |, section 7.2,
the following are equivalent for the incidence algebra A of a poset:

+ A does not contain any crowns®

!This is the case iff Q has no oriented cycles and I is the ideal generated by all v — w with (v, w)
contour (i.e. v,w € Q. with the same source and target). Examples are given by K@ with the underlying
graph of @Q is a tree.

2KQ/I schurian : <= V v,w € Q. with same source and target there is (\,u) € K2\ {(0,0)} with
A+ pw el

8KQ/I triangular : <= Q@ has no oriented cycles.

*A schurian triangular algebra KQ/I is semi-commutative if, for every v,w € Q. with same source
and target, we have v € I if and only if w € I.

SLet X = (So, <) a finite poset and A = K3. A crown is a cyclic sequence (x1,...,Zn+1 = x1) in So
with

(i) The only <-relations in the sequence are given between neighbours and they are all comparable, i.e.
it holds either z; < 41 > Tiy2 or x; > xit1 < Xiq2 for all ¢ € Z/nZ.

(ii) In the associated quiver it holds for all ¢ € Z/nZ: If z is a point on a path with end points {z;, zi+1}
and on a path with endpoints {1, %42}, then z = z;41.

5By [ |, section 3.3, this is for an incidence algebra of a poset equivalent to be called completely
separated. This property we will need later on.
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x A is strongly simply connected. 7
Furthermore, if these properties are fulfilled the following holds:

x A admits a preprojective component, i.e. its Auslander-Reiten quiver con-
tains no oriented cycles and has a preprojective component which is a com-
ponent which is a union of 7-orbits of projectives. In this case there is a

preprojective component such that the 7-orbit quiver is a tree, see | |

(b) There is also an isomorphism of (non graded) K-algebras
T.(KQ) = T((KQ)#n)o, (KQ)®)1), where the right hand side is a tensor algebra
considered in | |, Appendix B. There he has also shown that its global dimension

is < 2. So, in particular, T,,(KQ) is quasi-hereditary (see definition 19 later).

Theorem 6.1.1. Let () be a connected quiver without relations, Q) # A;, n € N>o and K
an algebraically closed field.

(i) T, (KQ) is of finite representation type iff one of the following conditions hold.

1) n =2 and Q is Dynkin with graph in {As, Az, A4}.
2) n =3 and Q 1is Dynkin with graph As.
3) n =4 and Q is Dynkin with graph As.

We have (obviously) Ts(KAg) = To(KA3), Ty(KAg) = To(KAy).
(1) Tn(KQ) is tame of infinite representation type iff one of the following hold.

1. n =2 and Q is Dynkin of type As or Dy.

2. n=3 and Q is Dynkin of type As.

Remark. One can even prove the following: If ) is a Dynkin quiver with graph Ao, As, Ay,
then TH(K Q) is tilted of type Dy, Eg, Eg. According to | |, theorem 5. 12, they are
tilted of this type if and only if they are derived equivalent to an algebra of this type. If
Q) is equioriented, this derived equivalence is part of the ADE-chain folklore, see for the
homepage | |. For the other orientations it is some work to go through the cases (A.
Hubery suggests the following: First check that the associated cluster tilted algebras are
mutation equivalent to path algebras of Dynkin quivers of these types. Then show that
the Grothendieck group does not change when passing to the cluster tilted algebras and

use one of the other equivalences in Happel’s result loc. cit. again to get the result.).

Remark. Before we discuss the proof, we give a short recall that in certain cases the Tits
form is dominating the representation type of an algebra:

We see an algebra A = KQ/I as a category whose objects are the idempotents e; of A,
i € Qo, and morphisms from e; to e; are given by e;Ae;. A (full) subcategory of A is then of

the form C = eAe, where e = ), ; e; for some J C Qo; it is called convex subcategory

"we call a schurian triangular algebra strongly simply connected if every full convex subcategory
(see remark 6.1.2) is simply connected. This is justified by [ ], section 6.1.
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if J is path-closed, i.e. for any path in @) with endpoints in J every vertex on the way is
in J.

(a) (see | | and | |) Let A be an algebra which admits a simply connected
preprojective component. Then, the following are equivalent:
* A is representation-finite.

* A does not contain a convex subcategory which is n-Kronecker (n > 2) or tame

concealed®
* qa is weakly positive.
In this case, there is a bijection between the vertices of the Auslander-Reiten quiver

of A and the positive roots of g4. The second point can be checked explicitly with
the list in | |

(b) (see | |, thm 4.1, corollary 4.2) Let A be a strongly simply connected algebra
having no convex pg-critical? subcategory. Then, the following are equivalent:
* A is tame.
* A has a directed Auslander-Reiten quiver.

* qa is weakly non-negative.
The quivers with relations of pg-critical algebras are listed in | | explicitly.

(c) (see [ |, section 4.3) Let A be a completely separating algebra. Then, the

following are equivalent:
* g4 is weakly indefinite.
* A has a convex hypercritical'? subalgebra.

In this case, it follows that A is wild. The second point can be checked explicitly
using the list in | I-

Proof of 6.1.1:

ad (i) A direct consequence of the main theorem in [ | is the following:
T5(KQ) is of finite representation type iff 1) holds true. Therefore, we just need to
determine the representation type for n € {3,4} and @ Dynkin of type € {As, A4}.
For n = 3,Q of type As one can find the quiver of a tame concealed algebra (cf.

[ |) as a subquiver, the same argument works for n = 3,Q of type A4.

8An algebra B is called tame concealed if there exists a tame connected hereditary algebra and a
tilting module T4 which is preprojective (or preinjective) such that B = Enda(T).

9pg-critical= minimal wrt. convex subcategories such that it is not a polynomial-growth algebra, see
definition in | I

Ohypercritical = minimal wild wrt. convex subcategories
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ad (i) Looking at the list in | | one finds that in the following cases there is a hyper-

critical subcategory:

* n > 2 and @ contains a subquiver of type Ag or Ds,

* n >3 and @ contains a subquiver of type Ay or Dy,

* n >4 and @ contains a subquiver of type As.

Therefore, these cases are wild.

For n = 2 and @ Dynkin of type A5 or Dy, and for n = 3 and @ Dynkin of type As,
we can neither find pg-critical subcategories nor hypercritical subcategories inside,
see | | and | |. Therefore, using c) of the previous remark, we get that their
Tits forms are not indefinite which implies it is weakly non-negative. Then by b), all

of them have to be tame.
O

Remark. Let A be a basic connected finite-dimensional algebra of finite global dimension
with Gabriel quiver (@, ) and d € Ngo. If go(d) < 0, then there are infinitely many orbits
in R(qn)(d) (where Rqn(d) C Rq(d) is the closed variety of representations fulfilling the
relations in 7). In | | (see also introduction of | |) the following inequality is
proven

qa(d) > dim Glg — dim Rq 1)(d).

Then by assumption dim Glg < dim R(q 1)(d), so for any module M € Rq1)(d)(K) we
have:
dim O, < dim R(Q,I) (d) — [M, M] < dim R(QJ) (Q),

and as there are no dense orbits there have to be infinitely many.

6.1.3 Categories of monomorphisms

Let A = KQ®KA, 1. Now, we have a look at the categories X = Xpev+1 and Y = Ygevt

as subcategories of A-mod. We consider, often without mentioning, the full embedding

KQ —mod — A —mod,
M—(M=M=---=M).

Lemma 57. The following conditions hold.

(i) X is closed under subobjects, Y is closed under images. In particular both are closed

under direct summands.
(i) X and Y are closed under extensions.

(ii) X and Y have the Krull-Schmidt property. Indecomposable objects in X and Y are

also indecomposable in A-mod.
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(iv) X contains all projective A-modules, Y contains all injective A-modules.
(v) For all objects U, U’ in X with flagpoles U, = M, U}, = M', V,V' in Y with flagpoles
Vo = N,Vy = N’ it hold

(a) (V,U) =0 and (U,U") = (M, M), (V, V') = (N, N").

(b) (U M) = (M, M")jq, (N,V')! = (N,N')".

(c) (U, U =(V,V")2=(UV)?=0.

(vi) X and Y are functorially finite so they have relative almost split sequences®!.

Proof: (i),(ii),(iii) are straight-forward to see.

(iv) Follows from the description of the projective and injective modules given in | I,

II1, 2.4 and 2.6, applied to the quiver described in the previuous section.

(v) Follows from projective and injective dimensions of M, M’ N, N’ being less or equal

1.
(vi) One can directly write down the left- and right-approximations.

O

6.1.4 Description as A-filtered modules over the quasi-hereditary alge-
bra A = KQ ® KA,

The literature background for this paragraph is | |. We assume that @ is a quiver
without loops. Again, by forgetting the zero we see Xpev+1 as a full subcategory KQ® A, -
mod. For every (i,s) € Qo x {1,...,v} = (Q®")o we define a Q®"-representation 6; 5 via

K, iti=js<t,

(0i5)jr = 7

0, otherwise.

and the condition that all morphisms are the identity whenever possible. If 7 is a sink in @),
then all 0; s are projective A-modules. Denote by ¢;; the number of o € Q1 with a: ¢ — j,
it holds

¢ij, ifs<t
(01,5054 = {7
0, else
(For example we can use | |, III, Lemma 2.12 to see this.)

1, ifi=45s<t
[0is,054] =
0, otherwise.

Hyee | | for the definitions of functorially finite and relative almost split sequence.
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(This is easy to see directly.)

Let 0 = {0;s | i € Qo,s € {1,...,v}}. We denote by F(6) the full subcategeory of A-
mod having a filtration in 8. Thus, M belongs to F() if and only if M has submodules
0=MyC M, C---C M, =M with Ms/Ms_, is isomorphic to a module in 6.

Lemma 58. Assume that Q is without oriented cycles, then
X =F().

Proof: For a K@Q-module M we call the support subquiver Qs to be the maximal
subquiver with M; # 0 for all i € (Qnr)p. For a module U = (U a, U,) in X
take a source ¢ in the support subquiver for U,,. Let V; C U; , be a codimension 1 subvector

space. Then, we can define a subrepresentation U’ € X of U via

Uj.s, if j #1,

(U5 =
(iu—l o 'Z.S—HiS)il(Vi)a ifj =1,

with morphisms such that U’ is a subrepresentation of U. Let s := min{k € {1,...,v} |

(iy—1 - ig41ik) " H(Vi) # Uik}, then we have a short exact sequence
0—-U —-U—=6;s—0,

induction on the dimension vector gives then a filtration of U with subquotients in 6.

For the other inclusion observe that A-modules can be written as M = (M; ELN M;)aecq,
where the M; are KA, -modules and the f, are KA,-linear maps. Then, M is in X if
and only if M; is a projective KA,-module for each i € Qp. Let now M = (M; f—a>
Mj)acgr, N = (N; 2% Nj)acq, be in F(0) and let

0=+N—=>M=06,—=0
be a short exact sequence. At the vertex ¢ we get a short exact sequence of KA, -modules

0— N; = M; — P(s)* — 0.

a

As P(s)® is projective the sequence is split, this implies M; = N; @ P(s)®. Fixing a
numbering 61, ...,60, of the set 6 such that [¢;, 6;]' = 0 for all j > i ensures that we can
find a filtration 0 = X411 C X, C --- C X; = M such that X;/X;1 = 6. Now, using
this filtration we see with the previous argument that each M; is projective, so M is in X.

g

Definition 19. Lett A be an artin algebra with (representatives of the isomorphism classes
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of the ) simple modules S, ..., S, and their projective covers Py, ..., P,. Then, one defines

AG) =P/ | S (P > P)
J>i
where the sum goes over all A-linear maps P; — F;. The algebra A is called quasi-

hereditary with respect to the ordering 51, ..., S, if the following two conditions hold:
(1) Ae F(A), where A = {A(4) |1 <i<n}
(2) Foralli e {1,...,n}: S; occurs with multiplicity one in a composition series of A(7).

If A is quasi-hereditary wrt. S1,...,S,, we call A(7),1 < i < n the standard modules
for A.

Remark. If @ has no oriented cycles, the set © has a partial ordering such that [6;,6;]' =0
whenever ¢ > j, and for all elements 6,0’ € ©, all homomorphism between 6 and ¢’
are zero or invertible. Let us fix a total ordering refining this partial ordering, wlog.
© = {0,...,0,} and the total ordering is the natural one on {1,...,n}. By | ,
theorem 2, p.14: There exists a quasi-hereditary algebra A such that F(©) = X is the
category of A-filtered modules.

Remember that we have fixed a numbering 61, ... 8, in the previous remark. This means

that we have chosen a numbering of the vertices of the quiver associated to KQ ® KA,.

Lemma 59. Let Q be without oriented cycles. The algebra A = KQ ® KA, has the
structure as quasi-hereditary algebra with respect to the previously fived numbering of the
vertices.

The category X is the category of A-filtered modules with respect to this quasi-hereditary

structure.

Proof: Set A := KQ ® KA,. It is enough to prove that all projective A-modules are
in X, because then one can take in the proof of theorem 2, | | the projective covers
of P, — 6; for the Py(i). By the theorem we get an identification of X with A-filtered
modules for A? = Ends(A) = Enda (-, P;) via the functor

A —mod — A’ —mod, X — Homy(A4, —).

But then clearly, applying the functor with exchanged roles of A and A° again implies the
claim of the lemma.

One can use the explicit recipe given in | |, I1I, lemma 2.4, to see that the indecom-
posable projectives P(i,s), i € Qo,s € {1,...,s} fulfill: For each a: (j,t) — (j,t + 1) we

consider the map

P(i,8)a: P(i,8) 3 — P(is8)(je+1), w+ 1= wa+1
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where I is the ideal given by the commuting squares and w runs through path from (i, )
to (j,t) in the quiver Q®”. Tt holds that wa € I implies w € I. In other words P(i, s), is
a monomorphism. Therefore, P(i,s) is in X. O

6.1.5 When is X representation-finite?

We say X is representation-finite if it has up to isomorphism only finitely many indecom-

posable objects.

Theorem 6.1.2. The category X is representation-finite iff the pair Q,v is one of the
following

(i) Q is of type Aa, v arbitrary, and the indecomposables of X are
(P(i) = P(5)), (P(s) = 0),(0 = P(t)), withi<j andi,j,s,t € {l,...,v}

where P(i) denotes the projective KA, -module corresponding to i.
(ii) Q is of type As, v =3,
(i) Q = A3z, v =14,
(i) Q is of type Ay, v = 2.

(v) Q is of type As equi-oriented or exactly one source or sink not in outer points or the

middle , v =2. 12

The answers for type As and type As have kindly been explained to me by W. Crawley-

Boevey.

Sketch of proof: As X is equivalent to Y which is by reversing all arrows equivalent to

X for the opposite quiver, we can ignore the opposite quivers.

e Positive answers: We write < (or —) in a quiver when we mean the category of
representations with this linear map injective (or surjective). There is an equivalence

between the categories of representations of

(1, D (L2 (1,3 (L)
Lo |
(2,1)—— (2,2)C (2,3)C -G (2,v)

and this quiver, where the dotted arcs are zero-relations

1,1¢ 1,2¢ . Ly—1—=1,v 2, v 2,1 2,2 2,v—1

12T this case I was not able to find a dimension vector with Tits form is zero, I do not really have a
proof that they belong to this list.
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A representation of the first quiver is a linear map f: X, — Y, mapping a flag of
subspaces X1 C -+ C X, to another flag of subspaces Y1 C --- C Y,. The functor to
obtain a representation of the second quiver is to replace the second flag by its dual
flag Y »Y/Y; —---—Y/Y,_4, then the condition that f(X,) C Y, translates into
the zero-relations. As the category of representations of the last quiver is well-known
to be representation-finite (i) follows.

With a similar argument we substitute the quivers

AN e s 7
N 7 7/ /
A Ve 7 Ve
N4 7 7

7/ 7/
Ve /
7 7
7/ 7/

by the following (the dotted lines are the zero relations):

a b c
2
v
v
JZ )
2
v
v
J__
2
v
/ B
J7 .

d
/ / / T N N
/ s/ / e e N N
/ v / e el AN AN o
/ / / . e N NI
. .

All algebras described by the last four quivers (consider the arrows — as usual arrows)

are quotients of incidence algebras of posets not containing any crowns. By results
in | 1.l | these algebras admit a preprojective component whose 7-orbit
quiver has as underlying graph a tree, which implies the preprojective component is
simply connected and we can apply 6.1.2 (a).

The quivers do not contain a convex subcategory which is m(> 2)-Kronecker, nor

one that can be found in the list | |, this gives a proof of finite representation

type.

negative answers: We give a list of dimension vectors written on the vertices of the
quivers Q®”, which give negative answers for all quivers not in the list (i)-(v). We will

choose infinite families of indecomposable Dy-representations and Eg-representations

of the form
1 51 1%2%3t2%)
N 7 ]
2 2
/0 N\ 0l
1 1 1

(the direction of the arrows are specified in the examples) subject to the condition
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Ba # 0, e(nb # 0 if the composition is welldefined. It might help to use for the outer

points of the quiver which are sinks the previous technique of rolling out an arm.

N

AN

N
— e D0 — D) —> N —> I

=

— = DD —> D) —> N
S A A
P
v v v
&

OS—=r—=N—=>W
\CD
N

— N —> D —> N

AN
AN AN AN AN

OO0 =0 —=>rH—N
O— = —=DN—=W—=>W

AN

1\«2\«2%1 1%2\«2%1 1%2\«2%1,
,Tﬁ\¢ \¢5\¢ ¢/ ,T \¢’Y\¢ ,T/ ¢ \’TO} ¢
1\«2\«1\«0 0%/2\«1\«0 0%/2\61%/1
(N N N | (PR CIN N IR N A |
1<-1=-0=0 0—>=1=0=10 0—>=1=0->0
1%2»/2\«2%1 1%2\«2»/2%1
,T\/ ¢/ ,T \¢’Y\¢ ﬁ/ ¢B\¢/ ¢’y\¢
0>1-—>2<1=<10 0—>1=0-—>=1=<10
1%2%3\«3%2%1 1%2%3\«3%2%1
1\ \¢ \¢n0\¢ \7\ \¢ ,?/ 1\ \¢n0\¢\ \¢ \7\
1<—2<221<"0<0 0—>2<9<1<0=<0

Example. An explicit example for the previously discussed indecomposables.

Q=1

()
w
S
t

and v = 2 (ignoring the zero representation). One can see Xgev+1 as a subcategory of
(A,,C). It holds KQ ® KAy = KQ%? with

Q®2 _

° ° [ [ ] [ ]
7/ / N N
/ / N N

/ / AN N
/ 7/ N N
[ ] [ ] [ [ ] [ ]
€I, according to case Ity € dimension vector d — 1S a rO0t Spannii
Then, ding t : E7, the d tord= ({332} t

the radical. There are infinitely many isomorphism classes of indecomposable KQ%?-
modules of dimension vector d.
For example, we can find the following family of pairwise non isomorphic indecomposable
modules, for A € K \ {0} define

Xy = K K2 K? a K2 K
i @j{ ) i ) jj” l
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Remark. For Q) = As we saw that the associated category X is representation finite. One
can also check directly that the Tits form is positive definite on this category.

For any v € N, and d = (gﬁzg dl - g:) £ 0 with d* < dF+l ek < b+ for all k €
{0,...,v — 1}, we have

(d,d) >0

Furthermore, if X in XA%@u-Q—I is a module with (dim X,dim X) < 1, then it holds that
dv,e” € {0,1}. Especially, all bricks fulfill this.

For the proof just consider.

v v v—1 v—1 v v—1
d> — dedk +Z€k€k o de—l-ldk . Zek-i-lek . deek + deek+l
k=0 k=0 k=0 k=0 k=0 k=0
v—1 v—1
_ Z dk+1(d/€+1 o dk Z k+l k:-i-l k:) . dk(ek—i-l . ek) _ dve
k=0 k=0 k=0
v—1 v—1 v—1
— Z dk+1(dk+1 _ dk) ek—i-l(ek'—i-l _ ek) _ (& — dk)(ek—‘rl _ €k)
= k=0 k=0
We set xp, := d* — dF yp = eFTL — ek 0 <k <v —1, A= (a;j)i; with a;; = 1if j >4,

a;; = 0 if j <4, then it holds that

(d, Zxkzxﬂrzykzyl Zykzﬂfl

1<k 1<k 1>k
= 'Ax + Ay — yAx
= —y)A(z —y) + 2 Ay

It holds B = l(A +!A) is positive definite. This is easy to see using the fact that main
minors all have the same form as B and det B = [[;_; k“ > 0. So, if x # y the first

summand is positive; if x = y the second summand is pos1t1ve

6.2 Tangent methods

Tangent spaces of the (not necessarily reduced) scheme FIQ( ) of finite type over K have
been described by Stefan Wolf (| |, Lemma 5.23 ). He showed that for U € Flg ( 4)(K)
the tangent space at U is

TyFlg (Aj ) — (U, MJU),

) ) . id id id
where M is considered as A-module via M = M 2% ... 2% M.

