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The heart of homological algebra. Exact categories were introduced by Quillen (1972) in
[38] to define algebraic K-theory of an exact category. He axiomatized properties of extension-closed
subcategories in an abelian category. So, an exact category consists of an additive category together
with a class of kernel-cokernel pairs called short exact sequences (or conflations). These have to
satisfy axioms which ensure that equivalence classes of short exact sequences define an additive
bifunctor Ext1E called the extension functor. Using longer exact sequences one can define higher
Ext-functors and show that every short exact sequence (observe the different arrows marking the
short exact sequence)

X � Y � Z

gives rise to a long exact sequence in abelian groups

0→ Hom(V,X)→ Hom(V, Y )→ Hom(V,Z)→ Ext1(V,X)→ Ext1(V, Y )→ · · ·
For the author, this is at the heart of everything named homological algebra. Homological
invariants are conditions on Ext-groups (e.g. certain ext-vanishing). Exact categories provide
precisely the minimal set of axioms such that all classical concepts of homological algebra are
defined. Many cohomology groups of interest are instances of Ext-groups in exact categories (sheaf
cohomology, group cohomology, Hochschild cohomology, singular cohomology). Bühler [13] showed
that every well-known diagram lemma generalizes from abelian to exact categories.

Ubiquity. Exact categories are studied in many algebraic contexts, for example

(*) in algebra as subcategories of (graded) module categories over a (graded) ring: as filtered
modules over a filtered ring [35], as torsion modules [14], flat modules, Gorenstein
projective modules and relative exact structures [18], [28], as almost modules [21], for more
specific rings: as Cohen Macaulay modules and lattices over orders [41], [40], as modules
filtered by standard modules over a quasi-hereditary algebra [16], as perpendicular
categories for categories of quiver representations [22], as monomorphism categories, as
semistable modules [32], as modules of finite projective dimension, as Auslander-Solberg
exact structures on finitely generated modules over an artin algebra [5], [3], [4], as
selforthogonal subcategories in finitely generated module categories of artin algebra (in
homological conjectures [20] or in tilting theory [2]),

(*) also as representations of groups, representations of posets, representations of bocses and
differential biquivers [12],

(*) in algebraic geometry as subcategories of quasi-coherent categories of sheaves on a
scheme: as coherent sheaves, vector bundles, torsion sheaves, supported on a closed
subscheme [24], also other categories of sheaves: Sheaves on sites, coherent sheaves on
complex analytic spaces, flabby sheaves on a topological space [30], [31],

(*) in functional analysis as subcategories of locally convex spaces [15]: Banach spaces,
barrelled spaces, Schwartz spaces, Frechet spaces, Montel spaces [36], [39].

Flexibility. Constructive methods for exact categories are very flexible (which admittedly
makes it difficult to be systematic about it), for example:
You can filter with respect to objects, take perpendicular categories (wrt. to Ext- or Hom-functors)
or intersections of exact subcategories. You can pass to exact substructures, e.g. look at an exact
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substructure making a left exact functor exact. You can look at the category of all short exact
sequences in an exact category, or the category of complexes in an exact category. You can look at
(many) functor categories with extra properties. You can Ind-complete your exact category
(completion with respect to arbitrary small filtered colimits). You can look at recollements of exact
categories. And much more.

The main open problem... We know many ways of finding exact categories but then we know
hardly anything about their homological algebra. When you pass to an exact substructure or an
exact subcategory, everything can happen to your homological invariants. One way to prevent this is
to study if the inclusion functor is homologically exact (i.e. induces isomorphisms on Ext-groups) -
this only applies to exact subcategories. For exact substructures new ideas are needed. Or another
open question: when is the global dimension preserved under Ind-completion (cf. [37])?

Derived/stable and singular equivalences. Despite of this ubiquity of exact categories, they
are surprisingly rarely studied generally from a homological algebra point of view. The primary
invariant here is of course the bounded derived category of an exact category. There are very few
authors considering them, mostly because of the (sometimes) missing t-structures. Secondly the
singularity category is a homological invariant, it ’annihilates’ all objects of finite projective
dimension in the derived category. Also Auslander’s effaceable functor categories reflect some
homological properties of an exact category (see next paragraph).
Therefore we ask to study derived / singular and stable equivalence for exact categories. Of
course, this means first that we investigate the three associated categories. When it comes to the
desired equivalences, of course, even for finite-dimensional modules over finite-dimensional algebras
we only know in some special situations answers to these questions.

