Probability Theory III - Homework Assignment 11
 Due date: Friday, January 23, 12:00 h

Solutions to the assigned homework problems must be deposited in Christian Wiesel's drop box 55 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 11.I [4 pts]

Assume that the coefficients $b_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}, \sigma_{i j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for $1 \leq i \leq d, 1 \leq j \leq r$, are measurable and bounded on compact subsets of \mathbb{R}^{d}, and let \mathcal{A} be the associated operator

$$
(\mathcal{A} f)(x)=\frac{1}{2} \sum_{i=1}^{d} \sum_{k=1}^{d} a_{i k}(x) \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{k}}+\sum_{i=1}^{d} b_{i}(x) \frac{\partial f(x)}{\partial x_{i}}, \quad \text { for } x \in \mathbb{R}^{d}, f \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous, $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-adapted stochastic process on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and suppose that $\left(\mathcal{F}_{t}\right)_{t}$ satisfies the usual conditions. For $f \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and $\alpha \in \mathbb{R}$, introduce the $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-adapted stochastic processes $\left(M_{t}\right)_{t \geq 0}$ and $\left(\Lambda_{t}\right)_{t \geq 0}$ given by

$$
\begin{aligned}
M_{t} & :=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \mathcal{A} f\left(X_{s}\right) \mathrm{d} s, \quad \text { for } 0 \leq t<\infty \\
\Lambda_{t} & :=e^{-\alpha t} f\left(X_{t}\right)-f\left(X_{0}\right)+\int_{0}^{t} e^{-\alpha s}(\alpha f-\mathcal{A} f)\left(X_{s}\right) \mathrm{d} s, \quad \text { for } 0 \leq t<\infty
\end{aligned}
$$

Show the following statements:
a) $\left(M_{t}\right)_{t} \in \mathcal{M}^{\mathrm{loc}, c}$ if and only if $\left(\Lambda_{t}\right)_{t} \in \mathcal{M}^{\mathrm{loc}, c}$.
b) If moreover, f is bounded away from zero on compact sets. Then the two conditions of a) are also equivalent to: $\left(N_{t}\right)_{t} \in \mathcal{M}^{\text {loc, } c}$, where $\left(N_{t}\right)_{t \geq 0}$ is a $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-adapted stochastic process given by

$$
N_{t}:=f\left(X_{t}\right) \exp \left\{-\int_{0}^{t} \frac{\mathcal{A} f\left(X_{s}\right)}{f\left(X_{s}\right)} \mathrm{d} s\right\}-f\left(X_{0}\right), \quad \text { for } 0 \leq t<\infty
$$

Hint: Recall from Lemma 3.3.12 (Partial Integration of continuous Semimartingales) that if $\left(M_{t}\right)_{t} \in \mathcal{M}^{\text {loc,c }}$ and $\left(C_{t}\right)_{t \geq 0}$ is a continuous stochastic process of bounded variation, the $C_{t} M_{t}-$ $\int_{0}^{t} M_{s} \mathrm{~d} C_{s}=\int_{0}^{t} C_{s} \mathrm{~d} M_{s}$ is in $\mathcal{M}^{\text {loc }, c}$.

Exercise 11.II [4 pts]

Let the coefficients b, σ be bounded on compact subsets of \mathbb{R}^{d}, and assume that for each $x \in \mathbb{R}^{d}$, the time-homogeneous martingale problem has a solution \mathbb{P}^{x} satisfying

$$
\mathbb{P}^{x}\left(y \in \mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right) ; y(0)=x\right)=1
$$

Suppose that there exists a function $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ of class $\mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ such that

$$
\mathcal{A} f(x)+\lambda f(x) \leq c, \quad \text { for all } x \in \mathbb{R}^{d}
$$

holds for some $\lambda>0, c \geq 0$. Show that then

$$
\mathbb{E}^{x} f(y(t)) \leq f(x) e^{-\lambda t}+\frac{c}{\lambda}\left(1-e^{-\lambda t}\right), \quad \text { for } 0 \leq t<\infty, x \in \mathbb{R}^{d}
$$

Exercise 11.III (Komogorov's forward equation) [4 pts]
Let $\left(X_{t}\right)_{t \geq 0}$ be an Itô diffusion in \mathbb{R}^{d} with (infinitesimal) generator

$$
A f(y)=\sum_{i=1}^{d} b_{i}(y) \frac{\partial}{\partial y_{i}} f(y)+\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(y) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}} f(y), \quad \text { for } f \in \mathcal{C}_{0}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right),
$$

and assume that the transition measure of $\left(X_{t}\right)_{t}$ has density $p_{t}(x, y)$, i.e. that

$$
\begin{equation*}
\mathbb{E}^{x}\left[f\left(X_{t}\right)\right]=\int_{\mathbb{R}^{d}} f(y) p_{t}(x, y) \mathrm{d} y, \quad \text { for } f \in \mathcal{C}_{0}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right) \tag{1}
\end{equation*}
$$

Assume that $y \mapsto p_{t}(x, y)$ is smooth for each $0 \leq t<\infty, x \in \mathbb{R}^{d}$. Prove that $p_{t}(x, y)$ satisfies the Kolomogorov forward equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(x, y)=A_{y}^{\star} p_{t}(x, y) \quad \text { for all } x, y \in \mathbb{R}^{d}
$$

where A_{y}^{\star} operates on the variable y and is given by

$$
A_{y}^{\star} \phi(y)=\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(a_{i j}(y) \phi(y)\right)-\sum_{i=1}^{d} \frac{\partial}{\partial y_{i}}\left(b_{i}(y) \phi(y)\right), \quad \text { for } \phi \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

(i.e. A_{y}^{\star} is the adjoint of A_{y}.)