Here it is important to let the flags start at 0 because then
MU= (M-M/U"—-M/U*>—.--— M/U" =0).

Remark. We set Gry (J‘(f) (K):={U | U A — submodule of M,dimU = d}.

In his proof of | |, Lemma 5.23, Stefan Wolf found an isomorphism (very similar to
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the map ¢ below)

M M ; ;
GrA<d> _>F1Q<d>v (U0_1>“'—V>Uy)*—>(U0CU1C-~CUV:M)7

it is welldefined as the maps ¢; are restrictions if idy.

6.2.1 An example of a not generically reduced quiver flag variety

The quiver flag variety Flg (]g ) is a closed subscheme of F(d) which is just a product
of #Qo flag varieties. These iave well-known affine charts given by matrices in column
echolon form with 1 at pivot positions and the other nonzero entries are the coordinates
of the affine space and row permutation of these, see example below. We can pull them
back to Flg (Jg ) to get a family of affine schemes which glue together to Flg (]g ), We still
call them charts even though they are not affine spaces in general.

We use this to give an example of a generically not reduced Flg (A(f )

Example. The six affine charts of the Grassmannian Gr(2,4) are given by

10 1 1
Al = <)O( }1/> )AQ = <18{ >7A3 = ()1? )7
Z U A 0

0 0
S S
1 1'%
U 1
vy vy 4
As=1{¢617 |4 =|xvy ). 4= Ifg
zZU 01 0 1

A 0000
R? i R /\M::<0010>
" \8000
The charts Uy, of the quiver flag variety are then given by the closed condition

A short check shows that Us, = Ua, = Ua, = Uay = 0.

For Ua, we calculate
1000
w<§}§5>§2<:>&(%§5)§1
ZU0 0 voo
and this holds if and only if UX =0,UY =0,Z =Y X,Y? =U. So we find
Ua, = Spec K[X,Y,Z,UJ/(YX?, Y3 Z - YX, U~ Y?) = Spec K[X, Y]/(YX?,Y?).

Set I1 := (YX2,Y3), we see /I = (Y), so Ug, is a thickened affine line, in particular in
it is generically not reduced.

For Ua, we calculate



and this is equivalent to ZW =0,UZ =0,V = —UW, Z = —U?. So we find
Ua, = Spec K[V, W, Z,U]/(—~U*W, —U? V + UW, Z + U?) = Spec K[W, U]/(U*W, U?)
We conclude Flqg (]g ) = Uya, UUy,, is not generically reduced, we see it as a thickened P'.

6.2.2 Detecting irreducible components

Lemma 60. Let X be a locally noetherian scheme, Z C X be a locally closed, irreducible

subset.
a) The following are equivalent:

(i) Z is an irreducible component.

(i) Z contains an open subset of X.

b) Let X be a scheme of finite type over an algebraically closed field. We give Z the

reduced subscheme structure. Then the following are equivalent
(i) There is a closed point x € Z such that dim T, X = dim Z.

(ii) Z is an irreducible component that is generically smooth in X, which means by

definition Ox , is reqular, where z is the generic point of Z.

Proof: ad a):

Let U C Z such that U is open in Z. Let Z C Y C X such that Y is an irreducible
component of X.

(i) < (i7) Obviously, U open in Y = U=Z=Y.

Replacing U by U' = U N (U irred comp X \ T') gives an open in X, the other implication
is clear.

ad b):

(i) = (ii) Suppose Z is not an irreducible component, then Z |- Y with dim Z <
dimY. Then for all x € X dim Z < dimT,Y < dim7T,X.

We have shown by contraposition that condition (¢) implies that Z is an irreducible com-
ponent.

Also condition (i) ensures dim Z = dim 7, Z, so that Z is generically smooth. But that is
not enough because we do not know that X is smooth in z yet (it could be that Ox , is
not reduced).

Since i: Z — X is an immersion, it induces an isomorphism on tangent spaces at z. As
Z is smooth at x it follows that Z — X is etale at « and therefore X is smooth at z. As
the locus of smooth points is open in X it follows that there exists an open neighbourhood
U C Z such that |y is etale. Since it is also an immersion, it follows that it has to be an
open immersion and therefore Z contains as an open subscheme an open subscheme of X
and the condition for the local ring follows.

(ii) = (i) Suppose Z is an irreducible component. Let U C Z such that U is open in X
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with all points in U are smooth in X and Z. So the induced subscheme structures from Z

and from X coincide on U and for all € U it holds that
dimT, X =dimT,U =dim7T,Z = dim Z.

Corollary 6.2.0.1. Let M € Rq(d)(K) with K algebraically closed, C C Flg (]g) a locally

closed irreducible subset. Then the following are equivalent:
(1) C is an irreducible component that is generically smooth in Flg (]g)

(i) dim C' = [C, M /C] where [C, M/C] := min{[U, M/V]r | U,V € C(K)}.

Proof: Follows from the tangent space calculation for quiver flag varieties and the pre-

vious lemma b).

6.3 Stratifications

Definition 20. Let X be a scheme. A stratification of X is a family X; C X,7 € I of
locally closed subsets with X = J,.; X; and X; N X; = 0 for all i # j in I. We say a
stratification (X;);er

iel

e is finite if [ is finite.

e has property P € {smooth, affine, irreducible } if for all i € I: X; has property P.
o fulfills the boundary condition if Vi € I thereisa J; C I: X, = UjeJi X;

We recall the well-known fact.

Lemma 61. If X is a scheme with a finite, irreducible (not necessarily disjoint) stratifi-

cation of X, then every irreducible component is the closure of a stratum.

Proof: As we have a finite stratification, a highest dimensional irreducible component
C must be a closure of a stratum. Then look at the complement U = X \ C with the
stratification (X; N U)ser. If X; NU # 0, it is irreducible with X; NU = X;. So, we can

repeat the initial argument. O

6.3.1 Stratification in orbits

We look at H = (Autxgg(M)) operating on Flg("). Recall that H C Endgq(M) is
open in an affine space, therefore H is irreducible and smooth. The stratification in orbits
is smooth, irreducible, and fulfills the boundary condition but unfortunately, unless the

quiver is quite small, we can not expect it to be a finite stratification. For U € Flg (J(Vi[) set
Oy :=H U CFlg (]\G/{) We first have a look at
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Lemma 62. Applying (U,—)x to the short exact sequence 0 — U — M — M/U — 0

yields a 6-term exact sequence

0— (U, U) = (M, M) % (U, M/U) - (U,U)* & (M, M)* — (U, M/U)* — 0.

Proof: For the vanishing of the higher Ext-groups and (M, M)} = (M, M)}(Q

see | |, proof of Thm 5.27. The isomorphism (M, M) = (U, M) is clear, and for the
map (M, M)! = (M, M)gq — (U,M)" the map X = (X; — --- = X,) = X, is an
inverse (where X € (US,M)}(Q). O

Corollary 6.3.0.2. For a point U € Flg (]\c;[)(K), the following are equivalent:

(i) Ou is an irreducible component of Flg (Ag/[) and U is a smooth point.
(ii) p surjective (<= i injective).
(iii) [M,M] - [U,U] = [U,M/U] (<= [M,M]' - [U,U]! = [U,M/U]").

In particular, if [U,U]* =0, then U is smooth and Oy is an irreducible component.

Proof: The inclusion coker((U,U) — (M,M)) — (U, M/U) can be identified with the

inclusion Ty Oy — TyFlg (]g ) The rest follows from the lemma above and lemma 60. [

6.3.2 Reineke’s stratification

We use this name because Reineke introduced the stratification in | |-

We denote by [N] the isomorphism class of a representation N. For a sequence of iso-
morphism classes of representations N, = ([No], ... [Ny—-1], N, = M) Markus Reineke (see
[ |) considered the following subsets of Flg (]g )

M
F[N*] :{U:(O:UOCUlcCUV:M)€F1Q<d>| USE[NS],OSSSV}.

He showed that they are nonempty if and only if dim Ny = d°, 0 < s < v and there exist
monomorphisms Ny — Ny for k € {0,...,v—1}.
Furthermore, if they are nonempty he showed that they are locally closed, irreducible,

smooth of dimension

> ([Nk—1, Nil kg — [Nk—1, Ne-1] k@),
k=1

and Flg (]‘(f) is a disjoint union of these subsets. Obviously, if U € Fy,}, then it holds
Fin,] = Fy,)- T will call them Reineke strata and the collection Reineke stratification.

We reprove his result in the following remark:
Remark. Consider U := [[/_, Inj(Ny—1,Nx) € Xg, (%) and H := [[}Z] Autxo(Ny).
Then H operates freely on U (it follows for all orbits dim H -z = dim H), and the restricted

map

Plu: U — Fin,]
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is constant on H-orbits, surjective, and has the H-orbits as fibres. We also have a cartesian

diagram
k

Uu [Tiz1 [ieq, Wik (K%

¢ ¢ol

FIN F(d)

1 l(df)

Therefore, ¢l is a locally trivial fibration. It follows that it is a principal H-bundle. As

U is smooth and irreducible, it follows Fy,] is smooth irreducible of dimension
dim Fy,) = dim¥ — dim H.

Remark. Stefan Wolf constructed also the following exact sequence as a generalization of
the standard sequence for K@Q-modules (see | |, Appendix B ):
Let U=(U"— .- = U"),V=(V?—... 5 VY= M) be two A-modules.

v v
Yu,v

0= U, V)= [0 VF) ke =5 TTW0 V) ke
k=0 k=1

= (U V) 25 TTOR VKo = [TO VK = (U, V) >0
k=0 k=1
IfU € FIQ(]\(;[)(K) and V € {U,M,M/U}, then (U, V)% = 0 (see | |, proof of thm
5.27). -
Let U € Flg (]\(f )(K). The following conditions are equivalent:

(i) Ou is dense in Fy,].
(ii) puu is surjective ( equivalently ny ¢ injective ).

(i) (U, U] =35 olU* U¥lkq + X5 [UF 1 UFkg =0
( — [U7 U]l - ZZ:O[Ukﬂ Uk]}(Q + Zz:l[Uk_lﬂ Uk]}(Q = 0)

Just compare dimensions of tangent spaces and use lemma 60.

Remark. Recall that for every d € NOQO, N,L € Rq(d)(K) we write L < N if N € Or,
where Or, C Rq(d) is the Glg-orbit of L. We call this the degeneration order, it is a partial
order on Rq(d). Let Ny = ([No],...,[N,] = [M]) such that Fiy,j # 0 with for all other
L, with Fiz) # 0 it holds for all k € {0,...,v} : Either Ny < Ly, or Ny and Ly, are not
comparable in the degeneration order.

Then if the Reineke stratification is finite, m is an irreducible component of Flg (1\({ )
and Fy, is open in Flg (]‘é[) -
(Proof: Assume Fjy,) C ﬁ, then Fiy,j N Fir,] # 0. This implies for all k£ € {0,...,v}
: L < Ny, so by assumption Ly = N; and f[N*] = J-"[L*].

We also proved that Fy,; has empty intersection with closures of other strata, therefore

it follows that Fy,) is open if the Reineke stratification is finite.)

Corollary 6.3.0.3. The following conditions are equivalent.
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(i) Fn,) is an irreducible component of Flq (]g) that is generically smooth inside Flg (]g)
(1)) There is U € Fin,) such that dim Ty Flg (]\é[) = dim Fly,), te.

v

U, M/U] =) (U, U"kq - UM, U ko).
k=1

(i4) There is U € Fy,) such that

U, M/U)' = EV:([U’H, UMkq — U1 U k).
k=1

If the Reineke stratification is finite, this detects all irreducible components that are gener-

ically smooth inside Flg (Aé[)

Proof: By lemma 60, it remains to show (i1) <= (iii). But using lemma 62 and remark
6.3.2 we obtain two formulas for [U,U] — [U,U]'. The resulting equality easily shows the

claim. O

6.4 A conjecture on generic reducedness of Dynkin quiver
flag varieties

We introduce scheme structures defined by rank conditions on orbits and Reineke strata,

following the work of Zwara in | |-

6.4.1 Schemes defined by rank conditions
Let My, be the Z-scheme of u x v-matrices with the operation of the following group
G = Gl, x Gl, via

(91,92) xx:=g1-x- g5 "
for any g = (91, 92) € G(S),z € My,x,(5) and commutative ring S. Let s < min(u,v), we
define Y to be the closed subscheme of M, given by the condition that all determinants

of (s +1) x (s + 1)-minors vanish. Let Vs be the open subscheme of Y; given as the
complement of Y;_;. For any field K, it is easy to see that V5(K) = {x € Myx,(K) |

Es 0
rk(z) = s} = G(K) - ( Os 0). Furthermore, it is known that

Vis(R) :={x € Myxy(R) | Im(x) C R" is a direct R — module summand of rank s}

= {z € Myxy(R) | ker(z) C RY is a direct R — module summand of rank (v — s)}

for any commutative ring R ([ |, Prop.5.4 for the first description, the second equality
is easy to prove). We want to calculate its tangent spaces, therefore the following lemma

is useful, it is due to Zwara .
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Lemma 63. (/. [, Lemma 3.2, 3.8) Let K be a field and S a local commutative ring

such there exist ring homomorphisms idg: K — S — K, set m := ker(S — K).

(i) For any x € Myx,(S) there is a g € G(S) such that

E, 0
g*xx =
0 =z

for some t < min(u,v) and some z € M, _y)x (v—t)(M).
(1)

Vi(S) = G(S) - (Jf) 3)

If dimg S = h < oo, then Vi(S) = {z € Myxo(S) | rk(T) = s,rk(z) = sh} where
Myxv(S) = Myxy(K),x +— T is the map induced by S— K, and z: S* — S is

considered as a K-linear map between finite dimensional vector spaces.

Recall that for a scheme X of finite type over a field K and x € X(K) the tangent

space T, X is defined to be the preimage of x under the canonical map
X(K[T)/(T%)) — X(K).

As a shortcut we will set K[e] := K[T]/(T?),e ~ T. Using the previous lemma we can

describe now the tangent space of V.

Es; 0O
Corollary 6.4.0.4. Let x € Vi(K) with x = gxe for g = (g1,92) € G(K),e = ( 0 0) ,

then

T 0 -T B
T.Vs = {(g1- (A 0) 92 ( 0 O)) € Mysu(K) X Myso (K) | T € Mgxs(K)}.

Its dimension is s(u+ v — s). Furthermore, seeing x: KV — K" as a linear map, we find
an identification
T,Vs 2 {p € Homg (K", K") | o(kerz) C Imx}

explicitly given by (91 (48) .92 (& §)) = a1 (55) 05!

Proof: Using the description given by the previous lemma (ii) it is not difficult to see

that T, Vs = g - T. Vs, so wlog x = e. Again by the previous lemma (ii)
Vi(K[e]) = G(K[e]) - e = G(Ke]) / Stabg s [e)) (€).-

Now, we have

Stabg(e) := {(<§ if) , (Z‘;l V(I)/>) € Gl, xGl, | Z € GL;}
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is the closed subscheme whose K-valued and K[e]-valued points are the stabilizers of e.

We find a short exact sequence of pointed sets

G(K[e]) — G(K)

Vi(K[e]) — Vi(K)

where it is easy to the check that the induced first column is exact, for example for rél (1) —
r;l(e) surjective just note that for gxe € r;l(e) with ¢ = (go + €91, ho + €h1) we have
gre=(14+egigy’, 1 +chgthi) xe. Now, (1 +egigy’,1+ehythy) € 7“51(1) and maps to

g x e. Thus, by definition we have a short exact sequence
0 — T Stabg(e) —» TG — T.Vs — 0.

which gives T,V = {((43), (" 5)) € Muxu(K) X Myxo(K) | T € My s(K)}.

The vector space isomorphism is easy to check. O

6.4.2 Quiver-related schemes defined by rank condition

Let @ be a finite quiver, K be a field. We assume the reader knows Rq(d). We start with
two very basic constructions. Let N, L be two finite-dimensional KQ-modules. Let R be

a commutative K-algebra. We define

1)
(Injreq(N, L))(R) := {(fi)icq, € Hompq(N @ R,L @ R) |
fi split monomorphism for all i € Qp}.

This defines an open subscheme of the affine space defined by R — Hompgg(N ®
R, L ® R).

2) Fix t € N and choose a free representation (KQ)? % (KQ)? — L — 0 with y =
(aij) € Myxp(KQ). Assume that the underlying graph of @ has no oriented cycles.
Every N € Rq(d)(R) can be considered as an R-algebra homomorphism

N: RQ — @ Mg xaq, (R) = Maxa(R)
(k1) EQoxQo
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with d =370, di via
€i = (0(k,)(i,0) 1Rai ) (kD)eQox o> (@i 1= 7) = (0(10),(1,) Ner) (k1) €Qo x Qo
Then we can define f: Rg(d) = Mgdxpa on R-valued points via
N = (N(aij ®x 1r))1<i<q1<i<p
Then we define Rq(d)[L, t] as the pullback in the following diagram

Ro(d)[L, t] — Vyu—r

| |

Rq(d) Myaxpd

or explicitly on R-valued points

Rq(d)[L, t](R) = {N € Rq(d)(R) | Im((N(ajj @x 1g)): RP* — R
is a direct R — module summand of R% of rk qd — t}
= {N € Rq(d)(R) | Hompq(L ® R, N)

is a direct R — module summand of RP? of rank ¢}

Zwara proved that for S an n-dimensional commutative local K-algebra with idx: K —
S — K,

Rq(d)[L, t](S) = {N € Rq(d)(S) |
dimg Homgq(L, N) = tn,dimg Homgq(L, N ®g K) = t},

and the functor Rq(d)[L, t] is uniquely determined by the isomorphism class of L
and the integer ¢ > 0.

There is an obvious generalization of Zwara’s scheme structure: Given L := (L, ..., L,),
a sequence of finite dimensional KQ-modules, ¢ := (t1,...,t.) € Nj, and a choice of free
resolution

(KQ)P' — (KQ)% = L; = 0
we find

Ro(d[L,t)(R) := {N € Rq(d)(R) | Homgq(Li ® R,N)

is a direct R — module summand of RPi% of rank ti,1<i<r}
by definition Rq(d)[L, t] = Rq(d)[L1, t1] Xrq ) *** XRq(d) RQ(d)[Lr, t:], s0 it is a scheme.

Orbits defined by rank conditions

From now on, let @) be a connected Dynkin quiver and Lq,..., L, be a complete set of

isomorphism classes of indecomposable finite dimensional K @-modules.
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Let N € Rq(d)(K) be a module. We write
ty = (t1,...,t;), tp:=dimHom(Lg,N), 1<k<r
and define

On = RQ(D)[L, ] = Ro(d)[L1, t1] XRg(a) -+ ¥Rg(@) Ra(d)[L, t];

this is a subscheme of Rg(d), the morphism Oy — Rq(d) is an immersion. It holds that
5];([() = Gl(K)-N. If Oy is reduced, then it is equivalent to the orbit scheme Oy,
which is defined as the reduced subscheme with Oy (K) = Gli(K) - N. In general, we do
not know when this is reduced. We call the scheme Oy the orbit by rank condition.
For the reduced scheme structure, we remark the following lemma, which is a special

case of | |, Prop. 5.7.

Lemma 64. Let Q be a quiver, d € NOQO, N € Rq(d)(K), G = Gl and we write O C
Rq(d) for the Glg-orbit. Then it holds

Proof: Let p: On(K[e]) = On(K) be the map induced from Kl[e] - K, ¢ — 0. By
definition it holds p~!(L) = T Oy for L € On(K). Recall that by Voigt’s Lemma we

know that for the standard exact sequence

0 = Endro(L) = [] Ma(k) % [ Muyxa,(K) = Extho(L,L) = 0
1€Qo i—jeQ1
with ¢ is given by (x;); — (2;Li—j — Li—;j2;)i—; it holds that Im(¢) = T On. For the free
K[e]-module K[e]", we fix a K-vector space basis e1, - , ey, €€1,...,ce,, that means that e
operates on K[e]" by the nilpotent operator (% 9). Now a K[e]-linear map K[e]" — K[e]™
corresponds in the basis to a matrix ({,( )0() € Momxon(K) with X|Y € Mpxn(K). In

particular, we have
(k) = T] Gla(xle) = TT{(5 1)) € Gl (K) | T; € Gly, (K), 2 € Mo, (K)}
1€Qo i€Qo

and we write

U= TTA(E 2) € Glag (K) | a1 € M (K)}.
1€Q0

We can see

TLOy = {A = ((LHJ' 0 ))Hj € Rog(Q)(K) | A= N @ N as KQ — module}.

