5.17 Problem. Let X, Y be in $\mathcal{M}^{c, loc}$. Then there is a unique (up to indistinguishability) adapted, continuous process of bounded variation $\langle X, Y \rangle$ satisfying $\langle X, Y \rangle_0 = 0$ a.s. P, such that $XY - \langle X, Y \rangle \in \mathcal{M}^{c, loc}$. If X = Y, we write $\langle X \rangle = \langle X, X \rangle$, and this process is nondecreasing.

5.18 Definition. We call the process $\langle X, Y \rangle$ of Problem 5.17 the cross-variation of X and Y, in accordance with Definition 5.5. We call $\langle X \rangle$ the quadratic variation of X.

Proof of 5.17

There are sequences $\{S_n\}$, $\{T_n\}$ of stopping times such that $S_n \uparrow \infty$, $T_n \uparrow \infty$, and $X_t^{(n)} \triangleq X_{t \land S_n}$, $Y_t^{(n)} \triangleq Y_{t \land T_n}$ are $\{\mathscr{F}_t\}$ -martingales. Define

$$R_n \triangleq S_n \wedge T_n \wedge \inf\{t \geq 0 : |X_t| = n \text{ or } |Y_t| = n\},$$

and set $\tilde{X}_t^{(n)} = X_{t \wedge R_n}$, $\tilde{Y}_t^{(n)} = Y_{t \wedge R_n}$. Note that $R_n \uparrow \infty$ a.s. Since $\tilde{X}_t^{(n)} = X_{t \wedge R_n}^{(n)}$, and likewise for $\tilde{Y}^{(n)}$, these processes are also $\{\mathcal{F}_t\}$ -martingales (Problem 3.24), and are in \mathcal{M}_2^c because they are bounded. For m > n, $\tilde{X}_t^{(n)} = \tilde{X}_{t \wedge R_n}^{(m)}$ and so

$$(\widetilde{X}_t^{(n)})^2 - \langle \widetilde{X}^{(m)} \rangle_{t \wedge R_n} = (\widetilde{X}_{t \wedge R_n}^{(m)})^2 - \langle \widetilde{X}^{(m)} \rangle_{t \wedge R_n}$$

is a martingale. This implies $\langle \tilde{X}^{(n)} \rangle_t = \langle \tilde{X}^{(m)} \rangle_{t \wedge R_n}$. We can thus decree $\langle X \rangle_t \triangleq \langle \tilde{X}^{(n)} \rangle_t$ whenever $t \leq R_n$ and be assured that $\langle X \rangle$ is well defined. The process $\langle X \rangle$ is adapted, continuous, and nondecreasing and satisfies $\langle X \rangle_0 = 0$ a.s. Furthermore,

$$X_{t \wedge R_n}^2 - \langle X \rangle_{t \wedge R_n} = (\widetilde{X}_t^{(n)})^2 - \langle \widetilde{X}_t^{(n)} \rangle_t$$

is a martingale for each n, so $X^2 - \langle X \rangle \in \mathcal{M}^{c, loc}$. As in Theorem 5.13, we may now take $\langle X, Y \rangle = \frac{1}{4} [\langle X + Y \rangle - \langle X - Y \rangle]$.

As for the question of uniqueness, suppose both A and B satisfy the conditions required of $\langle X, Y \rangle$. Then $M \triangleq XY - A$ and $N \triangleq XY - B$ are in $\mathcal{M}^{c, loc}$, so just as before we can construct a sequence $\{R_n\}$ of stopping times with $R_n \uparrow \infty$ such that $M_t^{(n)} \triangleq M_{t \land R_n}$ and $N_t^{(n)} \triangleq N_{t \land R_n}$ are in \mathcal{M}_2^c . Consequently $M_t^{(n)} - N_t^{(n)} = B_{t \land R_n} - A_{t \land R_n} \in \mathcal{M}_2^c$, and being of bounded variation this process must be identically zero (see the proof of Theorem 5.13). It follows that A = B.