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Probability Theory III - Homework Assignment 11
Due date: Friday, January 23, 12:00 h

Solutions to the assigned homework problems must be deposited in Christian Wiesel’s drop box 55
located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely
legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 11.I [4 pts]
Assume that the coefficients bi : Rd → R, σij : Rd → R, for 1 ≤ i ≤ d, 1 ≤ j ≤ r, are measurable
and bounded on compact subsets of Rd, and let A be the associated operator

(
Af

)
(x) = 1

2

d∑
i=1

d∑
k=1

aik(x)∂
2f(x)
∂xi∂xk

+
d∑
i=1

bi(x)∂f(x)
∂xi

, for x ∈ Rd, f ∈ C2(Rd,R).

Let (Xt)t≥0 be a continuous, (Ft)t≥0-adapted stochastic process on some probability space (Ω,F ,P)
and suppose that (Ft)t satisfies the usual conditions. For f ∈ C2(Rd,R) and α ∈ R, introduce the
(Ft)t≥0-adapted stochastic processes (Mt)t≥0 and (Λt)t≥0 given by

Mt := f(Xt)− f(X0)−
∫ t

0
Af(Xs) ds, for 0 ≤ t <∞,

Λt := e−αtf(Xt)− f(X0) +
∫ t

0
e−αs

(
αf −Af

)
(Xs) ds, for 0 ≤ t <∞.

Show the following statements:

a) (Mt)t ∈Mloc,c if and only if (Λt)t ∈Mloc,c.

b) If moreover, f is bounded away from zero on compact sets. Then the two conditions of a) are
also equivalent to: (Nt)t ∈Mloc,c, where (Nt)t≥0 is a (Ft)t≥0-adapted stochastic process given
by

Nt := f(Xt) exp
{
−
∫ t

0

Af(Xs)
f(Xs)

ds
}
− f(X0), for 0 ≤ t <∞.

Hint: Recall from Lemma 3.3.12 (Partial Integration of continuous Semimartingales) that if
(Mt)t ∈Mloc,c and (Ct)t≥0 is a continuous stochastic process of bounded variation, the CtMt −∫ t

0 Ms dCs =
∫ t

0 Cs dMs is inMloc,c.

Exercise 11.II [4 pts]
Let the coefficients b, σ be bounded on compact subsets of Rd, and assume that for each x ∈ Rd,
the time-homogeneous martingale problem has a solution Px satisfying

P
x
(
y ∈ C([0,∞),Rd); y(0) = x

)
= 1.

Suppose that there exists a function f : Rd → [0,∞) of class C2(Rd,R) such that

Af(x) + λf(x) ≤ c, for all x ∈ Rd
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holds for some λ > 0, c ≥ 0. Show that then

E
x f(y(t)) ≤ f(x)e−λt + c

λ
(1− e−λt), for 0 ≤ t <∞, x ∈ Rd .

Exercise 11.III (Komogorov’s forward equation) [4 pts]
Let (Xt)t≥0 be an Itô diffusion in Rd with (infinitesimal) generator

Af(y) =
d∑
i=1

bi(y) ∂
∂yi

f(y) + 1
2

d∑
i,j=1

aij(y) ∂2

∂yi∂yj
f(y), for f ∈ C2

0(Rd,R),

and assume that the transition measure of (Xt)t has density pt(x, y), i.e. that

E
x[f(Xt)] =

∫
R

d
f(y)pt(x, y) dy, for f ∈ C2

0(Rd,R). (1)

Assume that y 7→ pt(x, y) is smooth for each 0 ≤ t <∞, x ∈ Rd. Prove that pt(x, y) satisfies the
Kolomogorov forward equation

d
dtpt(x, y) = A?ypt(x, y) for all x, y ∈ Rd,

where A?y operates on the variable y and is given by

A?yφ(y) = 1
2

d∑
i,j=1

∂2

∂yi∂yj

(
aij(y)φ(y)

)
−

d∑
i=1

∂

∂yi

(
bi(y)φ(y)

)
, for φ ∈ C2(Rd,R),

(i.e. A?y is the adjoint of Ay.)
Hint: By (??) and Dynkin’s formula we have∫

R
d
f(y)pt(x, y) dy = f(x) +

∫ t

0

∫
R

d
Ayf(y)ps(x, y) dy ds, for f ∈ C2(Rd,R).

Now differentiate w.r.t. t and use that

〈Aφ, ψ〉 = 〈φ,A?ψ〉, for φ ∈ C2
0(Rd,R), ψ ∈ C2(Rd,R),

where 〈·, ·〉 denotes inner product in L2( dy).

Exercise 11.IV
Prepare a mini-presentation for the tutorial on Wednesday, January 28, on d-dim. stochastic
differential equation in which the solution process enters linearly. :
In this exercise we consider the following linear stochastic differential equation

dXt = [A(t)Xt + a(t)] dt+ σ(t) dWt, for 0 ≤ t <∞
X0 = ξ, a.s.,

(2)
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where (Wt)t is an r-dim. Brownian motion independent of the d-dim. vector ξ, and the matrices
A(t) ∈ Rd×d, a(t) ∈ Rd×1 and σ(t) ∈ Rd×r are nonrandom, measurable and locally bounded.
The deterministic equation corresponding to (??) is

ξ̇(t) = A(t)ξ(t) + a(t), ξ(0) = ξ. (3)

Standard existence ans uniqueness results1 imply that for every initial condition ξ ∈ Rd, (??) has
an absolutely continuous solution ξ(t) defined for 0 ≤ t < ∞. Likewise, the matrix differential
equation

U̇(t) = A(t)U(t), U(0) =d×d,

has a unique (absolutely continuous) solution defined for 0 ≤ t <∞. (Here d×d is the identity matrix
in Rd×d.) This matrix function U is called fundamental solution to the homogeneous equation

ξ̇(t) = A(t)ξ(t).

In terms of U, the solution of (??) is2 ξ(t) = U(t)
{
ξ(0) +

∫ t

0
U−1(s)a(s) ds

}
.

a) Show that
i) for each t ≤ 0, the matrix U(t) is nonsingular;

ii) Xt = U(t)
{
X0 +

∫ t

0
U−1(s)a(s) ds+

∫ t

0
U−1(s)σ(s) dWs

}
solves (??);

iii) pathwise uniqueness for equation (??) holds.
b) Suppose that E ‖X0‖2 <∞, and introduce the mean vector and the covariance matrix functions

m(t) := EXt, %(s, t) := E[(Xs −m(s))(Xt −m(t))T ], V (t) := %(t, t).

Show that

m(t) = U(t)
{
m(0) +

∫ t

0
U−1(s)a(s) ds

}
,

%(s, t) = U(s)
{
V (0) +

∫ s∧t

0
U−1(u)σ(u)[U−1(u)σ(u)]T du

}
UT (t),

hold for every 0 ≤ s, t <∞. In particular, m(t) and V (t) solve the linear equations

ṁ(t) = A(t)m(t) + a(t),
V̇ (t) = A(t)V (t) + V (t)AT (t) + σ(t)σT (t).

1Hale, J. (1969) Ordinary Differential Equations. J. Wiley&Sons/Interscience, New York; Section I.5
2Hale, J. (1969) Ordinary Differential Equations. J. Wiley&Sons/Interscience, New York; Chapter 3


