Prof. Dr. Barbara Gentz Diana Kämpfe Daniel Altemeier Fakultät für Mathematik Universität Bielefeld

$5\frac{1}{2}$. Präsenzübung zur Wahrscheinlichkeitstheorie I

Präsenzaufgabe $5\frac{1}{2}$.I

Seien $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $A_n \in \mathcal{F}$ für alle $n \in \mathbb{N}$ und $(X_n)_{n \in \mathbb{N}}$, X Zufallsvariablen mit Werten in (E, \mathcal{E}) .

a) Zeigen Sie, dass

$$\mathbb{P}\left[\limsup_{n\to\infty}\mathbb{P}[A_n]\quad \text{und}\quad \mathbb{P}\left[\liminf A_n\right] \leq \liminf_{n\to\infty}\mathbb{P}[A_n].$$

b) Sei Ω ein abzählbarer Raum und $\mathcal{F} = \mathcal{P}(\Omega)$. Zeigen Sie, dass aus der Konvergenz $X_n \xrightarrow[n \to \infty]{} X$ in Wahrscheinlichkeit \mathbb{P} die Konvergenz $X_n \xrightarrow[n \to \infty]{} X$ \mathbb{P} -f.s. folgt.

Präsenzaufgabe $5\frac{1}{2}$.II

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $(X_i)_{i \in \mathbb{N}}$ eine Folge reellwertiger, unabhängiger Zufallsvariablen darauf.

a) Zeigen Sie, dass $\sup X_n < \infty$ P-f.s. genau dann, wenn ein $A \in \mathbb{R}$ existiert derart, dass

$$\sum_{n=1}^{\infty} \mathbb{P}\left[X_n > A\right] < \infty.$$

- b) Sei $\mathbb{P}[X_n = 1] = p_n$ und $\mathbb{P}[X_n = 0] = 1 p_n$. Zeigen Sie, dass
 - (i) $X_n \xrightarrow[n \to \infty]{} 0$ in Wahrscheinlichkeit \mathbb{P} genau dann, wenn $p_n \xrightarrow[n \to \infty]{} 0$,
 - (ii) $X_n \xrightarrow[n \to \infty]{} 0$ P-f.s. genau dann, wenn $\sum_{n=1}^{\infty} p_n < \infty$.