Auslander’s ideas work for exact categories. As a vague approximation to his ideas,
Auslander promotes to study module categories of artin algebras through their categories of finitely
presented functors. The most famous is the category of functors represented by deflations, called
effaceable functors (or Auslander defect category). Together with Idun Reiten he developed the
theory of almost split exact sequences (which correspond to simple effaceable functors). Enomoto
carried these ideas into the generality of exact categories [19].
Auslander correspondence (and Auslander formula) are telling us that the category of all finitely
presented functors (on a small abelian category) can recover the abelian category. The same ideas
work for small exact categories, cf. [25], [17], [23].
Also, in a series of papers [6], [7], [8], [9], [10] Auslander-Reiten started to study stable equivalence
of artin algebras (and more general dualizing varieties). They investigated homological properties of
effaceable functors. The interesting observation is that homological properties of an exact category
are reflected in its effaceable functor category.
We think all of Auslander’s work should be generalized to exact categories because it is useful for an
understanding of homological properties of exact categories.

Tilting and support τ-tilting. Ideas from representation theory of finite dimensional algebras
which are purely based on homological algebra generalize trivially to exact categories. This includes
tilting theory and support tau tilting theory. But to understand induced derived equivalence we first
need to see that we have to replace the ’endomorphism of a tilting module’ with a certain functor
category (functors represented by admissible morphisms - cf. previous paragraph).
Support τ -tilting subcategories were advertised as a mutation-completion of tilting subcategories [1].
For exact categories this is no longer true. The challenge is here: Find a new construction to
mutation-complete support τ -tilting subcategories.

Homological conjectures, tame-wild dichotomy. Once we are restricting the study of exact
categories to Krull-Schmidt categories (and possibly assuming more properties), it becomes also
reasonable to ask if Homological conjectures for modules over artin algebras are true in these classes
of exact categories (for example: Auslander and Solberg [4] showed that the finitistic dimension
conjecture for artin algebras is equivalent to the same conjecture for Auslander-Solberg exact
substructures).
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By the Krull-Schmidt assumption, finite type means only finitely many indecomposable objects. But
how wild can the infinite types look like? In ongoing work, Schlegel defines finitely definable
subcategories in modules categories over an artin algebra and then conjectures a dichotomy of ’finite’
or ’strongly unbounded’ type (generalizing the second Brauer Thrall conjecture).
Enomoto investigated properties of exact categories of finite representation-type in [19].

Why not more general? So, why not directly study any of the following generalizations of
exact categories

(1) one-sided or weak exact categories, e.g. [27], [26] or [11] (leave out some axioms)
Then we have no ext-bifunctor. Proto-exact categories - drop the assumption that the
underlying category is additive. Again the ext-functor is not valued in abelian groups.

(2) extriangulated categories [34] (axiomatizing extension-closed in triangulated)
Then we do not know a sensible definition of a derived category. The axioms are long. We
inherit all known problems with the axioms for triangulated categories (which have lead to
a big number of different enhancements of triangulated categories). Often, the only known
examples are just exact or triangulated categories.

(3) dg exact categories, model structures or other enhanced situations
(such as A∞, or ∞-categories). This becomes quickly homotopical category theory. Even
though these generalizations may encompass much of the theory of exact categories, we are
loosing the simplicity and flexibility that make exact categories so appealing.

(4) n-exact categories [29] (higher homological algebra) - these make sense to be studied
together with exact categories - they are exclusively occurring as cluster tilting
subcategories ([33]) and then we are back in the realm of representation theoretic ideas.

But why should we leave an easy algebraic theory behind when it is so little studied and so central in
homological algebra? Exact categories have the very tempting balance of impressive potential for
creating abstract theory but still being simplistic enough to provide explicit examples. Even for
seemingly well-studied categories (e.g. take the category of finitely generated abelian groups, do you
know all its exact substructures?).

Quick overview of the project. Every chapter starts with a synopsis explaining its content
and my contribution.

(I) Subcategories and functor categories
This part is on constructive methods. First, we look at the lattices of exact substructures
(Chapter 2) and the much bigger lattice of exact subcategories (Chapter 3).
We study categories of functors represented by (certain) morphisms (Chapter 4) and
faithfully balancedness for (the usually considered) functor categories (Chapter 5).