Aisj Lisj
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We set L. := L@k Kle] = ((LiO”j 0 >)i_>j. We claim that as a consequence of Voigt’s

Li_;
Lemma we directly get
TLON = Ue : Le

where the operation is the restriction of the operation of Glog(K) on Reg(Q)(K). To see

Li—>]' 0
0 Lisj

this the diagram

K2di K2dj
(z &) (s £)
K2di K2dj

(5 2)
commutes if and only if A;; = x;L;—; — L;—;x; which is how we discribe all points in
the tangent space by Voigt’s Lemma.
Now, it holds by definition of the scheme structure on Oy that G(Kle]) - N. C On(K]e]).
But we also know On(K[e]) = Upeco, (k) p~YL). If T € p~Y(L), we fix an isomorphism
f:L = N in Gly(K), then f® 1 = (f 0) =: N. — L. is in G(K[e]). By the previous

0f
discussion it holds that there is a ¢ € U, such that

T:g'Lezg'((f®l)'N€)GG(K[s])'NE~

Reineke stratification defined by rank conditions
We consider Ny,---, N, := M finite dimensional K @-modules,
d = (dl = dim Nyp,...,d” := dim N,). For any KQ@-module N we define Un, =

(LNN ce vLN,,)'
Let R be a commutative K-algebra. Let (A, ) be the the quiver with the relations such

that KQ ® KA, = KA/I. We define the following
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. fl/—2 Ul/_l fu—l\ M)

>(R) ={U=0->0 0, 2.
€ Ria,n(d)(R) | (fk)i split monom. ,1 <k <v—1,i€ Qo}
M
F1Q<d>(R) = {U:(O—>U1CU2C"'CUV71 CM)‘

flag of KQ — mods,dim U = d}

—~—

Xv(R) = {U = (0= U, D5 0 L2 2

Ul/—l

Ui € RQ(d)[L, tk,(N})](R), 1 <i<v—1}
Fvg(R)={U=(0cU C---CU-, cM)eFlQ(]\Q(R)y

Hompg(L; ® R,U;) is a free direct R — module summand of RPi%

of rank dimyg Hompgq(L;, N;),1 <j<r1<i<v—1}

Lemma 65. All of these functors are represented by schemes. There is a cartesian com-
mutative diagram

Xy, —> Xqev ()

| |

e M
Fivg —Flo(q)
defined on R-valued points for a commutative K-algebra R by Xgev+1 (AdJ) (R) = Flg (1\(;[) (R)

fufl
S

0— U Ly M) (0C Im(fy-- fyo1) C ---Im(f,_1) C M)

and the left vertical map is its restriction to )f[\]\:](R) — ]?[;Vj](R) The vertical morphisms
are principal G-bundles with G = [, Glgs, the vertical morphisms are immersions.

We call f[;:] a Reineke stratum as rank scheme.

Proof: The principal G-bundle Xgev+1 (]g[) — Flg (]\é[) is the one from the beginning of

this chapter. That )f[\N/] defines a scheme is because it is an iterated pullback of a rank

scheme as defined before (left to the reader). Then, by | |, Lemma 4.7 there exists
the geometric quotient m/G It follows that this has to be f[;\:} t

Remark. If f[]\vj] is reduced, then it equals the smooth scheme Fy,) which we called a

Reineke stratum.

Lemma 66. Let Q be a quiver, d = (0,d',...,d") € Ngg“ and 0 - Ny - - —- N, =M
a A-module in XQ®V+1(]£[) (K) such that 6;k = Op, 15 reduced 1 < k < v. Then, the

Reineke stratum ]?F]\Z] C Flg (A(f) as rank scheme is smooth, i.e. .7:?]\:] = FIN,)-

Proof: It is enough to show that )/([:\Z} is smooth, where )/(E\Z} C Xgov+ (]g) is the
pullback of Fiy,) by the principal G := [],.,-,_, Glg-bundle Xgavii (%) — Flg(%).

203



We have a natural map

—

¢: [ Mirg(Ni—1, Nk) x G = Xy,
k=1

which induces a morphism
J— v —_
¢ [ Mirg(Ni—1, Ni) x" G = X
k=1

with H = [];<<, 1 Aut(Ng). It holds that ¢(K) is an isomorphism. Since
_q11Inj k—1, V) X 1s smooth, 1irreducible of the same dimension as Xy, 1t 18
ZII'KQN N LEER! h, irreducible of th di i Xn,] 1t 1

—~—

enough to show that

S(K[]): [ Injrg(Ne—1, Ni)(K[e]) x G(K[e]) = Xin, ) (K[e])
k=1

is surjective, because it implies that ¢(K[e]) is surjective, and that implies that the tangent

space dimensions on [[}_; Injxq(Nk—1, Ni) xH G are greater or equal to the tangent space

dimensions on )?E/ For every z € ([[7_; Inj Ni_1,Np,) xH @) (K) that gives us
[N«] k=1"TKQ

dimX[N*] = dime H IanQ(Nk—lv Nk) XH G > ding(x)X[N*] > dimX[N*],
k=1

—~ —~

L.e. the tangent spaces have all dim X[y, which implies that X|y,] is smooth.
But that ¢(Ke]) is onto follows directly from the lemma 64 because a point in i[;\:] is of

the form

Lm0 3y 2 0y o 2 g, = )

with M; is in On,(K[e]) and f; is a KQ ® K|[e]-linear map which is an injective K-vector
space homomorphism. Then, by the previous lemma there exist g; € Gl (Ke]) such that
M; = g; - (N;)e. This implies

L=0¢((g2f197 " 93295 s Gv—1fv—29" 0, foo19v-1), (gi)1<i<v—1)-

The conjecture

Conjecture. Every Dynkin quiver flag variety is generically reduced. This follows from
(1) and (2).

(1) For every representation M € Rq(d)(K), it holds that Oy = Ouy.

(2) For every f[;\:} C Flg (]\é[) such that

Fin,)(K) is an irreducible component of Flg (]s[ )(K), there is an open subscheme
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U C Flg(Y) such that U(K) C Fiy, (K) and for all z € U(K)

—_— M
Txur[N*] =T,Flg < d ) .

In fact, ad (2): Let F|z, _j< the open subscheme such that F;, _j—(K) = Fn,)(K)
and assume W is an irreducible component C(K) of Flg (A(f J(K). In | |, Hu-
bery describes a natural generic scheme structure on C' comingifrom the primary ideal
decomposition. Observe that C(K)NFr, _j<(K) = Fn,(K) is an open subset of C(K).

We conjecture that

—

this would implies (2).

Corollary 6.4.0.5. Let Q be a Dynkin quiver and Flg (]g) generically reduced. For all
= KQ ® KA, 11-module N :=
(0= Ny = Ny—---—= N, = M) in X. Then the irreducible components of Flg (]‘dJ) are

non-empty Reineke strata Fiy,) C Flg (]g‘[) we fir a A

_ M .
{f[N*} C F1Q<d> ’ [N, M/N] = dlmf[N*]}.

6.4.3 Canonical decomposition

This is a review of a result due to Hubery saying that irreducible components of quiver flag
varieties admit canonical decompositions analogously to Crawley-Boevey’s and Schrer’s

article Irreducible components of varieties of modules, see | |

Notation of this subsection: K is an algebraically closed field. Let d, ..., ,d be di-
mension filtrations of length v, M; € Rq(,d”)(K),...,M; € Rq(;d”)(K) be KQ-representations
and Cq C Flg (]Ydl), ...,Cy CFlg (]:4(;) locally closed irreducible subsets. We defined locally
trivial fibrations ;: Xqovt (]\ﬂ’) — Flg (]\ﬁ), 1 < ¢ < ¢ in the first subsection of this
chapter and we call D1 C Xgevt1 (]l/lgl), ooy Dy C Xgavi (]ﬁ) the preimages of C1,...C.
We set .

M=@PM, d=) d

i=1 i=1
the groups H := Aut(M), [[,c,<,  Glgs operate on Xgevi1 (A(f) by A-module isomor-
phism,
- M; .

the groups H; := Aut(M;), [[1<.<, 1 Gl g+ operate on XQ®V+1(‘d), 1 <i<thbyA-
module isomorphism.

Furthermore, we consider the map
M
a: Aut(M) x Cy x ---Cy —>F1Q(d>,

defined via a: Aut(M) x Dy x---x Dy = Xgevi (]‘(;[), (hyx1,. .. x0) = h-(@i_, x;), then

check that ¢ o a is constant on orbits under the group action of ngsgu—l Gl gs x - X
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[Ti<s<p—1 Glas. We set Im(a) := C1 @ -+~ & C, then
Cio-- oGy

is an irreducible closed subset of Flg (]g )
Furthermore, we call the projection on the sink functor fp: A — mod — KQ — mod, (Uy —

-+ = Uy) = U, and the regular mapping fp := 7¢: Xgev+ (]g) — Rq(d) as a shortage

for flagpole (even though A-modules are no flags).

Theorem 6.4.1. Let C' C Flg (]\é[) be an irreducible component, then
C e Cl @ P @ Ct

for some irreducible components C; C Flg (]_\g), with the property that the general module
mn each D; = goi_l(Ci) 1s indecomposable. Moreover, Cy,...,C: are uniquely determined by

this, up to reordering.

Lemma 67. (/. [/, Lemma 6.5) Let d and e be two filtrations of length v, M €
Rq(d”")(K),N € Rq(e")(K). The functions

N M N M
F1Q<e>XF1Q<d>—>Z, XQ®V+1<e>XXQ®u+1<d>—>Z

defined by (U, V) + [U,M/V]' are welldefined and upper semicontinuous. In particular,

in the notation from above, the following conditions are equivalent:
1) fori# j: [Ci, Cj] — [M;, Mj] + [Cy, M/ Cj] = 0,
2) fori#j: 3U € C;,V € C; with [U, V] — [M;, M;] + [U, M;/V] =0,
3) fori#j: 3U € C;,V € C;j with dimker((U,V)! — (N, M)) =0.
Using the equivalence of 1) and 3) we can reformulate the main theorem.

Theorem 6.4.2. (A. Hubery, [ |, Thm 6.7) If C; C Flg (]V([il)7 1 <4 <t are irreducible
components, then C1 & --- & C; C Flg (]g) 15 an rreducible c:mponent if and only if for
all i # j: -

[Ci, Cj] — [ My, Mj] + [Ci, M/ Cy] = 0.

To show that these are basically rewrites of results of Crawley-Boevey and Schréer we
include the proofs of theorem 6.4.1 and lemma 67. A proof of theorem 6.4.2 following

[ | is also possible. Of course, you find more general proofs in | I

Proof of theorem 6.4.1: This is nearly a copy of | |, theorem 1.1., but the situa-
tion is slightly different.

Let D = p~1(C), D D D™ be the constructible subset of indecomposable d-dimensional
A-modules. Every d-dimensional module U € D is isomorphic to a direct sum of inde-

composables, so lies inside a set S = D" @ ... @ D" for some irreducible components
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D; C Xgovt (Aﬁ) Since all S are locally closed and there are only a finite number of

possible S inside D covering D, there has to be one containing a dense open in D. Fixing

this set S we get for it

E:Dzl'nd@...@Dgnd:m:D’

and therefore C = C1 @ --- @ C;. The set @~ 1(S) has to be Aut(M) x Di"d x ... x Dind
by Krull-Remark-Schmidt theorem. As S contains an open of D, it follows for 1 < ¢ <t
Dfnd contains an open of D; and C’f"d contains an open of C;. This finishes the proof of

the existence statement.

The proof of the uniqueness statement is entirely the same as in | | mostly just using
the Krull-Remark-Schmidt theorem. O
Proof of lemma 67: We use the symbol ——|— for closed immersions. In | ,

proof of thm 1.3(i), the authors construct for any algebra A and dimension vectors d, o,d
schemes V§¢® C—|—= Rqav+1(1d + od) x V3*(;d, od). It comes together with two regular

maps (for the existence, see loc.cit.):

Rqev+1 (;d) RQ®u+1(2Q)

Now, assume that ;d is a filtration, ;d + od = (d,...,d) and consider
Rq(d) &= Rqev+1((d,...,d)) via M — (M = M = --- = M). We then can define a

closed subscheme Z —|— V§* on K-valued points via

Z(K) = {(m,0,0) € Vi NRq(d) x V**(d, 1d) |
(m,0,9)=:0-U—-M=---=M)—V —0in A —mod,

fp(€) = M % M — 0}

As before, if it is clear from the context, we will just write M instead of (M = --- = M).

Then, the mapping roof restricts to

Z
VAN
X Y,

where X(K) := {(Uy =0—= Uy —---—=U,) € Rgav+1(1d)},

Y(K) = {(Vo—»Vi— >V, =0) € Rgav+1(od)}. Let R, P be the Q5" *'-graded K-
vector spaces underlying the points of Rgev+1((d, ..., d))(K), Rgev+1(od)(K) respectively,
let G be the automorphism group of P and W be the variety whose K-rational points are
given by the K-linear surjections R — P. It has a transitive G-operation via 6 — g0,

g € G,0 € W. Then using the description from loc. cit., we get a closed embedding
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V3¢ = X x W, describing V¢ as {(U,0) € X xW | (U) = 0}, we get a factorization

of s in the following way

§: 7= Vi® = X x WXL X,

The first two closed embeddings are G-stable, therefore s is mapping closed G-stable subsets
to closed subsets.

Now, have a look at the following commuting diagram:

X xZ
1xt 1xs
X x X X xY
[—,fp<%\ /—11
Z

with [—,fp(=)/—]": X x X = Z,(U, U’ = (0 = Uy ---—= U, = M) — [U,M'/U! and
[J': X xY = Z,(U,V) + [U, V]!, the second map is known to be upper semicontinuous
by | |. Let e € Z, it follows that

Axt)y " HUV)eX xY |[UV]! >e} =
{(U,0-U - M-V =0 cXxZ|[UV]'>e}
is a closed subset of X x Z. Letting G operate just on the second factor of X x Z, the

subset is also G-stable. Now, as s maps G-stable closed subsets to closed subsets, it is easy

to see that 1 x s does the same, and it follows that
{(UU=(0=U—---—=U,=M))e X x X | [UM /U] >e}

is a closed subset of X x X. Then also the following map is upper-semicontinuous x: X x
X = Z,(UU") —

U, U] — [M, M|+ [U,M' /U] = [U, U — [M, M) + [U, MU'}

which is the same as dimker((U,U’)t — (M, M’)!). So the equivalence is trivial as the
intersection of the open locus, where [, fp()/]' is minimal with the open locus, where

[—,—]': X x X — Z is minimal has to be the open locus where the map & is minimal.
O

Corollary 6.4.2.1. If C; C Flg (Aﬂi), 1 <1 <t are wrreducible components that are generi-
cally smooth and generically indecomposable A-modules inside Flg (]\;[{), andC1 @ --- B Cy C

Flg (]g) is an irreducible component, then it is also generically smooth in Flg (]g)
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Proof: The irreducible component C' is generically smooth if and only if

dim C = [C, M/C]. By studying fibres of the map a from the beginning one can prove

t
dimC =) " dimC; + Y [M;, M;] - [C;, Cj,

i=1 i#j
(this is analogue to | |, page 3). Then using the generically smoothness of the C; and
the condition from theorem 6.4.2 the claim follows. ]

We call an irreducible component of C' C Flg (]g ) an orbit closure if it is of the form
C = C1 @@ C; with the property that the general module in each D; = ¢;*(C;) is

indecomposable A-module U with

(U, U] = [fpU), fp(U)] + [U, fp(U)/U] = 0.

Since orbit closures are generically smooth, we see that all quiver flag varieties Flg (]g )
with only finitely many Aut(M )-orbits are generically smooths. For example, we see later
that the quiver Grassmannians for quivers of type As, A3 and A4 have only finitely many

orbits. An open question is whether all irreducible components C' C Flg (]g ) with

are orbit closures.

6.5 An example of a closure of a Reineke stratum which is

not a union of Reineke strata
This is very detailed, please leave out parts of it.
6.5.1 As-Grassmannians

The quiver and the Auslander-Reiten quiver for KA, ® KA,

Let (@, I) be the quiver given by the following square

~—1

2
/
/
/
/
4 3

-~

with I given by the relation (1 -2 —4)=(1—3 —4).

Its Auslander-Reiten quiver is given by
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00 _ _ _ _ _ _ _ 10 _ _ _ _ _ _ _ 1
11~ 00 = 01

where the bold indecomposables are the indecomposables having monomorphisms at the
2 1

verticals i, é As A := KQ/I is representation-finite, the dimension vector determines an

indecomposable (right) A-module up to isomorphism, see | |- In the following we

identify the indecomposables with their dimension vectors.

Degenerations for modules with vertical monos
As A := KQ/I is representation-finite, the degeneration order of A-modules is given by
the Hom-order, i.e. for A-modules M, N it holds that

M <geg N := [S,M] < [S,N] for all indecomposable S,

see [ |
As the category of (right) A-modules is Krull-Schmidt, every A-module M determines a

multiplicity function
[M]: {vertices of the AR-quiver} — No, S +— m¥.

From now on, we assume M and N to have monomorphisms at the vertical arrows ,

1
.

3
th

[N el V)

i.e. the support of their multiplicity function is contained in the set of bold vertices of the

Auslander Reiten quiver.

Sl
[—,—] =7 and degeneration inequalities: writing down a table S5 with S an

indecomposable and S’ a bold indecomposable:
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Isomorphism classes of quiver flags

Let M as above a (Q, I)-represenation with vertical monomorphisms. We fix

We describe the isomorphism

= Tk:(M4 — Mg).

.,d4) and 7 :

= dimM := (dy,..

d
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classes of (Q,I)-representations with vertical monomorphisms, dimension vector d and

rk(4 < 3) = r. By definition these are given by the solutions (in N7) of the following

equations
1. mi1+mo1 =dy
11 01
2. myg+mig+my1 =do
10 11 11
3. mgog +m19 +m11+mgo +mg1 =d3
11 11 11 01 01
4. mogog +m10 +moo +mMi1o0 +mi11 =du
10 10 11 11 11
5. Mmoo +Mi1o0 +mi11=r
11 11 11
Its solutions in Ng are given by
dy—do—r+dy 1 1
do—dy 1 —1
r—dj 1 —1
{ 9 + A el o |\, p€ZYNN
1
ds—r 0 1

In other words a solution is given by (), x) € Z? such that the following seven inequalities
are fulfilled

equivalent to
(4),(7) (A, 1) € (=No) x (=No),
(5),(6) p > max(—dy,r — ds),
(2),(3) p < min(dy —dy,r —dy) + A,

(1) p>—=dyg+do+r—dp+ X\
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Degenerations of quiver flags

We describe the degeneration order on isomorphism classes of (@, I)-representations with
vertical monomorphisms, dimension vector d and k(4 < 3) = r. The degeneration
inequalities 1),2),3),5) are then redundant as the dimension vector is fixed. From the
equation 4.,5. (i.e. the equality at d4 and r) it follows that inequality 6) is an equality.
Using this we can simplify 4) to m1 0 +mi11 <nmig +n11.- Again by the equality for
the rank this is equivalent to m?(l) 2 n(l)(l) ' éo welcloncludé that for M, N with all the

imposed properties, the following are equivalent

(a) M Sdeg N,
(b) mgo >mngo,mo1 <ng1
11 11 01 01
(C) dim Im(M3 — M4) Im(M2 — M4) < dim Im(N3 — N4) N Im(NQ — N4),

N
dim ker(M1 — Mz) < dim ker(N1 — Ng)

The equivalence (b) < (c) follows from dim Im(Ms — My)NIm(My — My) =m
and dimker(M; — My) =mg1.

01
In other words, if [M] corresponds to (A, u) € Z*, [N] to (7,8) € Z? as in the previous

10+m
1

=Oo

11
11

subsection 2.1, then (a) < (b) says
M<geg N A—p>y—0,4>06

In this case I also write (A, 1) <geg (7,0) and set

()‘wu) = U (776) = {(756) | (775) an isom. class ’A_M27_67N2 5}
(Aspt)Sdeg (71,9)

Reineke’s stratification

Again look at quiver representations with vertical monomorphisms, fixed dimension vector

and rank at (3 — 4). For s € {0,...,min(d;,d2, )} define the Reineke stratum
Fs := union of isomorphism classes with rk(1 — 2) =

Observe s = m11 = dy + o for one ug € —Ny and, therefore, the Reineke stratum Fj is
11

the set Its solutions in NJ are given by

dy—do—r+d; 1 1
do—dy 1 -1
r—di 1 1
{ 0 A o[ o | o | [ A pEZINN
1
dz—r 0 1
0 0 —1

We set Fy := U wer (A p) and look for the relative to inclusion maximal Fs, an easy

way to see this is with a picture, see next subsection.
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Visualization

The grey area is the set described in subsection 2.1 by the inequalities (1),...,(7). The

darker grey area is (I, m).

N}

min(d_2-d_1, r-d_1)

/" k0,0

o

N

A

Ld_4+d_2+1-d_1

&

&

max(-d_1, r-d_3)

KA
o

-10 -8 -6 -4 -2 0 2 4

The points in the dotted square are the orbits in the Reineke stratum to s, the darker grey

area is its closure.

