

6. Präsenzaufgabenblatt zu Operations Research

Bearbeitung am 21. Mai 2013

Aufgabe 6.1

Für eine beliebige nichtleere Teilmenge $A \subset \mathbb{R}^n$ definieren wir

$$A^p := \{ y \in \mathbb{R}^n \colon \langle x, y \rangle \le 1 \text{ für alle } x \in A \}.$$

Zeigen Sie:

- a) $0 \in A^p$ und A^p ist konvex und abgeschlossen.
- b) $A \subset (A^p)^p$, und aus $A \subset B$ folgt $B^p \subset A^p$.

Aufgabe 6.2 (Korollar 7.7)

Beweisen Sie folgende Aussage: Sei $A \subset \mathbb{R}^n$ konvex und abgeschlossen. Dann gilt:

$$A = \bigcap_{A \subseteq H_+} H_+,$$

wobei $H_+ = H_+(u, b) := \{x \in \mathbb{R}^n : \langle u, x \rangle \ge b\}$ mit $u \in \mathbb{R}^n \setminus \{0\}$, $b \in \mathbb{R}$.

Aufgabe 6.3

Gegeben seien die Menge $\{(x_1,x_2)\in\mathbb{R}:x_1^2+x_2^2\leq 1\}$ und der Punkt P=(1,3)

- a) Berechnen Sie alle Stützhyperebenen an E, die durch P gehen.
- b) Berechnen Sie die Menge aller P und E trennenden Hyperebenen, die durch P gehen.