Faculty of Mathematics

Probability Theory III - Homework Assignment 12
 Due date: Friday, January 30, 12:00 h

Solutions to the assigned homework problems must be deposited in Christian Wiesel's drop box 55 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 12.I (Doob's h-transform) [4 pts]
Let $\left(B_{t}\right)_{t \geq 0}$ be a d-dim. Brownian motion, $\mathcal{D} \subset \mathbb{R}^{d}$ a bounded open set and $\mathcal{C}^{2}(\mathcal{D}) \ni h>0$ a harmonic function on \mathcal{D} (i.e. $\Delta h=0$ in \mathcal{D}). Let $\left(X_{t}\right)_{t \geq 0}$ be the solution of the stochastic differential equation

$$
\mathrm{d} X_{t}=\nabla(\ln h)\left(X_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}
$$

defined in the following way: Choose an increasing sequence $\left(\mathcal{D}_{k}\right)_{k \in \mathbb{N}}$ of open subsets of \mathcal{D} such that $\overline{\mathcal{D}}_{k} \subset \mathcal{D}$ and $\bigcup_{k=1}^{\infty} \mathcal{D}_{k}=\mathcal{D}$. Then for each k the equation above can be solved (strongly) for $t<\tau_{\mathcal{D}_{k}}$. This gives in a natural way a solution for $t<\tau_{\mathcal{D}}:=\lim _{k \rightarrow \infty} \tau_{\mathcal{D}_{k}}$.
a) Show that the characteristic generator \mathcal{A} of X_{t} satisfies

$$
\mathcal{A} f=\frac{\Delta(h f)}{2 h}, \quad \text { for } f \in \mathcal{C}_{0}^{2}(\mathcal{D})
$$

In particular, if $f=1 / h$ then $\mathcal{A} f=0$ holds.
b) Use a) to show that if there exists $x_{0} \in \partial \mathcal{D}$ such that

$$
\lim _{x \rightarrow y \in \partial \mathcal{D}} h(x)=\left\{\begin{array}{ll}
0 & \text { if } y \neq x_{0}, \\
\infty & \text { if } y=x_{0},
\end{array} \quad \text { (i.e. } h\right. \text { is a kernel fucntion), }
$$

then $\lim _{t \rightarrow \tau} X_{t}=x_{0}$ a.s.
Hint: Consider $\mathbb{E}^{x}\left[f\left(X_{T}\right)\right]$ for suitable stopping times T and with $f=1 / h$.
In other words, we have imposed a drift on B_{t} which causes the process to exit from \mathcal{D} at the point x_{0} only. This can also be formulated as follows: X_{t} is obtained by conditioning B_{t} to exit from \mathcal{D} at x_{0}. See Doob (1984).

Exercise 12.II [2 pts]

Let α, β be some constants. In each of the cases below find an ltô diffusion whose generator coincides with L on $\mathcal{C}_{0}^{2}(\mathcal{D})$:
a) $L f(t, x)=\alpha \frac{\partial f(t, x)}{\partial t}+\frac{\beta^{2}}{2} \frac{\partial^{2} f(t, x)}{\partial x^{2}}$, for $\mathcal{D}=\mathbb{R}^{2}$;
b) $L f\left(x_{1}, x_{2}\right)=\alpha \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}+\beta \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}+\frac{1}{2}\left(\frac{\partial^{2} f\left(x_{1}, x_{2}\right)}{\partial x_{1}^{2}}+\frac{\partial^{2} f\left(x_{1}, x_{2}\right)}{\partial x_{2}^{2}}\right)$, for $\mathcal{D}=\mathbb{R}^{2}$;
c) $L f(x)=\alpha x f^{\prime}(x)+\frac{\beta^{2}}{2} f^{\prime \prime}(x)$, for $\mathcal{D}=\mathbb{R}$;
d) $L f(x)=\alpha f^{\prime}(x)+\frac{\beta^{2}}{2} x^{2} f^{\prime \prime}(x)$, for $\mathcal{D}=\mathbb{R}$.

Exercise 12.III [4 pts]

Given the following generator

$$
L u(x):=r x u^{\prime}(x)+\frac{1}{2} \alpha^{2} x^{2} u^{\prime \prime}(x), \quad \text { for } x \in \mathbb{R}, u \in \mathcal{C}_{0}^{2}(\mathbb{R}),
$$

where r, α are given constants with $r \geq \alpha^{2} / 2$.
a) Find an Itô diffusion $\left(X_{t}\right)_{t \geq 0}$ whose characteristic generator \mathcal{A} coincides with L on $\mathcal{C}_{0}^{2}(\mathbb{R})$.
b) Solve the SDE from a), i.e. find a explicit representation for X_{t}.

Hint: Use the Itô formula for the function $g(x)=\ln (x)$.
c) Use the result of the lecture for the regular Dirichlet problem in order to find a solution to the following boundary valued problem on $\mathcal{D}=\left(0, x_{0}\right)$

$$
\left\{\begin{aligned}
L u(x) & =0, \quad 0<x<x_{0} \\
u\left(x_{0}\right) & =x_{0}^{2}
\end{aligned}\right.
$$

for a given $x_{0}>0$.
Exercise 12.IV [2 pts]
Define the following generator

$$
L w(t, x):=\frac{\partial w(t, x)}{\partial t}+\frac{\partial^{2} w(t, x)}{\partial x^{2}}, \quad \text { for }(t, x) \in \mathbb{R}^{2}, w \in \mathcal{C}_{0}^{2}\left(\mathbb{R}^{2}\right)
$$

a) Find an Itô diffusion whose characteristic generator \mathcal{A} coincides with L on $\mathcal{C}_{0}^{2}\left(\mathbb{R}^{2}\right)$.
b) Define $\mathcal{D}=(0, T) \times \mathbb{R}$ and use the result of the lecture for the regular combined Dirichlet-Poisson problem in order to find a solution to the following boundary valued problem on

$$
\left\{\begin{aligned}
L w(t, x) & =-e^{\varrho t} g(x), \quad 0<t<T, x \in \mathbb{R}, \\
w(T, x) & =\phi(x), \quad x \in \mathbb{R},
\end{aligned}\right.
$$

where g, ϕ are given bounded, continuous functions and ϱ is an arbitrary constant.

Exercise 12.V

Prepare a mini-presentation for the tutorial on Wednesday, February 4, on the proof of Lemma 7.4 in Chapter 5.7 of the book Karatzas, I. \& Shreve, S. E. (2010) Brownian Motion and Stochastic Calculus. $2^{\text {nd }}$ edition, Springer, New York.