N

N

min(d_2-d_1, r-d_1) min(d_2-d_1, r-d_1)

/0,0 7 (00)

o
o

N
N

A
A

-d_a+d_2+r-d_1 -d_4+d_2+r-d_1

&b
&b

imax(-d_1, r-d_3) imax(-d_1, r-d_3)

o
o

o
o

-10 -8 6 -4 2 0 2 4 -10 -8 6 -4 2 0 2 4

The left hand side is not maximal relative to inclusion of closures, the right hand side is

maximal.

We conclude that the closures of Reineke strata maximal relative to inclusion are the ones

with s—d; € {min(0, min(ds —dy,r—d1)), min(0, min(de —dy, r—d;))—1,...,min(0, —ds+

da+r—di)}. We see that the Reineke stratification does not fulfill the boundary condition.
There is only one irreducible component if and only if —dy +do +7 —dy > 0 or

min(de — dy, 7 —dy) = —dy + do + 1 — d;.

6.5.2 Open problems

It would be nice to have a better understanding of the AR-theory of the category X

which might also leed to a better understanding of the decomposition graph for irreducible
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components of quiver flag varieties. At the moment, ¢ = A, is the only understood
example. The finite type investigation for the categories X has a similar result as for
preprojective algebras, which is not surprising when using covering theory, is there more
in this connection?

Also, the tame types could be investigated, the case of the Jordan quiver is contained in
[ |. In the spirit of | | one can investigate a bijection between dense orbits
in quiver flag varieties and tilting modules in X. This might be related to the Richardson
orbit lemma from the first section. It could be that the category X is already a special

case of | |, but I am not sure of this.
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Chapter 7
Ap-equioriented quiver flag varieties

Summary. We study varieties of complete flags in quiver representations for the quiver
Ap-equioriented. We refer to the classical case as the same constructions with the Jordan

quiver.

* We stratify them by the isomorphism classes of the submodules, we call this Reineke
stratification (see | ). To each stratum we associate a multi-tableau which we

call root tableau.

Then we refine Reineke stratification into a stratification parametrized by multi-
tableau with relaxed rules which we call row root tableau. We prove that this gives
an affine cell decomposition. As a corollary we can describe the Betti numbers of
complete A,-equioriented quiver flag varieties. In the classical case similar methods

have been used by Lukas Fresse, | |-

* We give some conjectural results which we did not prove for time reasons: The hook

case can be analogously investigated to Fungs work, see | |

Remark. These methods can be generalized to uniserial algebras or categories but it is

not obvious how they can be extended to other Dynkin quivers.

7.0.3 Notation and basic properties for A,-equioriented representations

If not stated otherwise in this article, Q := A,-equioriented with the following numbering

1—-2—=---—n. Let K be a field.

For 1 < i < n we write S; for the simple left K@Q-module supported in the vertex i.
Recall that by Gabriel’s theorem the set of (positive) roots can be identified with the
set of dimension vectors of indecomposable K @Q-modules which is given by RT = {a;; =

Z::Z. er € N | i < j}. We also write «y; = (ij) and for a root a we denote by E, (or
E;j) an indecomposable module with dimension vector .. By the Krull-Schmidt theorem,
an isomorphism class of a finite dimensional left K(Q-module M is determined by its

multiplicities m" = (m2") er+ i.e. M = @, cp+ mi Ea.
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We denote by soc E;; = 5 &N E;; the inculsion of the socle and by rad E;; = Fiy1 ; NN E;;
if i < j and rad S; = 0 C Ej; the inclusion of the radical.

Simple submodules

The following easy lemma has been observed by Reineke in | |, Prop. 4.9 and Example
on p.16.

Lemma 68. Any short ezact sequence 0 — S; — M — N — 0 is isomorphic to short

y

0—>Sj—>B@Eij—>B@Ei,j_1—>O

exact sequence

where s is the inclusion of the socle.

Let M be a representation of ), by Krull-Schmidt theorem we find a direct sum de-

composition into submodules

M =M o - & M

«

with ML = E,,1 <t < ma,a € RT, we call the projection on direct summands always
pr.

Please note that we do not look at the isomorphism class of the module, so the numbering
of the (isomorphic) direct summands is important information for us. We call this a root
blocked decomposition (or rb-decomposition) because in difference to an arbitrary
direct sum decomposition we require that our decomposition is a refinement of an isotypic

decomposition.

Let U = S; be a simple submodule of M, then clearly U C @k 1 @4 Mfk;) C M.
By lemma 68, we find (,j) and a module B such that M = B & E;;, M/U = N :=

B@E; 1.

How do arbitrary simple submodules U of M with M = B® E;;, M/U = N := B® E; j_1
look like?

The isomorphisms M = B @ E;; and M/U =2 N = B® E; j_1 are equivalent to the

following two conditions on U

@ @Mm(l t,5)

i—1
a) UcC P, M1 (it )

(i—t,5)

b) the composition U ¢ @!_3[M,

the zero map.

)@-~-@M “”)] ]\/[(1 )@n-@MzZ%’j)isnot

(i—t,j (i—t,5)

Therefore, any simple submodule U of M determines a unique o = (4, j) and
a€{l,...,my} such that M = B® E;j, M/U = B& E; ;1 and U — M 25 M? is not
zero and U — M 5% M! | t < a is zero. We write (o, a)[U] := (o, a) and call it the first
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relevant summand with respect to rb-decomposition M,.

Furthermore, there an is an isomorphism determined by U C M

. 1 a—1 a a a+1 M(n,n)
¢u: MU = My & - & M & (M(i,j)/(SOCM(ij))> O My & Mg, 5"

After a slight reordering this gives a rb-decomposition for M /U,

mM/Y
M/U =D P M/U);,
a t=1
with
(M/U) 5y = M5, ift >a
mM/Y
(M/U) 570 = MG )/ (soc M), ifi#j

(M/U);, = M!, for all other o, t.

We call this the from M induced rb-decomposition on the quotient M /U. Observe,
that the multiplicity function of M /U can be obtained from the multiplicity function of
M and vice versa.

We can reformulate this to

Corollary 7.0.0.2. Let M by a KQ-module. There is a function
{Simples C M} — R*

mapping the simple U to the indecomposable (ij) such that M = B®E;j, M/U = BBE; ;_;.

For a given rb-decomposition M, of M, there is a function
{Simples C M} — R x Ny, U+ (a,a)[U]

mapping a simple U to the first relevant summand with respect to the rb-decomposition M,
(see above).

This wmplies that we find for any simple submodule U C M a function
{ rb-dec of M'} — { rb-dec of M/U}.

defined by the from M induced rb-decomposition on M /U (see above).

7.1 Reineke strata and root tableaux

Now, let K be an algebraically closed field.

Definition 21. Let Q = (Qo, Q1) be a quiver, M be a K@Q-module of dimension dim M =:
de NOQO andd:= (0=d"d',...,d" =d) withd' € N(?O be a sequence with d! < dﬁ“, 1<
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t<r—1,i€ Qp. We define

M
F1Q<d> = {U:(OCUl C-cU =M)|U" KQ-module,dimU* = d'}

where C means submodule in the category of K@Q-modules. This defines a projective K-
variety, we call it the quiver flag variety associated to M and the dimension filtration
d and its (K-rational) points quiver flags of dimension d. Recall, for i € @y, we have
a simple module S; with dim S; =: e; is supported on the vertex ¢. If dit —dt = e;, for
an element iy € Qp, 1 <t <r — 1, then we call the quiver flags of dimension d complete

flags and Flg (%) a variety of complete quiver flags.
We also have the following stratifications of Flg (]g )
Definition 22. Let M, d as before. Pick N, := (Ny,...,N,_1) asequence of K@Q-modules.

(1) We define

M
f[N*} = {U:(OCUl c---cU" =M) EF1Q<d> ‘
U'> N;in KQ-mod, 1 <t <r—1}.
If @ is a Dynkin quiver, this defines a stratification of Flg (]g ) into locally closed

irreducible smooth subsets see | |. We call this stratification Reineke stratifi-

cation.

(2) We define

M
S[N*] :—{U—(OCUlC"'CUV—M)€F1Q<d> ’
M/U"= Ny in KQ-mod, 1 <t <r—1}.

If @ is Dynkin, this is a stratification into finitely many locally closed irreducible
smooth subsets. We call this stratification Spaltenstein stratification because it

has been studied for the Jordan quiver in | |

Remark. The two stratifications are mapped to each other under the following isomor-

phism
R M DM
D: Fl Fl o
o(a) e (%)
U (D(U))! := ker(DM — DUY) = D(M/ut)
where e = (%, e!,...,¢e"), &t =d" —d' and D := Homg(—, K), cp. | |, definition

6.11, p.64. Therefore, it is enough to investigate one of the two stratifications.

We will investigate Spaltenstein strata for Q := 1 — 2 — --- — n and Reineke strata
for Q:=1+2+«---<n.
We associate to a Reineke stratum a combinatorial object called root tableau, this is the

analogue of Spaltenstein’s stratification of classical Springer fibres with respect to standard
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tableau, | |.

Let us stick for a moment with Reineke strata and Q = 1 + 2 < --- <~ n and leave

the dual situation to the reader.

Definition 23. Let M be a finite dimensional representation of Q. A root diagram
of type @ is a sequence of Y = (Y7,...,Y},) of possibly empty Young diagrams with the
numbers of columns in Y; islessorequal n —i+1, 1 <17 < n.

Let Y/ = (Y{,...,Y)),Y = (Y1,...,Y,) be two root diagrams of type @, the we write
Y’ C Y if Y/ is a Young subdiagram of Y;, 1 < i < n (recall one Young diagram S’ is a
Young subdiagram of another S if for each row the length in S’ is shorter than in S.)

A root tableau for @ is a sequence T'= (77 C To C --- C T;.) with T; root diagram of
type @, 1 <i <.

We visualize a root tableau of type @ via writing down the sequence of Young diagrams
(Y1,...,Y,) of T,.

Here, we renumber the columns as follows: The k-th column of Y; is from now on in the
(1 + k — 1)th column of Y; and we start with Y7, write Y5 under it, ... , write Y, under
it (respecting the numbering of the columns), we end up with a skew diagram with n
columns.

Then put 1 in all boxes lying inside the subdiagram 77, put 2 inside all boxes inside 75

not in 77, ..., put 7 in all boxes not inside T}._1.

Definition 24. For a root diagram Y = (Y1,...,Y,,) with Y; a Young diagram with rows
of lengths Egi) > Eg) >0 > E&? , 1 <1 < n, we associate a module

n T
My = @ @ Ez',iM(le
i=1 s=1
and we set dimY := dim My € Nj.

For a root tableau T'= (T} C ... C T;) we associate a Spaltenstein stratum

M,
St = Sjo,My, ... My, =M] C F1Q< d )
dr

and a Reineke stratum
M,
Fr = ‘FUWTlvnvMTr] C F1Q< d >
dar

with dy := (0,dim M7, ,dim Mrp,, ..., dim My, ).
By the previous considerations we get.

Lemma 69. (1) There is a bijection between Spaltenstein strata in FIQ(](V{) and root
tableau T' = (Ty,...,T,) with My, = M and dy = d.

(2) There is a bijection between Reineke strata in Flg (]\é[) and root tableau
T = (Ty,...,T,) with My, = M and dp = d.
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Proof: Ad (2), we map T — Fp. For Ny,...N,_1,N, = M the Reineke stratum is
nonempty if and only there exist monomorphisms Ny — Ngy1, 1 <k <r—1, cp. | |

. Let T; be the root diagram corresponding to the isomorphism class of V;, since there are

these monomorphisms we get a sequence T'= (71 C T, C --- C T;), i.e. we obtain a root
tableau.
Ad (1), follows from the bijection described in the first remark in this section. O

7.1.1 Swapping numbered boxes in row root tableaux

Definition 25. Let Q@ = A, and let T = (11,...,7T;) be a root tableu for Q. We call
a connected subset of numbered boxes in one Young tableau 7; of T a brick. We call it
row brick if b lies in one row, column brick if b lies in one column. Let ¢ be another brick
obtained by translating b some rows up or down. We say that (b, c) is admissible for T
if the skew tableau obtained by swapping b and c is again a root tableau. In case b, ¢ are
admissible for T', then we write .1 for the root tableau obtained from T by swapping the
boxes b and ¢. In this case we say (b, ¢) decomposable if there are admissible pairs (V/, ¢)
for T'and (b, ¢”) for Oy T such that 6y T = dyrerdp T, we say (b, c) is indecomposable

if it is not decomposable.

Example. If the bricks in admissible pair is just a single boxes, then it is indecomposable.
Here are further examples of indecomposable admissible pairs, b is the blue (=dark grey)

brick and ¢ is the green (=light grey) brick. They can have arbitrary shape.
openn
gE

134\
215

An admissible pair (b, ¢) for T is indecomposable if and only if the maximal number within

’ww»—n

one of the bricks b, ¢ is strictly smaller than the minimal number within the other brick.

Remark. Observe, that there might be boxes b which might not be part of any admissible
pair. We call this the fixed boxes of 7. When looking at the boxes fixed in all T" with the
same dp = d (i.e. in all columns are the same numbers just permuted in order) we call
them the fixed boxes. Then, the boxes in the first column of (any) 7" will be fixed. If b, ¢
are admissible for 7" and its shape is a root diagram Y = (Y1,...,Y},), then b and ¢ belong
to different Y;.

7.1.2 Dimension of root tableau

Let @ =1+ 2+ --- < n. For a Reineke stratum defined by 0 C Ny C --- C N, = M we
define
ay = dim Hom(Ng_1, Ny) — dim End(Ng—1),1 < k <.
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In | |, thm 4.2 Reineke proved dim Fy,; = > _;_; ax. In particular,

ap = dim Fjo N, , n,) where Fjon, N C Gr(@%k,l) is the Reineke stratum in the
quiver Grassmannian.

We want to read this number from the root tableau. Even though it is enough to understand
the Grassmannian case, we start with understanding the case of complete flags and then
afterwards we look at the Grassmannian case. Recall that for Reineke strata in complete

flags there is for every k € {1,...,r} an isomorphism of short exact sequences

0

Ni—1 N, Ej, 0

| L

OHB@Eik,jk—IHB@Ei —>EMHO

k»Jk
for a module B and some i < ji in {1,...,n}. It follows

ar = dimHom(B & Ej j,—1, B ® Ej,j,) — dimHom(B & E;, j, -1, B ® Ejy j,—1)
= dim Hom(B, E;, ) — dim Hom(B, E;, j, 1)

Recall, that dim Hom(Ey;, E;j) = 1 if and only if @ <4 < b < j implying that for B = E,
we have a € {0,1} and

ap =1 <~ agikandb:jk.

Now, observe for B = @agb bapEa we have by, = ngz_l) for all (a,b) # (ig,Jx — 1),

therefore we proved the following

Lemma 70. Let Ny = @agb ngz)Eab, 1 < k <r be defining a Reineke stratum of complete
flags, suppose Ni_1 — Ny, is isomorphic to id &(E;, j,—1 — Ei, j.) . Then, it holds

ap = Z ng;;l).
a<iy,

In the case of partial flags, we know for all k € {1,...,r} by | |, Lemma 1.8 that
there exists a complete flag of submodules in Ny /Ny_1 this means that every Reineke
stratum has a refinement to a Reineke stratum in a complete flag. Using our knowledge
on complete flags this implies that there exists an injection N — M if and only if there
exists direct sum decompostions N = B® S, M = B® ST @ R such that S = ®i§j sij Eij
and ST = @ig @zil Ei’j_‘_mgi]’) for certain integers 1 < ajgij) < xgj) <... < xgg) The
B = @agb bap Eqp is the largest common direct summand of N and M. There might be

more than one choice of ST and R, but the root tableau gives us unique choices (up to
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isomorphism), see later. We get that the number

any = dim Hom(N, M) — dim Hom(V, N)
=dimHom(B® S,B® St ® R) — dimHom(B ® S, B & S)
= [dim Hom(B, S**) — dim Hom(B, S)] + dim Hom(N, R)
Sij
=) ) (dimHom(B, E, .. o») — dimHom(B, E;;))] + dim Hom(N, R)

i<j s=1

We have dimHom(Eab,EijJrr(ij)) — dim Hom(Eg, Eij) = 1 if and only if a < ¢ and b €

{j+1,...,7 —i—xgj)}. So, we get

Sl]

aNm = [Z Z Z(ba,j+1 +oo b, )]+ dimHom(N, R)

i<j s=1 a<i

Now, in terms of root tableau, N injects to M if and only if the root diagram of N is a
subdiagram of M, let‘s fill the boxes of the root diagram for N with 1 and the remaining
boxes of the root diagram of M we fill with 2. The largest common direct summand B is
given by the the rows completely filled with 1, R is given by the rows completely filled wit
2, ST is given by the rows containing 1 and 2, S is given by the subdiagram of S*2 just
filled with 1.

Then, the previous formula gives an easy recipe to calculate ayps. The reader is encouraged

to try an example on its own.

Example. Example for As-equioriented
M = FEy © 3E13® Eas © 3E2 @ Ey5 @ 3E5,

we give two root tableau defining Reineke strata in the same flag variety, i.e. they have in
each column the same numbers written (up to permutation). I take complete flags, so we
can identify boxes with their numbers within. The fixed boxes are colored red (=grey) for

the convenience of the reader.
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We can try to use this now to calculate the dimension change when we do an admissible

swap within on root tableau-

How do we calculate the maximal dimension of a Reineke stratum? Actually, I

do not know, but I present my thoughts here.

We define for any root diagram and dimension filtration d, s.t. there exists at least one
root tableau T' with dp = d, a root diagram T}, with d, = d in the following way.
Go through the columns from left to right. Go downwards through each column filling in
not fixed boxes always the smallest of all possible choices from the still free numbers for
that column (possible choice means that there exists a root tableau containing the filling
until that point).

We call it the maximal root tableau associated to a root diagram and a dimension filtration
d. In particular we can associated to a quiver flag variety Flqg (]g) a maximal root tableau
Traz-

Then, Fr, . is often the highest dimensional Reineke stratum but not always. Also we
have no control of the dimension of a Reinke stratum after wapping an admissible pair.

Here is an example where it is not the highest dimensional stratum.

Example.

5 | 7| 1]6]

Then, using the formular we calculate

Tmax =

.-l;|co =
.-l;|c,o -
»J>|<‘.o =

(1) For Thnaq it holds a1 = a9 = a3 =0, ay = a5 = 1, ag = 2, therefore dim Fr,,,, = 4.
(2) For T it holds a1 = a2 =0, az =1, agy = 2, a5 = 0, ag = 2, therefore dim Fr = 5.
(3) For T" it holds a1 = a3 =0, ag = 1, ag = 2, a5 = 1, ag = 0, therefore dim Fr = 4.

These are the only Reineke strata in that quiver flag variety, it follows that its maximal

dimension is 5.

7.2 rb-strata and row root tableaux

This implies, if we have a point in a complete quiver flag variety (0 C U C --- C U" =
M) € Flg (](Vi[), then a rb-decomposition on M induces an rb-decomposition on M /U,
1<k<r-—1.

Definition 26. Fix a direct sum decomposition of M indexed as before. Fix a complete

dimension filtration d of dim M. For a sequence o, a := (a1,a1), (a2, a2), ... (a, a;) with
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ay roots, 1 <t <r and a; € Ny we define the set

Soa ={(0CU'C---CU" =M)€Flg (]‘9 (o, ax) = (v, a)[U* /U]

wrt to the induced rb-dec on M/U*!

and call it the rb-stratum for Q,a.

We see later that this defines a locally closed subset of Flg (]g ), see corollary 7.3.0.3.
The rb-stratification is not Aut(M)-invariant. Choosing another direct sum decomposition

gives rise to a stratification which can be obtained by applying an element of Aut(M).

Definition 27. Let Y be a root diagram (of type A,-equioriented) with r boxes. We call
a filling 7 of the boxes in Y by 1,...,s (s < r) row root tableau of shape Y if the
numbering is weakly increasing in the rows.

Each row root tableau 7 has an associated root tableau T'(7) = (11, ...,Ts), where T; is
the root diagram which you get when looking at the boxes filled by 1,...,7 and permute

the rows.

rb-stratification is finer than Spaltenstein stratification because it is not only fixing the
isomorphism type of the module where the simple is mapping to but the module itself. So,
if there are two isomorphic modules, it is saying into which one the simple is mapping. This
is reflected in the row root tableau, where filling in the numbers sees every indecomposable
submodule of M as a row of boxes and in each step you fill in the number in the row

corresponding to the root where the simple is mapping to. In other words.

Lemma 71. Let M be a representation of Q = A,-equioriented, d be a complete dimen-
sion filtration. Let Y = Yas be the root diagram of M and T be a root tableau of shape Y
and dimension filtration dr = d.

Then, there is a bijection between rb-sirata S(q) inside the Spaltenstein stratum correspond-

ing to T and row root tableaw T with T(1) =T.

Open questions: Are closures of rb—strata unions rb-strata? Is there a good formula for
its dimension and or codimension in the Spaltenstein stratum? What is the right definition

of the inversion number and can we give a formula for it as Fresse did?

