Probability Theory III - Homework Assignment 1 Due date: Friday, October 24, 12:00 h

Solutions to the assigned homework problems must be deposited in Diana Kämpfe's drop box 84 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Let $B = (B_t)_{t \ge 0}$ be a standard one-dimensional Brownian motion.

Exercise 1.I [2 pts] (Restarting of Brownian motion at a random time) Give an example of a random time σ with $\mathbb{P} \{ 0 \le \sigma < \infty \} = 1$, s.t. with $W_t := B_{t+\sigma} - B_{\sigma}$, the process $W = \{ W_t, \mathcal{F}_t^W; t \ge 0 \}$ is *not* a Brownian motion.

Exercise 1.II [5 pts] (Tanaka's formula and local time) Observe that for $g \in C^2(\mathbb{R})$ it follows from Itô's formula that

$$g(B_t) = g(B_0) + \int_0^t g'(B_s) dB_s + \frac{1}{2} \int_0^t g''(B_s) ds,$$
(1)

and it can be shown by approximation arguments, that this result remains true for a larger class \mathcal{K} of functions $g \in C^1(\mathbb{R})$, which are twice continuously differentiable outside of finitely many points z_1, \ldots, z_n , with $|g''(x)| \leq M$ for some finite $M \geq 0$ and all $x \notin \{z_1, \ldots, z_n\}$.

We would now like to apply Itô's formula to g(x) = |x|. As $g \notin C^2(\mathbb{R})$, we approximate g by functions g_{ε} , $\varepsilon > 0$, given by

a) Show that $g_{\varepsilon} \in \mathcal{K}$ and make use of equation (1) in order to show that

$$g_{\varepsilon}(B_t) = g_{\varepsilon}(B_0) + \int_0^t g_{\varepsilon}'(B_s) dB_s + \frac{1}{2\varepsilon} \lambda \Big\{ s \in [0, t] : B_s \in (-\varepsilon, \varepsilon) \Big\},$$

where λ denotes the Lebesgue measure.

b) Prove that

$$\int_0^t g_{\varepsilon}' \Big(B_s \Big) \mathbb{1}_{\{B_s \in (-\varepsilon,\varepsilon)\}} dB_s = \int_0^t \frac{B_s}{\varepsilon} \mathbb{1}_{\{B_s \in (-\varepsilon,\varepsilon)\}} dB_s \xrightarrow{\varepsilon \to 0} 0 \quad \text{(limit in } \mathcal{L}^2(\mathbb{P})\text{)}$$

Hint: Apply the Itô isometry to $\mathbb{E}\left[\left(\int_0^t \frac{B_s}{\varepsilon}\mathbbm{1}_{\{B_s\in(-\varepsilon,\varepsilon)\}}dB_s\right)^2\right]$.

c) By letting $\varepsilon \to 0$ prove that

$$|B_t| = |B_0| + \int_0^t \operatorname{sign}\left(B_s\right) dB_s + L_t, \qquad (\star)$$

where $L_t: \Omega \to \mathbb{R}$, defined by

$$L_t = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \lambda \left\{ s \in [0, t] \mid B_s \in (-\varepsilon, \varepsilon) \right\} \quad \text{(limit in } \mathcal{L}^2(\mathbb{P})\text{)}.$$

and

$$\operatorname{sign}(x) = \begin{cases} -1 & \text{if } x \le 0\\ 1 & \text{if } x < 0 \end{cases}$$

 L_t is called the *local time* for Brownian motion at 0 and (\star) is called the *Tanaka formula* (for Brownian motion).

Exercise 1.III [5 pts] (Sign change and P-a.s. non-differentiability of Brownian motion)

For a given, fixed k > 0, define the stopping time $\tau^{(k)} := \inf \left\{ t \ge 0 \mid B_t > k \cdot \sqrt{t} \right\}$.

- a) Show that $\mathbb{P}\left\{\tau^{(k)}=0\right\} \ge \inf_{t>0} \mathbb{P}\left\{B_t > k \cdot \sqrt{t}\right\}.$
- b) Recall that for any positive constant c, $(B_{cs}/\sqrt{c})_{s\geq 0}$ again defines a Brownian motion, employ this rescaling property in order to express the right-hand side of the previous inequality in terms of B_1 and finally conclude that $\mathbb{P}\left\{\tau^{(k)}=0\right\}>0$.
- c) Make use of Blumenthal's 0-1 law, to show that we must have $\mathbb{P}\left\{ au^{(k)}=0
 ight\} =1.$
- d) Choose a sequence $k_n \to \infty$ and use the previous result to prove that $\limsup_{t\to 0} B_t/\sqrt{t} = \infty$.
- e) Deduce that $\liminf_{t\to 0} B_t/\sqrt{t} = -\infty$ and conclude that with probability one, a standard, one-dimensional Brownian motion changes sign infinitely many times in any given time-interval $[0, \varepsilon], \varepsilon > 0.$
- f) Show that $t \mapsto B_t(\omega)$ is \mathbb{P} -a.s. *not* differentiable in t = 0.
- g) Show that for any given $t_0 \ge 0$, $t \mapsto B_t(\omega)$ is \mathbb{P} -a.s. not differentiable in $t = t_0$.

Exercise 1.IV (Time-inversion of Brownian motion)

Let the process $Y = \left\{Y_t, \mathcal{F}_t^Y; 0 \leq t < \infty\right\}$ be given by

$$Y_t = \begin{cases} t \cdot B_{1/t} & \text{if } 0 < t < \infty \\ 0 & \text{if } t = 0 \end{cases}$$

Show that $(Y_t)_t$ again defines a Brownian motion.

Hint: Apart from the distribution properties, one in particular has to show the \mathbb{P} -a.s. continuity of samples paths in t = 0, i.e. that $\lim_{t\to 0} t \cdot B_{1/t} = \lim_{s\to\infty} B_s/s = 0$.

(This is an oral exercise, to be prepared for a mini-presentation on Wednesday, October 29)