Hint: By (??) and Dynkin's formula we have

$$
\int_{\mathbb{R}^{d}} f(y) p_{t}(x, y) \mathrm{d} y=f(x)+\int_{0}^{t} \int_{\mathbb{R}^{d}} A_{y} f(y) p_{s}(x, y) \mathrm{d} y \mathrm{~d} s, \quad \text { for } f \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

Now differentiate w.r.t. t and use that

$$
\langle A \phi, \psi\rangle=\left\langle\phi, A^{\star} \psi\right\rangle, \quad \text { for } \phi \in \mathcal{C}_{0}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right), \psi \in \mathcal{C}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

where $\langle\cdot, \cdot\rangle$ denotes inner product in $L^{2}(\mathrm{~d} y)$.

Exercise 11.IV

Prepare a mini-presentation for the tutorial on Wednesday, January 28, on d-dim. stochastic differential equation in which the solution process enters linearly. :
In this exercise we consider the following linear stochastic differential equation

$$
\begin{align*}
\mathrm{d} X_{t} & =\left[\mathbb{A}(t) X_{t}+a(t)\right] \mathrm{d} t+\sigma(t) \mathrm{d} W_{t}, \quad \text { for } 0 \leq t<\infty \\
X_{0} & =\xi, \quad \text { a.s. } \tag{2}
\end{align*}
$$

where $\left(W_{t}\right)_{t}$ is an r-dim. Brownian motion independent of the d-dim. vector ξ, and the matrices $\mathbb{A}(t) \in \mathbb{R}^{d \times d}, a(t) \in \mathbb{R}^{d \times 1}$ and $\sigma(t) \in \mathbb{R}^{d \times r}$ are nonrandom, measurable and locally bounded.
The deterministic equation corresponding to (??) is

$$
\begin{equation*}
\dot{\xi}(t)=\mathbb{A}(t) \xi(t)+a(t), \quad \xi(0)=\xi . \tag{3}
\end{equation*}
$$

Standard existence ans uniqueness result $\int^{1} 1$ imply that for every initial condition $\xi \in \mathbb{R}^{d},(? ?)$ has an absolutely continuous solution $\xi(t)$ defined for $0 \leq t<\infty$. Likewise, the matrix differential equation

$$
\dot{\mathbb{U}}(t)=\mathbb{A}(t) \mathbb{U}(t), \quad \mathbb{U}(0)={ }_{d \times d},
$$

has a unique (absolutely continuous) solution defined for $0 \leq t<\infty$. (Here $d \times d$ is the identity matrix in $\mathbb{R}^{d \times d}$.) This matrix function \mathbb{U} is called fundamental solution to the homogeneous equation

$$
\dot{\xi}(t)=\mathbb{A}(t) \xi(t) .
$$

In terms of \mathbb{U}, the solution of (??) is $\left.{ }^{2}\right] \xi(t)=\mathbb{U}(t)\left\{\xi(0)+\int_{0}^{t} \mathbb{U}^{-1}(s) a(s) \mathrm{d} s\right\}$.
a) Show that
i) for each $t \leq 0$, the matrix $\mathbb{U}(t)$ is nonsingular;
ii) $X_{t}=\mathbb{U}(t)\left\{X_{0}+\int_{0}^{t} \mathbb{U}^{-1}(s) a(s) \mathrm{d} s+\int_{0}^{t} \mathbb{U}^{-1}(s) \sigma(s) \mathrm{d} W_{s}\right\}$ solves (??);
iii) pathwise uniqueness for equation (??) holds.
b) Suppose that $\mathbb{E}\left\|X_{0}\right\|^{2}<\infty$, and introduce the mean vector and the covariance matrix functions

$$
m(t):=\mathbb{E} X_{t}, \quad \varrho(s, t):=\mathbb{E}\left[\left(X_{s}-m(s)\right)\left(X_{t}-m(t)\right)^{T}\right], \quad V(t):=\varrho(t, t) .
$$

Show that

$$
\begin{aligned}
m(t) & =\mathbb{U}(t)\left\{m(0)+\int_{0}^{t} \mathbb{U}^{-1}(s) a(s) \mathrm{d} s\right\} \\
\varrho(s, t) & =\mathbb{U}(s)\left\{V(0)+\int_{0}^{s \wedge t} \mathbb{U}^{-1}(u) \sigma(u)\left[\mathbb{U}^{-1}(u) \sigma(u)\right]^{T} \mathrm{~d} u\right\} \mathbb{U}^{T}(t)
\end{aligned}
$$

hold for every $0 \leq s, t<\infty$. In particular, $m(t)$ and $V(t)$ solve the linear equations

$$
\begin{aligned}
& \dot{m}(t)=\mathbb{A}(t) m(t)+a(t) \\
& \dot{V}(t)=\mathbb{A}(t) V(t)+V(t) \mathbb{A}^{T}(t)+\sigma(t) \sigma^{T}(t)
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Hale, J. (1969) Ordinary Differential Equations. J. Wiley\&Sons/Interscience, New York; Section I. 5
 ${ }^{2}$ Hale, J. (1969) Ordinary Differential Equations. J. Wiley\&Sons/Interscience, New York; Chapter 3