Our main aim in the next section is to show that rb-strata are affine spaces. We first

find a special point within each rb-stratum, a so called split module, see next subsection.

7.2.1 Split Modules

For a moment allow ) to be an arbitrary finite quiver. Let A = KQ ®x KA,. Let X C A

mod be the subcategory of A,-monomorphisms.
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Definition 28. A A-module 0 C U; C --- C U, = M in X is called split with respect to

a direct sum decomposition M = M7 @ - -- @ M, in indecomposable submodules if
Us=UsNM)D---®dUsnNM,), 1<s<n-—1.

We call a A-module in X split if there exists a direct sum decomposition of its flagpole
such that it is split with respect to this direct sum decomposition. Fix an additive family
of modules with for each isomorphism type precisely one module. The full subcategory (of

X) of split modules with respect to this family defines an additive subcategory SX of X.

Remark. Let U := (0 C U; C --- C U, = M) be a split module with respect to
M=M®& &M, weset (UNM;):=0cC (U1nNM;)C---C (U,NM;)= M
then U = (UNM;) & --- & (UNM,) is a direct sum decomposition into indecomposable

A-submodules.

We recall some notions from | |, section 4. A quiver is called co-special, if for all
indecomposable FE, and all simples S;, we have dim Hom(S;, E,) < 1. We call a vertex
1 € Qo thick if there exists a root « such that dim; & > 2. Then, Reineke proved that a

quiver is co-special if and only if no thick vertex is a sink (] |, Prop. 4.8).

Lemma 72. If Q) is co-special, then SX is representation-finite. In particular, this holds
for Q Dynkin of type A.

Proof: We need to see that the number of A-modules with flagpole equal an indecom-
posable M is finite up to Aut(M)-isomorphism. If M has a dimension vector in {0,1}20
it has only a finite number of submodules, so there is nothing to prove in this case.

In general, let 0 C Uy C --- C U, = M. If dim Hom(U}, M) = 1 for all indecomposable
direct summands U j’ of Uj, then there exists a unique submodule of isomorphism type U;

inside M. But as @ is co-special this is automatically fulfilled. O

Example. Also, for @ arbitrary Dynkin and K a finite field the category SX is represen-
tation finite, for trivial reason. But if K is infinte, SX is representation infinite for @ (not

co-special) Dynkin quiver of type D4. Consider the following family of indecomposable

A-modules O 0 ; ;
\ l (5)\4 i(%

Im(}) - K?
T I

0 K,

a # 0,1 1in K. They are pairwise non-isomorphic.

From now on we investigate the case Q = A, -equioriented more closely. Recall that r + 1
is the length of the sequence of the flag. Let i < j in {1,...,n}. We define a A-modules

as follows
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(1) For Q =1« -+ nlet X\ = ()\07>\ii7)\i,i+1»---a)\i,j) be a sequence >\07)‘i,i+kz S
N>1, Ao + Zi:o Xii+k =7+ 1 we define

Eij(A) = |0=---=0CSi=--=85CEin=--=FE;1CEj=--Ejy
—_ " ~— —_——
Ao—times 0 Ai;—times S; Xij—times F;

(2) For @ =1— --- = nlet A = (Ao, \jj, Aj—14,...,Aij) be a sequence Ao, \j_ ; €
N>1, Ao + Zizo Aj—k,j =1+ 1 we define

—_—
Ao—times 0

N——— | —

)\jjftimes Sj Aij —times E'Lj

As always we write S;(\) instead of Ej;(A). Obviously, the Ej;;(\) are indecomposable

A-modules.

Lemma 73. The category SX is Krull-Schmidt. The isomorphism classes of indecompos-
able objects in SX are given by the E;j(\) defined above. It holds Enda (E;;(N), Ege(p)) =
K.

Proof: Tt is Krull-Schmidt because it is closed under taking direct summands. Clearly,

the E;;(\) are the indecomposable objects. O

Lemma 74. Any rb-stratum containes precisely one split module. There is a bijection

between isomorphism classes of split modules and row root tableau.

Proof: Let @ =1+ -+« n. Let U= (0CU! C--- C U” = M) be a split module.
Recall that U?, U have an induced direct sum decomposition which is respected be the
inclusion. Then, U? is the image of a KQ-linear map €, ¢ where ¢ is on all but one
summand the identity and on the last one it is a nonzero s;;: E; ;1 — E;j,1 < j or
s;: 0 — 5; for some 4,5 € QQp. The data on which direct summand the non-identity map
occurs is given by the row root tableau because the direct summands correspond to the

rows in the tableau. We illustrate this with an example. (I

Example. Let us write down the split module corresponding to

5]

N

7]

Q=1+« 2+ 3 and r+1 =28 is the length of the flag. It is a A-module of the form

fo,

V=(0->nHun o Sy
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with
Vi=S, Va=57 V=57, Vi=S;® 5,

Vs=FE1o®S?2®8y, Ve=FE1®S?®52, Vo=FE;»®S]® Sy Eas.

and

fi=s1@ids), fo=1dg®s1, f3=Iidg Bs2

fa=512® ids% @ids,, f5 =idg, ® ids% @s2 @idg,, fo=1idg,, ® idsf Dso3 B idg, .

It holds
V= E12(2, 3, 3) ©® 51(1, 7) ©® 51(3, 5) ©® 52(4,4) D E23(6, 1, 1)

Example. Assume we have a semisimple K Q-representation M . We fix a root blocked

decomposition
M=5® -5 --S,&---8S,
N——— ——
m1—times my—times
by choosing a basis egl), cee eﬁéi ) egz), e ,e,(ffi such that the k-th summand in the S;-block

is Ke,(:). We let a torus T' = (K*)™ x .-+ x (K*)™ act by rescaling the basis vectors.
Every complete quiver flag variety Flg (1\({) (for an arbitrary dimension filtration d) is
isomorphic to Gl,,, /By X - - - x Gl,,, /B, for the upper triangular matrices B; C Gl,,;, 1 <
i < n. This can be seen as follows: The dimension filtration corresponds to a word in
the vertices i = (i1,...,4,),%; € Qo. This induces a permutation of the basis vectors as
above (for example ¢ = (1,2,1,1) then the reordering is egl), 652), eél), egl)). This gives an
clement 0 € Sy with N = > | my. If we see the quiver flag naturally embedded into
Gly /B with B upper triangular, then conjugation with 7—! gives the identification with
Gl,,,/B1 x -+ x Gl,, /By.

The described torus is (also after the permutation) the diagonal torus. We leave it to

the reader to see that the T-fixed points on them are precisely the split modules and the

rb-strata are the products of Schubert cells.

7.3 rb-stratification as affine cell decomposition

Spaltenstein’s fibration

In | |, Spaltenstein’s main tool to proof the equi-dimensionality of the classical

Springer fibres is that the taking Spaltenstein strato map is locally trivial when restricted
to certain Schubert cells. We show here that we have the analogue in the case of an
equioriented A,-quiver, even though Spaltenstein strata are not equi-dimensional. As a
corollary we obtain that the quiver flag varieties admit a affine cell decomposition. As we
made the choice to work with Reineke strata instead of Spaltenstein strata, we stick with
it and remark here that with applying the isomorphism D one can rewrite everything in
this section in terms of Spaltenstein strata; instead of characteristic flags you would define
co-characteristic flags, in the examples all kernels and images (or socles and radicals) would

be swapped, instead projecting onto the Grassmannian of hyperplanes you would project
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onto the projective space. We write down both versions because in the literature both are

common.

Short recall on relative position Let FI(d) := [[;cq, Fl(d
withd, = (0=d? <d} <--- <dV),g;=(0=¢€Y <e} <--- <
1 € Qp.

Then we define the relative position map to be

i)

9y
I
i

Fl(e ) = Hier Fl(e )
)

with d? = el for all

rp: Flg (f) x Flq (f) — [ Mat (v +1) x (n+1),No)

1€Q0

(U, V)ijeqo = (dimUF NV )o<k<no0<i<n) seq,

Given w € [[;co, Mat ((v+1) x (p+1),Ng),V € Flg (l\é) we call

Fl(d)vw :={U € Flg (f) | rp(U, V) =w}

generalized Schubert cell. This is an orbit under the diagonal Gly := [];co, Glay-
operation. For another point in V’ € Flg (]Z[) we get an isomorphic Schubert cell.

Let M € Rq(d) be a representation, then we set

M M
FlQ(d)V = F1Q<d> OFI(Q)VM,

={U € FId) |V(i—]j) € Qi,ke{0,...,v}:
M;;(UF) c UF,rp(U, V) = w}.

For a fixed V this gives the stratification by relative position (with V') in Flg (Aé[)

We leave out the index V if it clear which is meant.
Definition 29. Let ) be any quiver and M be a representation of ().

(1) We call a flag Fjs of Qo-graded vector spaces inside the underlying Qo-graded
vector space M of M characteristic flag for (M,d = (d',...,d")) if for all
N,N' e GrQ(%): ED(N ¢ M,Fy) = ED(N' € M, Fy) implies N, N’ define the
same Reineke strata (i.e. N = N" as KQ-modules).

We call it characteristic flag for M if it is a characteristic flag for all filtration d.
We call it characteristic flag for cosimples in M if it is a characteristic flag for

all d with d + e; = dim M for some i € Q.

(2) We call Fy; co-characteristic flag for (M,d = (d',...,d")) if for all N,N’ ¢
Grq(4): ED(N C M,Fy) = ED(N' € M, Fy) implies N, N define the same Spal-
tenstein strata (i.e. M/N = M/N' as KQ-modules). We call it co-characteristic
flag for M if it is a co-characteristic flag for all filtration d. We call it co-
characteristic flag for simples in M if it is a co-characteristic flag for all e;

for some ¢ € Q.
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We start with some preparation for the main result.

co-characteristic flag for (D(M),e = (%, e!,...,¢e")), e/ " = d” — d'.

* Any refinement of a (co-)characteristic flag for (M, d) is a again a (co-)characteristic flag
for (M,d).

* A flag is characteristic for (M,d = (d',...,d")) if the associated stratification by rel-
ative position is finer than the Reineke stratification in Flg (]g ) It is co-characteristic
for (M,d = (d*,...,d")) if the associated stratification by relative position is finer than

M)_

Spaltenstein stratification in FIQ(d

(1) Assume Fy; is characteristic flag for M, d”~! in a dimension filtration
. - M
d=d"...,d =dimM). Let e := (d°...,d" ). Let us denote by p: Flg(q) —
Grq (d{/‘{l) the forgetting all other than the (v — 1)-th subspace map. For every
U U € Grq (di\{l) seen as submodules of M it holds U = U’ as KQ-modules,
a w
so fix one submodule N in this isomorphism class. Then, the fibres p~1(U) over a
relative position stratum Grq (Qﬁ{l)w are isomorphic to Flg (g ) Therefore, we get a

commutative diagram
Flg (g) — p_l(GrQ (Q{'\/{I)w) Po Grq (Q£V£1)w

(rs.[N]) l
R

where rs: FIQ(A(QI) — R := {Reineke strata in FIQ(Aj)},(O cU'c--CcU” =
M) — ([UY,...,[U"71]) and p,, is the restriction of p.

(2) Assume Fy; is co-characteristic flag for M,d" in a dimension filtration
d=d"...,d" =dim M). Let e := (d' —d',d* —d*,...,d” — d). Let us denote by
p: Flg (]g) — Grq (%) the forgetting all other than the 1-st subspace map. For every
UU e E}rQ (é/{)w seen as submodules of M it holds M/U = M/U" as KQ-modules,
so fix one quotient module N in this isomorphism class. Then, the fibres p~!(U) over
a relative position stratum Grg ( g,{\{l)w are isomorphic to Flg (g ) Therefore, we get

a commutative diagram
FIQ (g) —_— p_1 (GrQ (i{)w) pw—> GI“Q (é{)w

sp
([N],sp) J/
S

where sp: Flg (]g[) — § := {Spaltenstein strata in FIQ(AC{)}, OcUlc- - cU”=
M)~ ([MJUY],...,[M/U""Y]) and p,, is the restriction of p.

The morphism p is Aut(M )-equivariant but the relative position stratum Grq (%) is only
a w
Aut(M )-invariant if the flag Fis is M-invariant, in that case p,, is also Aut(M)-equivariant.
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Our main result is that for some choices of @, d, Fjs we get that p,, is isomorphic to the

projection map Grq (é{)w x Flg (N) — Grq (év{)w

e

Example. Let Q be 1 — 2 = --- — n. Let M = (K% A4 g 5 ... ga™t Aty
K.,

(i) a characteristic flag:

is given by the underlying Qo-graded flag of the following flag of submodules
0 C soct (M) C soc? (M) C --- C soc™(M) = M

where

SOCi(M) :(keI‘(AiAi,1 s Al) — keI‘(Ai+1Al' s AQ) — s =
keI‘(An,1 s Anfz) — kel‘(An,1 s An,iJrl) — s = ker(An,l) — Kdn)

Here we even get that the relative position stratification equals the Reineke stratifi-

cation.
(ii) a co-characteristic flag:
is given by the underlying Qo-graded flag of the following flag of submodules

0 C rad™(M) C rad" " Y(M) C --- C rad" (M) c M

where A
rad’ (M) :(0_> coo 50— Im(A; - Ay) = Im(Aj 1 - Ag)
— = Im(Ap_ - Any)).

Again, here we even get that the relative position stratification equals the Spal-

tenstein stratification.

(iii) characteristic flag for cosimples:

is given by the underlying Qo-graded flag of the following flag of submodules

0 C rad(M) Nsoc(M) C rad(M) Nsoc*(M) C --- Crad(M) Nsoc™ (M)
Crad(M)cC M

where rad(M) Nsoc’(M) is given by

ker(Al- s Al) — Im(Al) N ker(AHl s AQ) — Im(AQ) N keI‘(AH,g s Ag)
— = Im(An_i_l) N ker(An_l s An—z) — Im(An_z) N ker(An_l R An—i+l)
— e = Im(An_Q) N ker(An_l) — Im(An_l)

(iv) co-characteristic flag for simples:
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is given by the underlying Qg-graded flag of the following flag of submodules

0 C soc(M) Nrad™(M) C --- C soc(M) Nrad*(M) C soc(M) Nrad(M)
Csoc(M)c M

where as in the previous examples soc(M) Nrad’(M) equals

ker(Al) — ker(Ag) — s = ker(Ai)
— ker(AHl) N Im(AZ ce Al) — ker(AZ-_,_g) N Im(AH_l s AQ) —
— ker(An_l) N Im(An_Q ce An—i—l) — Im(An_l e An—z)

In example (iii) and (iv) there is a recursive relation to Reineke/Spaltenstein stratifi-
cation, and for (iv) for complete flags to rb-stratification. We focus on example (iv).

The special property for example (iii) and (iv) are that they allow us to pass from
quiver-graded to usual Grassmannians:

Just recall the following for a module M we have

1) For a hyperplane H C M it holds:

H is M —invariant <= rad(M)C H

this is saying for a dimension vector e with d—e = e; for one i € Qq, r := dimrad(M)

we have an isomorphism gr: Grq (]\g ) >~ Gr ( d;li;:il).

2) For a line L C M it holds:

Lis M — invariant <= L C soc(M)

this is saying for a dimension vector e with e = e; for one ¢ € Qq, s := soc(M) we

have an isomorphism gr: Grq (];1) =~ Gr(y) =Psit

Then, we can prove the following analogue of a result of Spaltenstein | |, Lemma on

page 453.

Proposition 9. (Spaltenstein’s fibration) For Q) = A, -equioriented, and
d=(dd',...,d" = d) a complete dimension filtration ( i.e. for everyk € {1,...,v} there
151 € Qo such that dk = dkil—i—e,‘). Let M € Rq (d) and Fyr be a complete co-characteristic
flag for simples refining the flag

0 C soc(M)Nrad™ (M) C --- C soc(M) Nrad*(M) C soc(M) Nrad(M)
C soc(M) C M.

Then, for every w € Hz‘er Mat (1 x (v+1)) there is an isomorphism of algebraic varieties

M M N
f:p_l(Gl"Q<d1)w) — GrQ<d1>w X F1Q<e>
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with e = (d' — d',d* — d',...,d" — d"), p: Flo(%) — Grq(}1) the forgetting all other
than the 1-st subspace map, N = M /Uy with (Uy C M) € Grq (%)w arbitrary, such that

the following diagram is commutative

/ - \

(GI‘Q M GI‘Q d1 XFIQ(Z)
\ /ﬂm’m
Proof: LetLEGrQ(%) ={[0:--:0:1:21:...:2,] €PY |y € K,1<i<r}.
e w

Then we can define an automorphism ¢, € Aut(M) such that ¢r(L) = Uy. We define

M M N
f: p_l(GrQ<d1>)w — GTQ<d1>w X FlQ(e)

U=(U'c.---cU"=M)w~ (U, ¢ (U)/Up).

This is a morphism of algebraic maps. To find the inverse, we consider 7: M — M /Uy = N

the canonical projection and define

Grq <2{>w x Flq (f) — p 1 (Grq (fﬁ)w)

(L,v=W'c.--cv"!1=N))
= (LCotn t (VY copln'VEc - coln vl = M.

O

Corollary 7.3.0.3. Every S, C Flg (]‘dJ) 1s a locally closed subsets and is an affine space.

Proof: Using the Spaltenstein fibration iteratively one can write S, 4 as a pullback of
locally closed subset, so they are locally closed themselves. Also the Spaltenstein map
shows that they are affine spaces. Let us shortly recall the induction step. We consider
Grq (3{)) =P~ = {linesin M}; ®--- @ Mﬁl’j} and the restriction of the map p from
the previous lemma
Spa — P
U U

We consider the Schubert cell Cpy 0y == {[0:---:0:1:2y: - :2,] €P% L |2, € K1 <
i < 1} where the first nonzero entry is in position a; in the root block corresponding to
ay. Let a' = (ag,...,a,),0 = (ag,...,a;). Then, the map p restricts as follows

p
Saa st—l

e

K

Sg/@/ X Ca1,a1 p4>r — Coq,a1
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where the map f’ is an isomorphism, it is the restriction of the map f~! from the previous
lemma. O
Now, let us come to the split modules. Let M = @, @, M* be a root blocked

decomposition,
T:={P P iduy | Ny € K} = P Aut(MS) € Aut(M)
a k a  k

Lemma 75. Let Flg (]g) a complete Ay -equioriented quiver flag variety. The split modules
in Flg (]g[) are precisely the T-fized points.

Proof: By definition split modules are fixed under the torus operation. On the other
hand, fix a vector space bagsis adapted to the root blocked decomposition. A flag of sub-
modules fixed by the torus action is a split module because each subspace of the flag has
to have up to scalar multiples a subset of the base vectors of the bigger space. O

7.3.1 Betti numbers for complete A,-equioriented quiver flag varieties

We explain the notion of an affine cell decomposition and why this is a desireable property
by giving applications on calculating (co)homology. More precisely, for schemes with an

affine cell decomposition we state

Definition 30. Let X be a scheme. An affine cell decomposition is a filtration
X:XnDanlD"'DXoDXflzw

by closed subschemes, with each X; \ X;_1 is a disloint union of finitely many schemes Uj;
isomorphic to affine spaces A", We call V;; the closure of U;; in X.
Properties of Chow groups

This is a citation of results of | |-
Let A.(X) the (graded) Chow group.

1) | |, Example 19.1.11, p.378
Let X be a complex algebraic variety. Let H.(X) be Borel-Moore homology.

It is stated that for a scheme with an affine cell decomposition, the cycle class map
cx: A(X) = Ho(X)

is an isomorphism. All odd homology groups vanish.

2) | |, Example 1.9.1 on page 23
If X has an affine cell decomposition as in the definition. Then the [Vj;] form a basis
for A.(X).
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Betti numbers

This is a citation of a citation taken from | |, section 4.

Let X be an algebraic variety. Let H*(X, Q) denote the sheaf cohomology for the constant
sheaf Qx, let H} (X, Q) denote the sheaf cohomology with compact support for the constant
sheaf Qx.

Let X be a complex algebraic variety with an affine cell decomposition as in the definition,
ie. X = U” U;; with U;; C X locally closed and isomorphic to an affine space. For

m € Ny let r,,, be the number of m-dimensional cells. Then it holds
a) HY(X,Q) =0 for [ odd and H?>™(X,Q) = r,, for any m € Np.
b) If X is projective, then H'(X,Q) = 0 for [ odd and H>*™(X,Q) = r,, for any m € Ny.

Recall that we have found an affine cell decomposition for any complete A, -quiver flag
variety Flg (]g ) which is parametrized by the set of row root tableau of the shape Yj,

where Y}, is the root diagramm associated to the representation M.
Let K =C.