(II) Derived methods
We start with the definition and existence of the derived category (Chapter 6), then we look
at tilting subcategories in an exact category (Chapter 7) and have a closer look at tilting
subcategories for infinite quivers (Chapter 8). Then we discuss how one can find derived
equivalences more generally (Chapter 9,10).

(III) Singular and stable equivalence
This part is not complete (so far we have not really addressed the title): We introduce the
singularity category and the concept of a non-commutative resolution with exact
substructures in Chapter 11. Then we only start the study of effaceable functors in Chapter
12.

We do not cover the following topics (but may do so in future):
Support τ -tilting, homological conjectures, tame-wild dichotomy, recollements of exact categories (a
more thorough treatment of derived functors of additive functors between exact categories is
required for this).
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Notation and conventions for exact categories

E = (A,S) being an exact category means A is an additive category and S is a collection of
kernel-cokernel pairs in A satisfying the axioms below. We call elements in S short exact
sequences (in the literature these are usually called conflations)1 Given a short exact sequence

X
i
� Y

p
� Z, we call i : X � Y an inflation and p : Y � Z a deflation. The axioms of an exact

category are:

(E0) all split exact sequences are in S,
(E1) deflations are closed under composition and inflations too,
(E2) Pull backs of deflations along arbitrary morphisms exist and are again deflations. Push outs

of inflations along arbitrary morphisms exist and are again inflations.

An admissible morphism f is one that factors as f = j ◦ p with p a deflation and j an inflation.
Given a(n integer interval indexed) sequence of composable morphisms fn, n ∈ I (for an interval
I ⊆ Z with at least two elements)

· · · → Xn
fn−→ Xn+1

fn+1−−−→ Xn+2 → · · ·

we call it exact (or acyclic) at Xn+1 if the morphisms factor as fn = jnpn with jn and inflation and
pn a deflation (i.e. are admissible) and (jn, pn+1) is a short exact sequence. If we call such a sequence
exact, it means exact at every inner object (here: ’inner’ means not at the boundary of the interval).

Ext1E(X,Y ) is the class of all short exact sequences Y � Z � X up to isomorphism of short exact
sequences fixing the end terms.
For n > 1: ExtnE(X,Y ) is the class of all exact sequences Y � Z1 → · · · → Zn � X up to the
equivalence relation generated by morphisms of n-exact sequences fixing the end terms.
P(E) (resp. I(E)) are the full subcategories of projectives (resp. injectives)
pdE X ≤ n means Extn+1

E (X,−) = 0

P≤n(E) (resp. I≤n(E)) denotes the subcategory of objects of projective (resp. injective) dimension
at most n
Pn(A) := P≤n(mod∞A) is a special case of the former, see below for the functor category mod∞A
P<∞(E) =

⋃
n P≤n(E) (resp. I<∞(E) =

⋃
n I≤n(E))

Most common properties of subcategories: Given a short exact sequence X � Y � Z in an
exact category

(*) extension-closed: if X,Z are inside the subcategory then Y too
(*) inflation-closed: if X,Y are inside the subcategory then Z too
(*) deflation-closed: if Y, Z are inside the subcategory then X too

thick subcategory2 means all 2-out-of-3-properties (see above) and closed under summands.
Serre subcategory means extension-closed and if a middle term is contained then both outer
terms are as well.
A subcategory G is a generator in an exact category if for every object X, there exists a deflation
d : G� X with G in G.
Resolving means extension-closed, deflation-closed, summand-closed and a generator.

1Be aware, e.g. in [42], short exact sequence is a synonym for kernel cokernel pair in an additive category.
2we often add: ’in the exact category’- do not confuse this with thick in the triangulated sense.

4



Functor categories. Let A be a small additive category, (Ab) the category of abelian groups. For
A in A, we define PA : Aob → (Ab), PA(X) := HomA(X,A) and

ModA = category of all additive functors Aop → (Ab)

modA = {F ∈ ModA | ∃ PA � A}
mod1A = {F ∈ ModA | ∃ exact seq. PA1 → PA0 � F}
modnA = {F ∈ ModA | ∃ exact seq. PAn → · · · → PA0 � F}

mod∞A = {F ∈ ModA | ∃ exact seq. · · · → PAn → · · · → PA0 � F}
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[35] C. Năstăsescu and F. Van Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics,

vol. 758, Springer, Berlin, 1979. MR551625
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