Probability Theory III - Homework Assignment 10
 Due date: Friday, January 16, 12:00 h

Solutions to the assigned homework problems must be deposited in Christian Wiesel's drop box 55 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 10.I [4 pts]

Let $b_{i}(y, t)$ and $\sigma_{i j}(y, t)$, for $1 \leq i \leq d, 1 \leq j \leq r$, be progressively measurable functionals on $\mathcal{C}\left([0, \infty)^{d} \times[0, \infty), \mathbb{R}\right)$. The components of the diffusion matrix $a(y, t)$ are given by

$$
a_{i k}(y, t):=\sum_{j=1}^{r} \sigma_{i j}(y, t) \sigma_{k j}(y, t), \quad \text { for } 0 \leq t<\infty, y \in \mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right)
$$

Suppose that $(X, W),(\Omega, \mathcal{F}, \mathbb{P}),\left\{\mathcal{F}_{t}\right\}_{t}$ is a weak solution to the functional stochastic differential equation

$$
\begin{equation*}
\mathrm{d} X_{t}=b(X, t) \mathrm{d} t+\sigma(X, t) \mathrm{d} W_{t}, \quad \text { for } 0 \leq t<\infty \tag{1}
\end{equation*}
$$

and set as the corresponding functional-valued second-order differential operator

$$
\begin{array}{r}
\left(\mathcal{A}_{t}^{\prime} u\right)(y)=\left.\frac{1}{2} \sum_{i=1}^{d} \sum_{k=1}^{d} a_{i k}(y, t) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{k}}\right|_{x=y(t)}+\left.\sum_{i=1}^{d} b_{i}(y, t) \frac{\partial u(x)}{\partial x_{i}}\right|_{x=y(t)} \tag{2}\\
\text { for } 0 \leq t<\infty, y \in \mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right), u \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)
\end{array}
$$

Show that, for any functions $f, g \in \mathcal{C}^{2,1}\left(\mathbb{R}^{d} \times[0, \infty), \mathbb{R}\right)$,
a) the stochastic process $\left(M_{t}^{f}\right)_{t}$, defined by

$$
M_{t}^{f}:=f\left(X_{t}, t\right)-f\left(X_{0}, 0\right)-\int_{0}^{t}\left[\frac{\partial f}{\partial s}\left(X_{s}, s\right)+\mathcal{A}_{s}^{\prime} f(X, s)\right] \mathrm{d} s, \quad \text { for } 0 \leq t<\infty
$$

is in $\mathcal{M}^{\mathrm{loc}, c}$,
b) the covariation process $\left(\left\langle M^{f}, M^{g}\right\rangle_{t}\right)_{t}$ is given by

$$
\left\langle M^{f}, M^{g}\right\rangle_{t}=\left.\left.\sum_{i=1}^{d} \sum_{k=1}^{d} \int_{0}^{t} a_{i k}(X, s) \frac{\partial f(x, s)}{\partial x_{i}}\right|_{x=X_{s}} \frac{\partial g(x, s)}{\partial x_{k}}\right|_{x=X_{s}} \mathrm{~d} s, \quad \text { for } 0 \leq t<\infty ;
$$

c) if in addition, the first derivatives of f are bounded, and for each $0<T<\infty$

$$
\begin{equation*}
\|\sigma(y, t)\| \leq K_{T}, \quad \text { for } 0 \leq t \leq T, y \in \mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right) \tag{3}
\end{equation*}
$$

holds, where K_{T} is a constant depending on T, then $\left(M_{t}^{f}\right)_{t} \in \mathcal{M}_{2}^{c}$.

Exercise 10.II [4 pts]

A continuous, $\left(\mathcal{F}_{t}\right)_{t}$-adapted process $\left(W_{t}\right)_{t}$ is a d-dim. Brownian motion if and only if $\left(N_{t}^{f}\right)_{t}$, defined by

$$
N_{t}^{f}:=f\left(W_{t}\right)-f\left(W_{0}\right)-\frac{1}{2} \int_{0}^{t} \Delta f\left(W_{s}\right) \mathrm{d} s, \quad \text { for } 0 \leq t<\infty
$$

is in $\mathcal{M}^{\text {loc }, c}$ for every $f \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$.

Exercise 10.III [4 pts]

Assume either
(A.1)' For each $0<T<\infty,\|b(y, t)\|+\left\|\sigma_{i j}(y, t)\right\| \leq K_{T}$ for $0 \leq t \leq T, y \in \mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right)$, where K_{T} is a constant depending on T, or
(A.2) ${ }^{\prime}$ Each $b_{i}(y, t)$ and $\sigma_{i j}(y, t)$ are of the form $b_{i}(y, t)=\hat{b}_{i}(y(t), t), \sigma_{i j}(y, t)=\hat{\sigma}_{i j}(y(t), t)$, where the Borel-measurable functions $\hat{b}_{i}, \hat{\sigma}_{i j}(y, t): \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ are bounded on compact sets.

Let \mathbb{P} be a probability measure on $\left(\mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right), \mathscr{B}(\ldots)\right)$; and choose $\left(\mathcal{F}_{t}\right)_{t}$ as in the definition of solution to the local martingale problem. Assume $f \in \mathcal{C}_{0}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. Show that if $\left(M_{t}^{f}\right)_{t}$ is a $\left(\mathscr{B}_{t}\right)_{t}$-martingale, then is $\left(M_{t}^{f}\right)_{t}$ a $\left(\mathcal{F}_{t}\right)_{t}$-martingale.

Exercise 10.IV

Prepare a mini-presentation for the tutorial on Wednesday, January 21, on the proof of Proposition 5.4.11:

Given progressively measurable functionals $b_{i}(y, t)$ and $\sigma_{i j}(y, t)$, for $1 \leq i \leq d, 1 \leq j \leq r$, the associated family of operators $\left\{\mathcal{A}_{t}^{\prime}\right\}$ (given by (2)), and a probability measure μ on $\left(\mathbb{R}^{d}, \mathscr{B}\left(\mathbb{R}^{d}\right)\right.$), we can consider the following three conditions:
(A) There exists a weak solution to the functional stochastic differential equation (1) with initial distribution μ.
(B) There exists a solution \mathbb{P} to the local martingale problem associated with $\left\{\hat{\mathcal{A}}_{t}\right\}$, and $\mathbb{P}\{y(0) \in$ $\Gamma\}=\mu(\Gamma)$ for all $\Gamma \in \mathscr{B}\left(\mathbb{R}^{d}\right)$.
(C) There exists a solution \mathbb{P} to the martingale problem associated with $\left\{\hat{\mathcal{A}}_{t}\right\}$, and $\mathbb{P}\{y(0) \in$ $\Gamma\}=\mu(\Gamma)$ for all $\Gamma \in \mathscr{B}\left(\mathbb{R}^{d}\right)$.

Proposition 5.4.11: Conditions $(\overline{\mathrm{A}})$ and $(\overline{\mathrm{B}})$ are equivalent and are implied by (C). Furthermore, (A) implies (C) under either of the additional assumptions:
(A.1) For each $0<T<\infty$, condition (3) holds.
(A.2) Each $\sigma_{i j}(y, t)$ is of the form $\sigma_{i j}(y, t)=\hat{\sigma}_{i j}(y(t), t)$, where the Borel-measurable functions $\hat{\sigma}_{i j}(y, t): \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ are bounded on compact sets.