Corollary 7.3.0.4. Let Q be the quiver 1 — --- — n, let M be any finite dimensional CQ-
module and d be a dimension filtration of dim M. Let T := {7 | 7 rr-tableau of shape Yu,dpiy =
d} and let ¢; ;== #{7 € T | dim7 = i},i € Ng. Then, the following holds true for Flg (]g)

ere is a C-vector space basis of A parametrized by T .
1) There is a C basis of A.(Flg (Y zed by T

ere is a C-vector space basis of H; parametrized by T .
2) There is a C basis of HEM (Flg (Y zed by T
(8) The Betti numbers are given by

M cm, if m is even
d>)—

heui(Flg <
0, if m is odd.

7.4 Conjectural part

From here on, proofs are incomplete. It was planned as part of the chapter but had been

forgotten.

7.4.1 Canonical decomposition for A,-equioriented quiver flag varieties

Any rb-stratum is contained in a Reineke stratum and a Spaltenstein stratum. We want

to show the following.

Lemma 76. Let S; C Flg (]g[) be the rb-stratum corresponding to a row root tableau T and
let V. be the unique split module in S;. It holds

[ST,ST} = [Vﬂ VT]
[Sr, M/S;] = V7, M/ V7]
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It has the following corollaries.

Corollary 7.4.0.5. Let S; C Flg (]\c;[) be the rb-stratum corresponding to a row root tableau

7 and let V; be the unique split module in S;. Assume that Flg (]g) 1s generically reduced.
Then

1) It holds that S; is an irreducible component of Fl M if and only if
Qld

[V’ﬁ M/VT}A = Z[V7k717 ka] - [VTk717 kail]'
k=0

Recall, that the right hand side is the formular for dimT'(T).
(2) We consider for a moment arbitrary A,-equioriented quiver flag varieties. Let C1 =
S, C Flg (]g), Cy=S8,, CFlg (g), then the following are equivalent

M@N)'

(i) Cy ® C; is an irreducible component of Flg ( ord

(i) Fori # j it holds

[VT“ Mj/VTj]A = Z[V"rliilv VT]j] - [Vleil’ VTIjil].
k=0

(iii) We call an irreducible component C = Cy @ - -+ ® Cy with C; is an irreducible com-

ponent such that
[Cy, Ci] — [My, M) + [Cy, M;/C;] =0, 1<i<t

preprojective. It holds

(1) Every preprojective component is the orbit closure of a split A-module V.

(2) The canonical decompostion for preprojective irreducible components in the sense
of | [ is determined by the composition into indecomposables in SX. This
means if V=V ®---®V; is the decomposition into indecomposable in SX, then

the orbit closure of V is an irreducible component if and only if
Vi, Vi] = [Mi, M| + [Vi, M/ V3] = O

foralli+#j.

In particular, the indecomposable preprojective irreducible components are orbit

closures of indecomposables E;;(\) (see previous paragraph,).

7.4.2 Submodules in terms of matrix normal forms

Let N C M be a submodule, we call M;) = sum of all direct summands with socle j,

1< j <n. Then we have M = M(l)@ @M(n),N = N(l)@ @N(n) and (N(Z)7M(j)) =0
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for i < j. Let Inj(IN, M) C (N, M) be denote the subset of monomorphisms. Then, we

have

_IHJ'(N(1)7M(1)) (N(z)yM(;)) e ( Ny, Miqy)

Inj(N, M) =

We fix direct sum decompositions for

n j—1
N D@y e o)
j=1 t=0

Ni—t.9)

=Ng)

with Nlij = Ej; and respectively for M and we fix a graded vector space basis for NV, M
adapted to the direct sum decompositions. For a monomorphism ¢: N — M we denote
by A(j)[k] the matrix (wrt to the fixed basis) of the induced morphism N(;) — M; at
the vertex k and by A ,) (k] the matrix of N, — M, ;) at the vertex k. Observe,
Agijlk] =0 for k>

Aty ey k] [0 - 0
Ao ok

T R
A1), (k) [K] Aujlk = 1] |

80, A(ijy[k — 1] is just a minor of A(;; [k] for & < i, all are lower triangular block matrices.

The map ¢ is given by n matrices A[1],..., A[n] for the vertices 1,...,n respectively with
Aaplil - Aumld]
Ali] = : ,1<i<n

A monomorphism ¢: Ny — M) is determined by its induced morphism soc(¢): soc N(;) —
soc M ), i.e. A[j]. More precisely, ¢ is given by j matrices A[l],..., A[j] with

Alk] = Agjjlk]l = | AF JA[1] =: A!
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so A[j] = soc(¢) determines ¢. Now, we can use Gauss-elimination on A[j], but we
only allow elemtary column operation which are socles of automorphisms of N;), that
is arbitrary elementary column operation within the columns of A[j] where A? lies plus
addition of a multiple of a column where A’ lies to any column where A® lies, s > t. Then
we find an automorphism s: Ny — N(;) such that soc(¢ o k) is given (in the previous

basis) by a matrix of the form B[j] with

with each B! is a column echolon form same number of columns and rows as At

0 0
0 0
1

x| 0

x| 0

0O 110
Bt**o

00 0 0 10
* * x x| 0
* * x *x|0
0O O 0 0O 0 1
* *
* *

. . .. 1 2 Nj J ) 1 Nty J )
with (row-)pivot positions a;; < aj; <--- < a7’ where )\, mg; < ay, a0 <Dy myg;

and el B! = 0 for any r € {a5; | s < t,1 <z < ng}. We say, the matrices B[1] =
B!, B[2],..., B[j] are in normal form.

Now, back to the general case. We find an automorphism « of N such that all diagonal
block matrices A(j; [k] in any A[k] are in normal form.
Again with Gauss-elimination corresponding to composing with automorphism of N we

can assume all entries in each pivot-row (i.e. a row containing a pivot position) are zero
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except in the pivot position in all A[1],..., A[n], that means for 1 <k <i < j

Agjlk —1]

with e;iFA’(“ij) =0forr € {al, | s > k,1 <z < ng}. Under this assumptions we say that

A[l],..., A[n] are in normal form. Once, we have fixed the basis (for n and M) every
monomorphism has a unique associated normal form and any submodule X C M, X = N

is image of a monomorphism in normal form.

7.4.3 Remarks on partial A,-quiver flags

We look at quiver Grassmannians and use the normal forms for matrices describing sub-

modules.

Definition 31. Let N C M be a submodule and fix a basis for N and M adapted to
direct sum decompositions as before, d := dim M, e := dim N. Then, for a := (agj)s,j,w we

consider the subset of the Reineke stratum Fy,) C Grq (]g) defined by
Sy ={(U CM)e€ Fn, |U=Im¢,¢ € Inj(N, M) in normal form, with pivot positions a}

This is the natural generalization of rb—stratification in this situation, so we continue to

call it rb—stratification.

We do not work with this but if one is interested in this stratification, one can work on

the following.
(i) Each S, is a locally closed subset of Grq (]g)
(ii) S, is isomorphic to an affine space of dimension 77
(iii) The closure of S, is a union of other rb—strata.
(iv) The tangent dimension dim 7,Grq (]g ) is constant for any = € S,.

(v) Find explicit formulas for Hall numbers.

7.5 Root tableau of hook type

We translate all of Fung’s result on classical Springer fibres of hook type to the A,-
equioriented quiver flags of hook type. The literature we use is in most part | |-

Also a reference is | |.

Definition 32. M is called of hook type if it is isomorphic to F1; @ .S with S semisimple
for some ¢ € {1,...,n}. We call a root diagram of of hook type if it is associated to a

module of hook type.
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We remark that for a root diagram of hook type all sub-root diagrams are of hook type.

This a complete flag example.

Example.

[0 [~

10
11

Remark. Let M be a representation, we fix b € Ny such that rad®(M) = 0, rad®~ (M) # 0.
Then, it holds rad(soct**(M)) C rad(M) N soct(M). If M is of hook type, we have
rad(M) Nsoct (M) = rad’~¢(M), which implies

rad(soc'™(M)) € rad®~¢(M).

This property we use usually in the following way: Given a flag of QQp-graded vector spaces
0=WyCcWyC---CWs= M such that

rad®~ (M)
rad’=2(M)

Wi, c  soct(M)

C
C Wi C  soc’ (M)

rad(M) C Wi, , C  soc’"Y(M).

for certain 1 < iy <9 < --+ < ip_1, then each Wy is M-invariant, 0 < k < s.

Let us assume M is not semi-simple of hook type, then a root tableau for with un-
derlying root diagram Y}, is uniquely determined by the entries in the long root. Let us

associate for a sequence 1 <41 < iy < - -+ < ip_1, set jr :=n + 1 — g, a root tabeaux

1 (Jo=1lJb—2| --- | 71

Ti =

The assumption for having the 1 in the left corner is just for convenience, else there

would be an entry x and the numbers 1,..., 2 — 1 would be fixed points corresponding to

240



a semi-simple direct summand, when we pass to the quotient we get a root tableau in the

form above with 1 in the upper left corner box. Let us recall Fung’s definitions.

Definition 33. A space X is an iterated fibre bundle of base type (B, ..., By) if there
exists spaces X = X1, By, X2, Ba, ..., Xn, By, Xp41 = pt and maps py, po, . . ., pn such that
pj: X; — Bj is a fibre bundle with typical fibre X; ;.

For simplifications of the computations of the intersection homology polynomials it is

convenient to define for d, k € No,d := (dy,...,d,) € Nj
[d =T~ VA+T?2 4T+ ... + 726D (0] := 1, [d] := [di][do] - - - [don],

dt= (12 ), [d)t = [d)de]! - [da]l

() = wr ()= Gen) Ge) ()

For a scheme of finite type over the C, we write IP(X) to denote the intersection homology
Poincare polynomial of X.

This is Fung’s main example, compare | |, corollary 3.1.

Example. Let V' be an d-dimensional Qo-graded vector space over C and F1(V) be the
variety of complete flags in V (i.e. the product of complete flag varieties in each V;,
i € Qo). Fix a choice of a complete dimension filtration d of d, this gives an embedding of
F1(V) into the variety of (not graded) complete flags in the vector space ®ieq, Vi, we will
always use such an embedding to write down an element of F1(V) as a flag of Qo-graded

subvectorspaces 0 C W1 C --- C W,, =V with dim W; = 4. It holds
IP(FI(V)) = [d]!.

Let Grq, (V) be the Grassmannian variety of k-dimensional Qo-graded subvector spaces

in V, then

1P(Groy(V) = (1)

Let I be an a-dimensional Qp-graded subvector space of V. We fix as before a complete
dimension filtration d = (d°,...,d" = d). Let X;(I) C FI(V) be the subvariety given by
flags 0C Wy C --- C W,. =V with I C W;. Then

[d - 4]

PO = () ) .

We first state all our main results and prove some corollaries, then give the proofs at

the end of this subsection.

Theorem 7.5.1. Let M be a module of hook type, let d be a complete dimension filtration
of dim M and T; be a root tableur of shape Yy with dp, = d.
The closure of the Spaltenstein stratum SiTl C Flg (A(f) is given by Qo-graded flags (0 =
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Wo C Wy C--- C W) e F(d) such that

rad’~ (M) Wi, c  socl(M)
rad’~2(M) c W, C  soc’(M)

rad(M) C Wi,_, C soc® H(M).

Corollary 7.5.1.1. In the situation of the previous theorem, set iy, := dim M, ig := 0.
Then, Sir_pl s an iterated fibre bundle with

ng+1 = Gerij-o—l,dij —ep_; (SOC(M/Uij )/radbil*j(M/Uij))
BQj+2 = Fl(wij+1 /Wij)

with j =0,...,b—1 and . In particular, it is smooth. Its intersection homology Poincare

polynomial is

— b €t i ; a— jl - lz‘:ll €t
IP<87T1> :[dil]! <[d [dz(lz:t:e;] )]> [dw' - Ql“h ([d[digd dil( _ eb—l] )])

‘ b— ip_
[dig — d12]| <[d 7.d ’ 7.( t:% et)]> .. [dibfl _ dib72}! <[d *.d b=2 *'(23:1 6t)]>
w - [d13 _ d’b2 — 6b72] il - [dlb,1 _ d1b72 _ 62]
ld —d)!
Proof of corollary: We define

pr: Xi:= SiTl — Geril —p(=1) (SOC(M)/radbfl(M)) =: By, We — Wil/radbfl(M)

po: Xy = py H(W;, /rad’ Y (M)) — FI(W;,) =: By, We = Wy C---C W,

where py is welldefined because two (Qo-graded subvector spaces W;,, VVi’1 containing
rad’~1(M) having the same quotient are equal. It is easy to check that both are fibre
bundles. Now, it holds

rad®(M/U;,) = (rad*(M) + U;,)/Us,
soc!(M/U;,) = soc™ (M) /U,

for any d and U;, C Mwith%: W;,. Then, X3 ::pQ_I(Wg cWycC---CcW,) =

{0 CWani/w,, C -+ C Mjw,, |

radbi2(M/Ui ) C Wig/Wil C SOCl(M/Ui )
rad’=3(M/u,) C Wis /W, C  soc*(M/u,)

}
rad(M/u;, ) C Wi, y/wi,  C soc? 2(M/u;,)
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M/Usy
—dn
YM/UZ.1 associated to the sequence 1o — 11 < i3 —11 < -+ < ip_1 — 1. Using multiplicativity

by the previous theorem this is the ST . C Fl ( ) where T;_;, is root tableau of shape

of IP in locally trivial fibre bundles we get

—_— soc(M)
IP(St) = IP(F1(W;,)IP(Grq i, _ 1) (———=—))IP(ST
(80) = IP(FUWi IP(Gragsgoon (v o P,
d—
_ [d11]|<[ (Zt:l et)]>IP(8 B )
[dll _ eb] i—iq
The rest follows by induction. O

Theorem 7.5.2. Let M be a module of hook type, let d be a complete dimension filtration
of dim M and T}, Ty be root tableu of shape Yy with QTi = QTZ-/ =d.

Then, the intersection ‘S'iT1 ﬂSiTZ_, s nonempty if and on[y if N

Bj = max(ij, 1) < min(ijﬂ,i;rl) =: ajq1 (Bo = 0), in which case it is given by Qo-
graded flags (0 =Wy C Wy C --- C W) € F(d) such that

rad(M) C W,,_, C Ws_, C soct~1(M).

Corollary 7.5.2.1. In the situation of the previous theorem. IfSiTiﬁSTi, 15 nonemply il

1s an iterated fibre bundle with

BQj+1 = Gerﬁqul_dﬁj —ey_; (SOC(M/UBj )/radbflfj(M/Uﬁj))

Bojt2 = Xaj1-5; (radb_l_j(M/Uﬁj)) (C FI(WBjH/WBj))a

where apy = Bp = dim M,y = g =0, j =0,...,b— 1. In particular, it is smooth. Its

wntersection homology Poincare polynomial is

IP(S7, N St,) = ([dﬁl _eb]>[dal]![dﬁl de)! ([ - (e let”)

[dal — eb] [dﬂl - eb]

B b—1
dBQ - dﬁl - ebl]) [dag _ dﬁl]![d52 _ daz]!([d —d™ — (Z =1 et)])
@7 —dP —epy]) ST T gl gy )

(i

ol i g o (7 )
(s |
ld

dPv—1 dﬁb 2 ey

dab 1 dﬁb 2 )[dab 1 dﬁb*Q]![dﬁbfl _dabil]!

d — dP—2 (Zt: ) .
< [ _dg,,,Q_leﬂ >[d—dﬂ ]!

Proof of corollary: We define

pr: X1 = SiTLﬁSiTL, — Gerﬁl —e (SOC(M)/radb_l(M)) =: By, We — WB1/radb_1(M)
po: Xo = p7 L (Way frad® =1 (M) — X, (rad® "1 (M) =: B, We = Wy C---C Wy,
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where X, (rad®~'(M)) C FI(Wg,) is defined as in the example. Both maps define fibre
bundles. Then, X3 := pQ_I(WO CWiC---CW;,) =

{ 0 C W51+1/Wg1 c---C M/Wﬁl |
rad’ 2(M/ug ) C Weg/ws  C Wafws  C o soc! (Mfug,)

rad’ }(M[ug ) C Was/ws,  C Wag/ws o soc®(Mfug,) Y,

rad(M/ug, ) C Way_y/ws, C Ws_y/ws C socb_Q(M/Uﬁl)

this is isomorphic to STl;B1 N STi/—,Bl’ where T;_g,, Ty»_p, are the root tableau of shape
YM/Uﬂ1 associated to the sequences io — 1 < i3 — f1 < ... < ip—1 — f1 and i) — B <
i — 1 < ... < i,_, — P1 respectively. By multiplicativity of the intersection homology

polynomial we get

I].:'(SiTi N SiTL,) =1P(X,, (radb_l(M)))IP(Gerﬁl e (SOC(M)/radb_l(M)))IP(ST1751 N STﬂ—ﬁl )

B1 _ ¢ _ b_ e
= <[[Za1 B ;j) [d)![d” — d*]! <[d | délz_t—elb] ”) IP(St, ,, NSr,_,)-

The rest follows by induction. O

Theorem 7.5.3. Let M be a module of hook type, let d be a complete dimension filtration
of dim M. Then, there are finitely many Aut(M)-orbits in Flg (A(f) The orbits in SiTl for

1< < -+ <ip_q1 are in bijection with sequences
aB:0<a < <P <ap<ia<fo<--<ap1 < ipo1 < Pyt

The corresponding Aut(M)-orbit Oqp is given by (0=Wo C Wy C --- C W) € F(d) such
that } _
rad’7 M c Wa, CWp, C soc! M

rad’~7 M ¢ Wa,-1, Ws, 11 ¢ soc/ M.

The closure of the orbit @ is given by (0 =Wy C Wy C --- C W) € F(d) such that
rad”/ M C W,, C W, C soc/ M.
The orbit which is dense in SiTl s given by
0<ar=nn=f<am=i=PF < - <ap_1=1i-1=Bp1-

Open problems:

e We would like to see the structure as modules for the KLR-algebra R, for Q = A, on
the Springer fibre modules @4 HZM (Flq (Aé[ )) where d runs through all dimension
filtration of a given dimension ;ector d. It slr:ould be possible to write this down with
the vector space basis which we have found for them. We conjecture/ would like to

prove:
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Conjecture. The KLR-algebras for linear oriented A,-quiver are cellular algebras,

the cell modules are given by the Springer fibre modules.

e In Fung’s work | |, he investigates a connection to Kazhdan-Lusztig theory.

What is the analogue here?

e Does the cell decomposition of Flg (Ag ) have a corresponding decomposition for O/ N
Fyq?
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Chapter 8

Appendix on equivariant

(co)homology

Summary. These are the topics treated shortly in this chapter:

Slodowy’s Lemma. Equivariant cohomology and splitting principle, Localization Theo-
rem. Equivariant Borel-Moore homology and convolution product. Equivariant derived
categories and duality. The Serre cohomology spectral sequence applied to prove some
lemmata from the survey on Springer theory and to study the equivariant cohomology of

flag varieties. Equivariant perverse sheaves.

8.0.1 A Lemma from Slodowy’s book

Let us recall the slightly more general version of a lemma from Slodowy’s book, which I

sometimes refer to as Slodowy’s lemma (because I do not know its origin).

Lemma 77. (Slodowy’s lemma, |. [, p.26, lemma 4) Let X be a G-scheme of finite
type over K and ¢: X — G/P be a G-equivariant morphism, we denote by F := ¢~ (eP)
the scheme-theoretic fibre. Then, F is a P-scheme and if G x* F exists we have a com-

mutative diagram

GxPF v X (9. f)——4f

A

G/P gP

with ¥ 4s a G-equivariant isomorphism.

Proof: There is a G-equivariant isomorphism G x¥ X — G/P x X, (g, ) — gz because
X is already a G-scheme. Now, we compose the closed immersion G x* F — G x? X with

this isomorphism and get the map v as the composition

GxPrLa/pxx B Xx
(9, /)= (gP,gf) = gf,
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where 7 is a closed immersion. We identify G x¥ F with Im(7). Therefore, it suffices to
find a G-equivariant section v: X — G/P x X of pa onto the image of 7 which is the
identity restricted on F.

We consider v(z) := (¢(x), z), which is obviously a G-equivariant section of ps, therefore it
is a closed immersion. Using | |, chapter III, remember that G /P is the sheafification
of the functor on K-algebras X : R+ T(R) := G(R)/P(R) and G'x? F the sheafification of
the functor S: R+ S(R) := (G(R) x F(R))/P(R). Denote by s: T — G/P,s: S — G x*
F the canonical natural transformations into the sheafification, we factorize X — G/Px X
into X & T'x X 5 G/P x X as indicated above. We call 7: S — T x X the functor
which sheafifies to 7. Then it is obviously im(r) C im(7). Let R be a K-algebra; the

commutative diagram

X(R) " T(R) x X(R) ~——" S(R)
($id) l l
G/P(R) x X(R) <~ G xP F(R)

shows that Im(¢,id) = s(Im(r)) C s(Im(7)) = Im(7 o s) C Im(7).

8.1 Equivariant cohomology

We follow the lecture notes of Fulton on this topic, notes taken by Anderson and can be
found for example in | |- Let G be a topological group. A G-space X is a topological
space endowed with a continous G-action. Let EG be a contractible G-space with a

topologically free G-action, i.e.
(1) the stabilizers of all points are trivial.
(2) the quotient map is a locally trivial fibration.
Such a space always exists and is uniquely determined up to homotopy (see for example

[ |). For any G-space X we define

p: Xg:= EGx% X - BG := EG/G

(e,z) — eG

and call X the homotopy quotient.

Definition 34. The equivariant cohomology of X with respect to G is the singular
(ordinary) cohomology of Xg
HL(X) = H(Xg).

It carries the structure of a ring via the cap product on singular cohomology. In particular,
He(pt) = H*(BG)
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and HA(X) is a HE(pt)-module via pullback along p.

Remark. This definition is independent of the choice of EG. Usually the spaces EG are
infinite dimensional manifolds, to remain in the categories of algebraic varieties one writes
them as limits of finite dimensional manifolds (or varieties). For more details and examples
look at | |.

In the older literature it is often assumed that the group is compact. The standard way
to apply these results more generally is: By Homotopy invariance of singular cohomology
one can substitute a reductive group G by a maximal compact subgroup to which it is

homotopy equivalent because of the Iwasawa decomposition.
We assume G to be a reductive group over C, T' C G is a maximal torus and W is the

Weyl group of (G,T).

Theorem 8.1.1. (Splitting principle) Let X be a quasi-projective G-variety, then
HE(X) = (Hp (X)W

For a proof see | .

We denote by K the quotient field of H}.(pt) and for any T-variety X by
Hp(X) = HY(X) := Hp(X) @y K,a— a®1

the equivariant homology tensored over K. According to | |, Lemma 2, a complex
variety X with finitely many T-fixed points is T-equivariantly formal for cohomology if
and only of H°%(X) = 0.

Theorem 8.1.2. (Localization Theorem - weaker version) Let X be a equivariantly formal
T-variety for cohomology (see later remark 8.4.3 for the definition) with finitely many
T-fized points. Then the pullback along i: XT — X induces an isomorphism

*@idg: H(X) > H(XT) = P K-
zeXT

of K-algebras.

In fact, the stronger statement would be that the pullback is injective and becomes an

isomorphism after inverting the Euler classes of the T-fixed points (see below) which occur
as factors in formulas for push-forwards to T-fixed points.
With stronger assumption on the varieties (also assuming finitely many 1-dimensional T-
orbits) there is an explicit description of the image of the injective map i*, this is the
main theorem of Goretzky, Kottwitz, MacPherson see | |. The application of this
theorem is called GKM-theory.

Definition 35. (see | |) If F is a G-equivariant complex vector bundle on X, then

it has equivariant Chern classes
o' (F) € HE(X),
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defined as follows. Since F is equivariant, Fg = EG x¢ F — X is a vector bundle on
X and one defines
S(F) = ¢i(Fg).

1

The Euler class at an isolated G-fixed point = € X is by definition
ez, X) = ¢y (T X) € Hs({a}) = Ha(pt).

Following | |, 2.6.42, p.107, we also call the top Chern class cgp(F) the equivariant
Euler class of F.

The inverses of Euler classes of T-fixed points occur in formulas for pushforwards to
T-fixed points and in multiplicity formulas for cycles after tensoring — ® K and using the
isomorphism from theorem 8.1.2.

The Euler class for a vector bundle occurs in the Thom isomorphism later.

8.2 Equivariant Borel-Moore homology

Definition 36. Let X be a complex algebraic G-variety embedded into a complex man-
ifold M, which is equi-dimensional dim¢ M = m. Pick a G-representation Y and an
G-equivariant open subset U C Y with G operates freely on U and the (complex) codi-
mension of Y\ U in Y is greater or equal dim X — % In particular U x& X exists as
an algebraic variety and can be embedded into the (equi-dimensional) manifold U x& M.
Then, we define the i-th G-equivariant Borel-Moore homology group of X with
coefficients in C via

H{(X) = HS qmu—2ame(U x¢ X) = H37H(U x M, (U x9 M)\ (U x“ X))

) 7 ord

We shorten Xg := U x% X always assuming that U is chosen appropriately and call it
an approximation to the homotopy quotient of X. For G-equivariant maps f: X — Y, we

write fo := U x% f where U is chosen appropriately for X and Y.

In particular, we have that HC(pt) is zero for all i > 0. Furthermore, HE(X) =

@D,z HE (X) is a graded H(X)-module via the cap product

HL(X) x HY(X) — HE /(X), (c,d)—cnd

In particular, as H(X) is a H}(pt)-module, HE(X) is a Hy(pt)-module with Hé(X) .
HE(X) C HE (X).

8.2.1 Basic properties

Basic properties which we get from the properties of Borel-Moore homology (cp. | D

(1) (proper pushforward) Let f: X — Y be a G-equivariant proper morphism of complex
varieties. Then, the induced map fg := U xY f is proper and we define f,: H(X) —

249



HE(Y) to be the map
(fa)«: Hg%imU—QdimG(XG) — Hﬁj\fdimU—QdimG(YG)

(localization property) For any open G-equivariant subset j: A C X we have
ja: Ag C X is open. There exists a natural restriction morphism j*: HE(X) —
HE(A) defined as the natural restriction morphism
. BM BM
(e)" s H35 dimv—-24im¢(Xe) = Hilsaimv—2dimc(Ac)-
Set i: F:= X \ A C X, it is proper, therefore i, is welldefined. Then, there is a

natural long exact sequence in equivariant Borel-Moore homology

Sk

= HS(F) ™ HS(X) L5 HE(A) — HE ((F) — -
(smooth pullback) Let p: X — X be a G-equivariant morphism of complex algebraic
varieties, where X has a G-equivariant covering such that the restriction of p is trivial
over every open with smooth fibre F' of complex dimension d. Then the induced map
Xo 2% X is a locally trivial fibre bundle with typical fibre F' as well and we can
define the pullback p*: HY(X) — HiCiQd(X) as the map

x . ;7BM BM o
PG Hilsdimu—2dima(Xa) = Hi 5 dimv—2dim ¢+24(Xa)

(intersection pairing) Let M be a G-equivariant complex manifold, equidimensional
with dim¢ M = m. Let X,Y C M be two G-equivariant closed subsets, then
Xa, Yo C Mg are closed subsets. There is the map

N: HY(X) x HY(Y) = HYj 9, (X NY)
defined via the U-product in relative singular cohomology

U: H2"H(Ma, Mg \ X¢) x H 79 (Mg, Mg \ Ya)

ord ord

— H™ I (Mg, (Ma \ Xa) U (Mg \ Ya)).

ord

(Thom isomorphism) Given a G-equivariant vector bundle p: £ — X of rank r (i.e.
the complex dimension of the fibre is r) with a zero section i: X — E. Then, the
Gysin pullback morphisms ¢*, u* give mutually inverse isomorphims in equivariant

Borel-Moore homology

( For any real vector bundle 7: F — X of rank r, A C X any subset, we get an
isomorphism H (X, X\ A) = H*"(E, E\7 !(A)). Now given a G-equivariant vector
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bundle £ — X of real rank r, assume that there exists a smooth £ C E, X C X,
e = dimg E, dimg X = 2 = e — r and a vector bundle 7: E — X with 7~ }(X) = E.
Then, Eq — X¢ is still a real rank r vector bundle, the preimage of Xg is Eg and
HE(E) = H* (B, B¢\ Eq) = H* "(Xg, Xa\Xa) = H* 071 (X, Xo\ Xq) =
HE (X))

Furthermore for any ¢ € HY(X) one has i*i.(c) = e(E) U ¢ where e(E) € HS(X) is

the equivariant Euler class of the vector bundle.

(6) (equivariant cycle) Any G-stable closed subvariety Y C X has a fundamental class
[Yle € HS,, . v(X). This yields an equivariant Poincare duality map

HE(X) = HS x—(X), e en[X]e,

which is an isomorphism if X is smooth (even if it is rationally smooth). In particular
HE (pt) = H(_;i(pt), this makes HE (pt) = H;*(pt) a ring and the equivariant homol-
ogy HY(X) for any G-variety X is a module over HE (pt) where HZ (pt) - HJG(X) C

HE (X)),

8.2.2 Set theoretic convolution

Let My, My, M3 be connected G-equivariant complex manifolds. Let
212CM1><M2, ZQgCMQXMg, pl'jZM1><M2XM3—>Mi><Mj

be two G-equivariant locally closed subsets and p;; be the projection on the i-th and j-th

factor. We define the set theoretic convolution of Z;5 and Zs3 via

Z12 0 Zog = p13(p1s (Z12) ﬂp531(223))
={(mi,m3) € My x M3 | Img € Ma: (m1,me) € Z12, (M2, m3) € Zaz}

= Z12 XMy 423

8.2.3 Convolution in equivariant Borel-Moore homology

Let Ml,MQ,Mg, Z12 C M1 X MQ, Zgg C M2 X Mg,pijt Ml X M2 X M5 — Ml X Mj defined
as before. Additionally assume Z19 C My x My, Zs3 C My x M3 closed and the restriction
of p13 denoted also by pi3

p13: p1y (Z12) N pay (Zas) — My x Ms
is proper. Then, we define the convolution product * as follows

HIG(Zlg) X HJC:(ZQ?)) — Hi(—];-j—2m2(Z12 e} Z23)

C12,C23) F> C12 * €23 = (P13)«(P12C12 N P23€23),
( )= (P13)+(P1ac12 N Pa3cas)
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8.3 Duality between equivariant cohomology and equivariant

Borel-Moore homology

8.3.1 Equivariant derived category of sheaves after Bernstein and Lunts

This is based on Bernstein-Lunts | |. T also used Fiebig’s and Williamson’s article
[Fiell].

As in the subsection on equivariant cohomology, let G be a topological group and EG
be a contractible G-space with a topologically free G-action (i.e. trivial stabilizers and the

quotient map is a locally trivial fibration). Consider

EG x X

/ \
X Xq:=EGx%X

where ¢ is the quotient map and p is the projection on the second factor.

Let k be any commutative ring with unit. For any topological space Y we denote by D(Y k)
the derived category of sheaves of k-modules on Y and by D®(Y, k) the full subcategory
of objects with bounded cohomology. For any continous map f:Y — Y’ we have a

pushforward and a pullback functor
f.: D(Y,k) = D(Y,k), f*: D(Y',k) = D(Yk)

Definition 37. The equivariant derived category of sheaves of X with coefficients in k
is the full subcategory D¢ (X, k) of D(Xg, k) consisting of all objects F such that there
exists Fx € D(X, k) such that ¢*F = p* Fx.

We denote by Dbc(X , k) the full subcategory of Dg(X, k) consisting of objects with bounded

cohomology.

Remark. The categories Dg(X, k) and D% (X, k) are independent of the choice of a con-
tractible space EG.

Since p: FG x X — X is a trivial fibration with contractible fibre EG, the functor
p*: D(X,k) — D(EG x X,k) is a full embedding, in particular the sheaf Fx appear-

ing in the definition is unique up to unique isomorphism. We get a forgetful functor
For: Dg(X,k) — D(X,k), Fw— Fx

Remark. Dg(X, k) is not the derived category of equivariant sheaves, which often is
not sensible to consider. Dg(X, k) is constructed in such a way that its properties are
analogous to the derived category of equivariant sheaves, i.e. has a six-functor formalism
which commutes with the forgetful functor and it is a triangulated category with its heart
isomorphic to the category of equivariant sheaves.

For any complex G-variety X, the constant sheaf C'x and the dualizing object Dx := p!Cpt
for the morphism p: X — pt are always objects in Dg(X, k), see | |, example 3.4.2
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(1).

8.3.2 The functor formalism

In order to ensure existence of all the functors we restrict to the following situation. Let
G be a complex Lie group and let f: X — Y be a G-equivariant morphism of (algebraic)

G-varieties. There exist functors

fus fr: DG(X, k) — DG (Y, k)

F5. 1 DG(Y k) = Dg(X, k)

Hom, ®: DL(X, k) x D%(X, k) — D%(X, k)
D := Hom(—, Dx): D%(X, k) — D%(X, k)

they are basically defined as the functors associated to fg = EG x% f: Xg — Yg, but
these spaces are not locally compact in general, so the problem is overcome by considering
them as direct limits of locally compact spaces, see [ |, chapter 3. For G = {e}, they

coincide with the non-equivariant functors given by the same symbol.

(1) (see | ], Thm 3.4.1, Thm 3.5.2) The functors f., fi, *, f', Hom,® and D com-

mute with the forgetful functor.
(2) (see | |, 1.4.1-1.4.3, thm 3.4.3)

(i) f* is naturally left adjoint to f, in particular, there is a natural transformation

L= fuf7,

(ii) fi is naturally left adjoint to f', in particular, there is a natural transformation
Af =1,

(iii) There are natural isomorphisms of functors
(f9)* = g"f* (f9)' = ¢ f, (f9)x = fuge, (f9)r = fign,

(iv) There are natural functorial isomorphisms
Hom(A® B,C) = Hom(A, Hom(B,(C)), f*(A® B)=f"A® f*B.

(v) For f: X — pt we define I" := f, and I'. := fi to be the global section functor

and the global section functor with support, respectively.

(3) (see | |, Thm 1.6.2, thm 3.5.2) For any morphism of complex algebraic varieties

there exist canonical functorial isomorphisms

Dfi = f.D, fD=Df*DD=id.

Remark. Warning, we denote the derived functors with the same symbol as the functors
fer f*, fi themselves. The functor f' is constructed to be the right adjoint of fi, it is not

the derived functor of a functor of the same name.
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The following properties are commonly used, see | |, (8.3.13)-(8.3.16) on p.428.

The properties transfer to the equivariant functors.

(1) If f is G-equivariant proper, then f, = fi;. In particular, this holds for any closed
embedding.

(2) If f is G-equivariant, flat with smooth fibers of complex dimension d, then f' =
f*[2d]. In particular, for an open G-equivariant embedding f* = f'. Also, for
f+ X — pt smooth, G-equivariant, we get Dx = Cx[2d].

(3) For any cartesian square

XXZYf—>Y

|,

X Z

of G-equivariant varieties it holds ¢'f, = f.g': D% (X) — D&(Y)

(4) Let ian: X — X x X be the diagonal embedding of a G-variety. Recall that we can
define the tensor product to be A ® B := i} (A x B) for A, B € D%(X). We define
a second derived tensor product via A ®' B :=i'\(A x B). It holds

ARCx =A, A® Dx =A, Hom(A,B)=D(A)®'B

8.3.3 Duality

Let us first recall the appearence of equivariant cohomology in the context of the equivariant

derived category.

Definition 38. Let F € D%(X,k). The equivariant cohomology H(X,F) of X with

coefficients in F is defined as

HE (X, F) == HY,y(BG, 7. F)

ord

where m: X — pt, m.F € D%(pt,k) C D*(BG, k) with BG = EG/G and the right hand
side is ordinary sheaf cohomology, i.e. the i-th cohomology group is the i-th hypercoho-
mology of the complex 7, F of sheaves on BG. This is naturally a graded module over

H{.(pt, k), so we have a functor
HE: D% (X, k) — HE(pt, k) — mod®*

The following is the link to the equivariant cohomology and equivariant Borel-Moore

homology from the previous two sections.

Lemma 78. (/ [, (8.8.6) on page 426 for not equivariant) Let X be a complex G-
variety. Then:

HG(X) = Hg(X, Cx),  Hf

)

(X) =Hg (X, Dx)
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Remark. There is a sheaf theoretic convolution product defined on the equivariant coho-
mology using the functor formalism. This is just a rewrite of | |, chapter 8 where the
non-equivariant case has been treated.

8.3.4 Localization for equivariant Borel-Moore homology

Let T be an algebraic torus over the complex numbers. We use the notion T-equivariantly
formal for Borel-Moore homology which we define later. We only need the following remark:
If the odd Borel-Moore homology vanishes for a variety, then it is T-equivariantly formal

for Borel-Moore homology.

Theorem 8.3.1. (Localization - weak version, [ [, Lemma 1) Let X be a complex
T-variety which is T-equivariantly formal for the Borel-Moore homology (see definition 40
later). Assume X7 is finite and let i: X — X be the inclusion of T-fived points. Then

the pushforward induces an isomorphism
i»@K: H (XT)®c K — HI (X) ®c K

of K = HI'(pt)-vector spaces.

Theorem 8.3.2. (multiplicity formula, [ [, section 3) In the situation as above and

assume that X is compact. Then, it holds

(X]r =Y er(x,X)[zlre HI(XT)@cK.
zeXT

8.3.5 Cellular fibration for equivariant Borel-Moore homology

We rewrite | |, section 5.5 for equivariant Borel-Moore homology. That is straightfor-
ward since all properties which are needed to get the analogue of | |, lemma 5.5.1 are

fullfilled (i.e. Thom isomorphism and localization property).

Definition 39. Let G be a complex algebraic group. Let 7: Z — X be a dominant
morphism of complex G-varieties. We call Z a cellular fibration over X if Z is equipped

with a finite desreasing filtration
Z=2">2"'5...22'52°=10
such that for any ¢ = 1,...,n the following hold
(a) Zi=! C Z'is G-equivariant closed immersion. The restriction
mlgit 20 = X

is G-equivariant and locally trivial.

(b) Set E' := Z'\ Z"~1. The restriction m; = 7|gi: E* — X is a vector bundle (in

particular also dominant).
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Lemma 79. (/ [, Lemma 5.5.1, p.270) In the setup of the previous definition.
(a) Assume HS (X) = 0. For each i = 1,...,n it holds HS,,(Z') = 0 and there is a
canonical eract sequence

0— HE(Z™Y - HE(Z)) — HE(E') = 0

of HE (pt)-modules.

(b) If HG,y(X) = 0 and HE(X) is a free HE(pt)-module with basis c1,..., ¢, then
all the short exact sequences in (a) are (non-canonically) split and HEG(Z) is a free

Hf(pt)—module of rank n - m with basis (&;)«m;*c;, 1 <i<n, 1 <j<m where
with E* the closure of E', T; the restriction of ™ and ¢; the closed embedding.

Sketch of proof:

1) Use the localization property and the Thom isomorphism to prove first the odd

vanishing inductively and obtain this way the short exact sequences.

2) Again by induction on n. For n = 1 it holds Z = E' — X is a vector bundle and
the claim follows from the Thom isomorphism. For the induction step use that the
freeness of HE(E?) and HE(Z'~1) implies the freeness of HE(Z?) and the statement

on the rank. The explicit basis statement comes from the splittings of the sequences.

g

8.4 The Serre cohomology spectral sequence with arbitrary

coeflicients

This has been explained to me by Greg Stevenson.
Let X — B a fibration of complex algebraic varieties over C with typical fibre F'. We look

at the diagram

Frt.x_4.p

A

The Grothendieck spectral sequence gives for any F € D(X) a spectral sequence
EY = Rip, (R g.F) = R"*'q. F
Now, R7g,F is the sheaf associated to the presheaf
U W (g7 (U), Flg1 o))
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We are interested in the two special cases

(1)

F = Ax is the complex concentrated in degree zero, where it is the trivial local
system for a commutative ring A. In this case, for an open, contractable subset
U C B such that g7}(U) =2 F x U, we have

H (g7 (U), Ax) = H),o(F x U, A) = H] (F, A)

ord ord

where ngd denotes ordinary (= singular) cohomology and the second isomorphism
uses the Kiinneth formula. The spectral sequence is
EY = H(B,H’(F, A)) = H."J(X, A)
where H7(F, A) is a local system with stalks HJTd(F A) and H*(B,—) is the sheaf
cohomology. If the local system H7(F, A) is trival and ngd(F, A) is a free A-module,
then the spectral sequence simplifies to
By = Hiyo(B, A) ©4 H),  (F, A)) = H,[J(X, A)

Furthermore, if Hgfg(F A) = 0, the spectral sequence degenerates at Fy and we get

an isomorphism of H? (B, A)-modules
(X, 4) =

(B A) ord (F A)

ord ord

(more precisely, there exists a filtration of the graded ring R := H

ord

(X, A)
R*=F°R* > F'R* > ... D F*R* > F*tIR* = 0

by H?. (B, A)-submodules such that the subquotients are free and FPR" - F4R" C
FPTaR"TY and the associated graded ring grp(H?
(B A) ®A ord(F A) )

Also, the two edge maps of the spectral sequence are morphisms of A-algebras

(X, A)) is isomorphic as bigraded
ring to H*

ord

:)krd(Xv A) - ;T‘d(F7 A) = Eg*
Ey° = Hy(B, A) = H},y(X, A)

If F = Dy is the dualizing sheaf and we assume B to be a manifold of (real)
dimension 2n, then for C* = U C B open such that ¢~ (U) = F x U it holds that

I[—Hj(gil(Uv)vDX’g_l(U)):flﬁjM(F‘><(]>C)g —j— Qn(F C)

is the j-th Borel-Moore homology and the last isomorphism is given

where H JB M

by the Kiinneth formula for Borel-Moore homology (cp. | |, p-99). Therefore

Rjg*DX is a local system with stalks isomorphic to HPJMM(F, C). If we asume that

it is the trivial local system and use the fact that HZM, (F,C) is automatically a

—j— 2n
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free C-vector space, we get a spectral sequence

By = H},4(B,C)®c H?, (F,C) = HBM (X,C)

]2n

Furthermore, if H (ﬁé\l/f (F,C) = 0, the spectral sequence degenerates at Ey and we get
an isomorphism of C-vector spaces

HIM(X,C)2 € H4B,C)ecHEY,, (F,C)

—i—j=m

Now, let X be a complex G-variety where G is a connected algebraic group over C.
Then, the previous spectral sequence applied to the fibration X — BG can be written as

qu = HZ(BG) ®c Hog-on(X) = H_p¢(Xq) = HS

—p+(—q—2n) (X)

because BG is simply connected (whenever G is connected, you get as part of the long exact
sequence for homotopy groups 0 = m (EG, x) — m(BG,y) = m(G) = pt). Remembering
that H%(BG) = HZ(pt) = ng(pt), then after reindexing s = —p,t = —q—2n the spectral

sequence can be written as
Ey' = HY (pt) ©c H(X) = H{(X)

Definition 40. If the above spectral sequence degenerates, we say X is G-equivariantly

formal for Borel-Moore homology.

Now, let us come to the Steinberg variety, recall that Z = | | Zii, 4ij = B xy Ej

ije€l Zig>
with E; = G xP F; and G is a connected reductive group. We know that H,q44(Z) = 0 and

that H.(Z) has a basis as C-vector space given by algebraic cycles. We set e; := dim F; =
dim G + dim F; — dim P;. Then, H,(Z) and HS(Z) become graded rings by the following
definition (see | |, p.481)

Z) = @ H€i+€j—p(Z)7 H[%(Z) = Hg+ejfp(Z)'
ijel ijel

It holds that Hy,(Z)* Hiq(Z) C Hipig(Z). For any i, j € I, we have a degenerate (at Fa)

spectral sequence
—s,e;+ej—t — G
E2 T= HGs(pt) ®c Hei+€j_t(Z ) == Hez-s-ej (s+t)(Zi7j)

Taking the direct sum, we get a (degenerate at Fs) spectral sequence

Ey ™ = Hg*(pt) ®c Hyy(Z) = H{,y(Zi;)

Now, By = P, HE (pt) ®c Hy(Z) is a bigraded ring. This is a spectral sequence which
is compatible with the graded ring structure (i.e. d,.(ab) = d,.(a)b+ (—1)*Ttad,(b) because
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d, = 0), cp. for example Stricklands notes | |- It implies
HE(Z) = HE (pt) @ H.(2)

as HC(pt)-modules (more precisely: There exists a a filtration of the graded ring R :=
H{(Z)

R*=F'R*D> F'R*D> .- D F'R" D F*"'R* =0
by HE (pt)-submodules such that the subquotients are free and FPR" - FIRY C FPTIRu+Y
and the associated graded ring grp(HE(Z)) is isomorphic as bigraded ring to HS (pt) ®

Also the two corner maps of the spectral sequence are morphisms of graded C-algebras

HE(Z)— H(Z) = By
By = HE (pt) ® Hg)(2) — HE(Z)

8.4.1 A lemma from the survey on Springer theory

As an application of the previously discussed Leray spectral sequences, we include the two
lemmata and their proofs from the first chapter.

We set W := L; jer Wij with Wi ;== W; W/W; where W is the Weyl group for (G, T)
and W; C W is the Weyl group for (L;,T) with L; C P; is the Levi subgoup. We will fix
representatives w € G for all elements w € w.

Let Cy = G - (eP;,wPj) be the G-orbit in G/P; x G/P; corresponding to w € W ;.

Lemma 80. (1) p: C, C G/P; x G/P; 2L G/ P; is G-equivariant, locally trivial with
fibre p~1(eP;) = PawP;/ P;.

(2) PawPj/Pj admits a cell decomposition into affine spaces via Schubert cells
zBjz 'vwP;/Pj, veEW,;

where B; C P; is a Borel subgroup and x € W such that *B; C P;. In particular,
Hodd(Piij/Pj) =0 and

H.(PawP;/Pj) = €D Cbij(v),  bij(v) = [2Bja—TowP, /P,
veW;

It holds that degb; ;(v) = 2¢; j(v) where £;j(v) is the length of a minimal coset
representative in W for x_lvij e W/W;.

(3) For A € {pt,T,G} it holds HA,,(Cy,) = 0 and since G/P; is simply connected

H\(Cy) = @ HL(G/P) @ Hy(PawP;/Py),

n
ptq=n

HNCo) = @B Chi(u) @bi;(v),
uEW/Wi,’UEWi
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where bi(u) = [ByuP;/P;|* is of degree 2dimc G/P; — 20;(u) with £;(u) is the length

of a minimal coset representative for u € W/W; and b; j(v) as in (2).

Proof:

(1)

Since p: Cy C G/P;xG/P; — G/ P;is G-equivariant and G/ P; a homogeneous space,
we can apply Slodowy’s lemma (see lemma 77) which implies there is an isomorphism
of G-varieties C,, = G xTi p~1(eP;) over G/P;. If the Levi group for P; is a product
of special algebraic groups, then P; is special as well, this implies that any principal
P;-bundle is locally trivial in the Zariski topology. For the analytic topology it is

locally trivial because it is a smooth map. It is easy to see p~!(eP;) = PwP;/P;.

Now, let B; C P; be a Borel subgroup of G, v € W such that *B; C P;. It
holds PwP;/P; = U, e, zBjz lvwP;/Pj, xBjz~'vwP;/P; is isomorphic to an
affine space. The dimension of a Schubert cell xij_lij /P; can be found as fol-
lows: Let (z7'y)/ be the minimal coset representative of z~1yW,; € W/W;. Then
it holds dimzBjz~'yP;/P; = {((x'y)7). Tt is well-known that the Schubert cells
give a cellular decomposition of PiwP;/P;. It follows that Hyqq(PywP;/P;) = 0

and H,(P;wP;/P;) has a C-vector space basis given by the cycles [xBjz~lvwP;/P;]
where deg[z Bz~ lowP;/P;] = 2¢((z lvw)?).

Consider the Serre cohomology spectral sequence for the fibration in (1)
B3 = HP(G/ Py, Hegaf,(PrwP; / Py)) = Hpy(Cu)

where H_q_oy, (P;wP;/P;) is a local system with stalk H_,_oy, (P;wP;/Pj) and f; =
dim(G/F;). Since Hyqq(P;wPj/Pj) = 0 we obtain that the spectral sequence de-
generates, which implies that H,qq4(Cy) = 0. Since G/P; is simply connected the
local system H_q_of (PwP;/P;) is trivial and HP(G/P;, H_q—af,(PwP;/P;)) =
HP?(G/P;) ®c H_q—2y,(P;wPj/Pj). Then the degeneration gives

Hn(Cw)= €D  HP(G/P)@c Hy(PwP;/F))
q—p=m—2f;

Now, for A € {T, G} we have the Serre spectral sequence associated to the fibration
(Cw)a — BA
ERY = H\(pt) x¢c Hy(Cw) = HY ,(Cw)

which degenerates because H,qq(Cy) = 0, therefore we have

Hréz(cw) = @ H;I)L‘(pt) ®c Hq(cw)
pt+g=m

— @ H;‘(pt) ®c H*(G/P;) ®c Hy(PwP;/P;)
ps—t=m—2f;

and HA,(Cy) = 0.
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8.4.2 The cohomology rings of flag varieties.

We review some known results.

Let G be a connected reductive group over C and P C G a parabolic subgroup. We write
H*(—,C) for the ordinary cohomology ring (wrt the cap product) and for any algebraic
group H we write H};(—,C) for the H-equivariant cohomology ring (wrt. cap product).
As usual, if we leave out the coefficients in (co)homology groups, they are assumed to be
the complex numbers.

Furthermore, fix T C P a maximal torus and let W be the Weyl group associated to
(G,T). Let Wp C W be the subgroup stabilizing P. Let us first remark the following

Remark. Let Iy C C[t] and II(,II/D) C C[]"” be the ideals generated by the kernel of the
algebra homomorphism C[]'Y — C, f + £(0). Then it holds

I =ryncy"r =17 cclgr.
Furthermore, it holds that
(Cl)/Iw)"" = C[gVr /1y,

This follows because ()" is an exact functor on finite dimensional complex Wp-modules
and since Wp operates by graded vector space maps on C[t] and Iy, we can restrict on

the graded parts to use the exactness.

Theorem 8.4.1. There are isomorphisms

H*(G/P) = (C[{/In)"? = C[t}WP/I‘(,éD) as C — algebras,
Hp(G/P) = Clt] ®cyw cg"e as Hr(pt) = C[t] — algebras,
H}(G/P) =C[g"r as HE(pt) = C[" — algebras,

where the degree of the elements in Home_,s(t, C) C C[4] is 2.

Proof: Let B C P be a Borel subgroup. Recall that the Borel homomorphism c: C[t] —
H*(G/B) is a surjective algebra W-linear algebra homomophism with kernel Iy,. Let
a: G/B — G/P be the natural map. We write o* for the pullback map in the different
cohomology groups. Recall from | | that o*: H*(G/P) — H*(G/B) = C[t]/Iw
is a monomorphism of finite dimensional C-algebras which identifies H*(G/P) with the
subalgebra of Wp-invariants in H*(G/B).

The third identity H}(G/P) = C[t]"" follows from | |, rem. 3), page 4, which is

originally due to Arabia (cp. | | ). In our situation it states as

He(G/P) = Hp(pt).
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Now let L be the Levi group in P, by definition Wp is the Weyl group of (L,T'). The Levi-
decomposition shows that L is homotopy equivalent to P. This implies H}(pt) = Hj (pt),
then the splitting principle gives Hj (pt) = (H;(pt))"VP.

Finally H7(G/P) is calculated with the knowledge of H{(G/P) also in | |, Prop 1
(iii), page 6 for the isomorphism as Hg(pt)-modules. To see that the ring structure is also
the same one uses a localization to the T-fixed points, for the case P = B see the example
on p.14 in | |- 0.

8.4.3 Forgetful maps

Recall that by the forgetful maps the commutative diagrams of C-algebras

HY(G/P) H:(G/P)

~.

H*(G/P)

is given by the ring homomorphisms

(C[t]WP = C[ ] ®(C[f]w (C incl

\ /

WP/I(P

®(C WCH

where 7: C[]"P — (C[t]WP/II(/‘I,D) is the canonical surjection. The map 77 is a surjective
ring homomorphism which makes the diagram commutative but I do not know it explicitly.
The claim that the forgetful maps to usual cohomology are surjective is equivalent to the

degeneration of the Serre spectral sequence which we discuss in the following.

Remark. (The Serre cohomology spectral sequence from ordinary to equivariant coho-
mology)

This is another special case of Serre cohomology spectral sequence, this time for singular
cohomology.

Let X be a complex algebraic variety with an action of an algebraic group G and let
c € H*(X). We say that ¢ € H}(X) lifts ¢ to Hj(X) if it maps under the forgetful map
H{:(X) = H*(X) to c.

The Serre cohomology spectral sequence for the fibration X := X x% EG — BG with
fibre X is of the form
EY = HP(BG,HY(X)) = H"T9(Xs)

The second sheet of the spectral sequence is the tensor product is E¥? = HP(BG)@cH?(X).

because 71 (BG) is trivial.The following statements are equivalent

(1) The Serre cohomology spectral sequence degenerates at Eo.

(2) The forgetful ring homomorphism H(X) — H*(X) is surjective.
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(3) Hi(X) = HE(pt) ®c H*(X) as Hg(pt)-modules.

(4) H:(X) is a free HE (pt)-module and every lift of every C-vector space basis of H*(X)
under the forgetful map is a basis of Hj(X) as Hj(pt)-module.

If one of the equivalent condition is fulfilled we say that X is G-equivariantly formal

for cohomology.

Now, for G/P seen as T-variety the previous remark applies, in particular H}.(G/P) =
Hi(pt) @ H*(G/P) = C[t] ®c (C[t]/Iw) as C[t}-module. The basis of Schubert cycles in
H*(G/P) can be lifted to the basis of (T-equivariant) Schubert cycles in H}.(G/P) (recall
that all these cycles are invariant under T, the cellular fibration method can be applied to

see this).

For G/P as G-variety the previous remark applies, the Serre spectral sequence degen-
erates at Fo because the odd cohomology of G/P vanishes (which implies HY(G/P) = 0

for ¢ odd). In other words we know
HE(G/P)= €D HP(BG,HY(G/P))
p+g=n
and since m (BG) = {pt} because G is connected we get H?(G/P) is the trivial local
system. Hence we see

H{(G/P) = H*(G/P) ®c H(pt) as Hi(pt)-module.

Using the statement (4) in the remark we obtain the following corollary.

Corollary 8.4.1.1. (1) H}(G/B) = C[{] is a free module over Hj(G/P) = C[VF of
rank #Wp.
A basis is given by a set by, w € Wp where by, is a lift of [BpwBy/Br] € H*(L/Bp)
to H; (L/Byr) = C[t] where L C P is the Levi subgroup and By, = BN L.
(2) H:(G/P) = C[)"P is a free module over H (pt) = C[t]"V of rank #W7T.
A basis is given by a set c,, w € W where ¢, is a lift of [BwP/P] € H*(G/P) to
H}(G/P) =C[)"r.

Sketch of proof:

(1) Consider the locally trivial fibre bundle G/B — G/P with typical fibre P/B. Use

the degeneration of a Serre cohomology spectral sequence to get

HE(G/B)= €5 HP(P/B)®c HL(G/P).
p+g=n

Identify this with the degeneration of the Serre cohomology spectral sequence for the
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map (L/Bp)r, — BL with typical fibre L/By, i.e. with

H}(L/BL) = €D HP(L/Br)@c Hi(ph).
ptg=n

to get the statement of the corollary.

(2) Use the degeneration of the Serre cohomology spectral sequence for the map (G/P)g —
BG with typical fibre G/P.

8.5 Equivariant perverse sheaves

We will only consider the middle perversity function. We use the convention of Arabia for

the perverse t-structure (compare | D).

8.5.1 Perverse sheaves

Let X be an algebraic variety over C of complex dimension dx. Recall that we have Verdier
duality D on the category of derived category of constructible sheaves D?(X). Also we set
the support of a sheaf to be the set of points where the stalks are nonzero. We denote
the shift functor by F*® — F*[d] defined via (F*[d])" := F"*¢ (and on cohomology by
HA(FA[d]) = HOH(E)).

Definition 41. We define the perverse t-structure on D?(X) via

F*ecPD>0 <= VYSCX:H'WisF*)=0, n>—dg

where S C X runs through all locally closed analytic subsets, dg is its complex dimension
and ig: S — X the inclusion.

We say a F* € D(X) is a perverse sheaf if it is in the heart of the perverse t-structure,
i.e. if the supports of H"(F'®) and H"(Dx (F*)) have dimension < —n. In particular, for
a perverse sheaf F'* it holds that H"(F*) = 0, H"(Dx F*) = 0 for n > 0.

We denote by P(X) C D(X) the category of perverse sheaves on X.

For example, if X is smooth, the constant sheaf Cy[dx]| (i.e. the complex concentrated
in degree —dx) is a perverse sheaf, where we use Dx(Cx[dx]) = Cx[dx]. More generally
for any local systems £ on a smooth variety X, the shifted complex L[dx] is perverse
sheaf, it holds that Dx (L[dx]) = L*[dx] where £* := Hom(L,Cyx) is the dual local sys-
tem. We call a local system L simple if the via monodromy associated representation

m1 (X, x) = GI(L;) of the fundamental group is simple.

Let X again be an arbitrary complex variety. Let U C X be a dense smooth subset and

L alocal system on U, then there exists a complex ZC(X, £) € D?(X) called the minimal

1

(or intermediate) extension® uniquely determined by the properties

it is defined by applying Deligne’s minimal extension functor
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1) IC(X, £)[dx] € P(X)
2) it IC(X,L) =L

It holds that ZC(X, L) = ZC(X, L) for a local system £ on U C X, L' on U’ C X if and
only if there exists an open smooth subset V-.C UNU’ with L]y = L'|y.

For every closed irreducible subset Z 2, X of dimension dz (as complex variety) and

a local system £ on an open smooth subset U C Z we get a perverse sheaf
IC(Z}[:) = (Zz)* (IC(Z,ﬁ)[dz}) S P(X)

Theorem 8.5.1. (for this version see [ [, but it is due to [ ].)
(a) The category P(X) is an abelian category.
(b) It is stable under Dy,

(¢c) It is admissible (i.e. for every 0 — E® % F* 5 G* = 0 with ba = 0 it holds: (a,b)
short ezxact sequence in P(X) if and only if E® o el Ge ﬂ) 1s a distinguished
triangle.),

(d) it is extension closed (i.e. for any distinguished triangle E® % F* ENyel ﬂ with

E*.G* € P(X) it holds F* € P(X).).

e) The simple objects of P(X) are precisely 1C 5 py for Z C X closed and L a simple
(2,£)

local system on an open in Z.

(f) Every perverse sheaf has a composition series (i.e. filtration with simple subquotients)
of finite lengths. We say that P(X) is a finite length category. (In the literature this

is referred to saying that: P(X) is artinian and noetherian.)

Theorem 8.5.2. (BBD-Decomposition theorem, [ ]) Let m: X — 'Y be a proper map
between complex algebraic varieties. Then, W*IC&’@ € DZ(Y) s a direct sum of shifts of

simple objects.

8.5.2 Equivariant perverse sheaves

Here we follow the definition of | |, p-41.
Let G be an algebraic group operating on a complex algebraic variety X. Recall that we

have a forgetful functor
For: D%L(X) — D*(X), F s Fx.

Definition 42. We define the category of G-equivariant perverse sheaves Pg(X) to be the
following full subcategory of D% (X)

Pa(X) :={F € D%(X) | Fx € P(X)}.
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By definition we get through restriction a forgetful functor
For: Pg(X) - P(X), Fr~ Fx.

Remark. (| |, loc cit) Tt follows from the properties of P(X) that the category Pg(X)
has the following properties:

It is the heart of the perverse t-structure on Dg(X) and therefore abelian. Every object
in Pg(X) has finite length, and we can describe the simple objects as IC-sheaves in the

following way.

Recall that we shortly mentioned the following result: By definition D%(X) is a full
triangulated subcategory of D’(X¢). The heart of the natural t-structure (i.e. the one
defined by the truncation functors) is the category of G-equivariant constructible sheaves
on X, we denote this by Shg(X), cf. | |, Prop: 2.5.3, p.25.

With the analogue definition using truncation functors one can define minimal (or inter-

mediate) extension functors in the equivariant situation. It can be characterized as before:

Let j: U — X be the inclusion of a locally closed irreducible G-invariant smooth dense
subset of complex dimension dyy. Let £ € Shg(U) be a G-equivariant local system. There
exists ji.L = ZCY(X, L) € DY(X), called the intermediate extension, uniquely deter-
mined by the following properties

1) ZC9(X, £)[dv] € Pa(X)

2) *ICY(X,L) = L.

Then for every closed irreducible G-equivariant subset Z 2, X of dimension d z and a
G-equivariant local system £ on an open smooth subset of Z we get a perverse sheaf

1CG py = (iz)« (ICE(Z,L)dz]) € Po(X).

The analogue of theorem 8.5.1 holds in the equivariant situation. Furthermore, we have

the following.

Lemma 81. (Folklore, see also [ |, p-438, also used in [ ]) The forgetful functor
For: Pg(X) — P(X) fulfills IC(GZ@ = IC (7). Il induces an equivalence of calegories
between the semisimple category spanned by the simple objects in Pg(X) and full additive
subcategory of P(X) generated by IC 7 ry where Z is G-invariant and L is G-equivariant.

In the Appendix of | |, it is stated that the forgetful functor in the previous lemma
is even fully faithful.

Theorem 8.5.3. (equivariant BBD-decomposition theorem, [ |, p42) Let m: X —» Y
be a proper, G-equivariant map of complex algebraic varieties. Then, W*IC(GX 0) € Dg(Y)

is a direct sum of shifts of simple objects.
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Remark. Since the forgetful functor commute with pushforward, the direct summands in
the BBD-decomposition theorem are the same after applying the forgetful functor as in
the equivariant BBD-decomposition theorem.

Also observe that if X is smooth, then IC(x c) = Cx[dx]. In fact, the BBD-decomposition
theorem and its equivariant version hold true not just for the pushforward of /C(x c) but
for the pushforward of ICx ») with £ local system of geometric origine, see | | for
the definition. We do not use this here.
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