Probability Theory III - Homework Assignment 4

Due date: Friday, November 14, 12:00 h
Solutions to the assigned homework problems must be deposited in Diana Kämpfe's drop box 84 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 4.1 [4 pts]
Let $M=\left\{M_{t}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ be a continuous local martingale, i.e. $M \in \mathcal{M}^{c, l o c}$, and assume that its quadratic variation process $\langle M\rangle$ is integrable: $\mathbb{E}\left(\langle M\rangle_{\infty}\right)<\infty$. Show that
a) $M \in \mathcal{M}^{2}$;
b) M and the submartingale M^{2} are both uniformly integrable; in particular, $M_{\infty}:=\lim _{t \rightarrow \infty} M_{t}$ exists \mathbb{P}-a.s. and $\mathbb{E}\left(M_{\infty}^{2}\right)=\mathbb{E}\left(\langle M\rangle_{\infty}\right)$;
c) there is a right-continuous modification of $Z_{t}:=\mathbb{E}\left(M_{\infty}^{2} \mid \mathcal{F}_{t}\right)-M_{t}^{2} ; t \geq 0$, which is a potential, i.e. a nonnegative supermartingale with $\lim _{t \rightarrow \infty} \mathbb{E}\left(Z_{t}\right)=0$.

Exercise 4.II (Brownian motion on the unit circle)[4 pts]
For a given one-dimensional Brownian motion $\left(B_{t}\right)_{t \geq 0}$ define the \mathbb{R}^{2}-valued stochastic process $\left(Y_{t}\right)_{t \geq 0}$ by

$$
Y_{t}:=\binom{\cos \left(B_{t}\right)}{\sin \left(B_{t}\right)}
$$

a) Show that $\left(Y_{t}\right)_{t}$ satisfies the (stochastic differential) equation

$$
\begin{aligned}
d Y_{t}^{(1)} & =-\frac{1}{2} Y_{t}^{(1)} d t-Y_{t}^{(2)} d B_{t} \\
d Y_{t}^{(2)} & =-\frac{1}{2} Y_{t}^{(2)} d t+Y_{t}^{(1)} d B_{t}
\end{aligned}
$$

b) Let the martingale $\left(M_{t}\right)_{t \geq 0}$ be defined by

$$
\begin{aligned}
M_{t}^{(1)} & :=-\int_{0}^{t} Y_{s}^{(2)} d B_{s}=-\int_{0}^{t} \sin \left(B_{s}\right) d B_{s} \\
M_{t}^{(2)} & :=+\int_{0}^{t} Y_{s}^{(1)} d B_{s}=+\int_{0}^{t} \cos \left(B_{s}\right) d B_{s}
\end{aligned}
$$

Following the steps outlined in the proof of theorem 4.2. determine explicitly the matrix-valued processes $\left(Z_{t}\right)_{t \geq 0},\left(Q_{t}\right)_{t \geq 0}$ and $\left(\Lambda_{t}\right)_{t \geq 0}$ associated to our given martingale $\left(M_{t}\right)_{t}$. Verify that $\left(Q_{t}\right)_{t}$ and $\left(\Lambda_{t}\right)_{t}$ are indeed progressively measurable.
c) Again following the proof of theorem 4.2. calculate the 'rotated' process $\left(N_{t}\right)_{t \geq 0}$ as well as the Brownian motion $\left(W_{t}\right)_{t \geq 0}$. Check that the representation of M in terms of N and W given in this proof reproduces the correct result.
d) Argue that remark 4.3. applies to our setup.

Exercise 4.III [4 pts]

Let $\left\{M=\left(M_{t}^{(1)}, \ldots, M_{t}^{(d)}\right), \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ be a d-dim vector of continuous local martingales, and define

$$
\begin{gathered}
A^{(i, j)}:=\left\langle M^{(i)}, M^{(j)}\right\rangle \quad \text { for } 1 \leq i, j \leq d, \\
A_{t}(\omega):=\sum_{i=1}^{d} \sum_{j=1}^{d} \tilde{A}_{t}^{(i, j)}(\omega),
\end{gathered}
$$

where $\tilde{A}_{t}^{(i, j)}(\omega)$ denotes the total variation of $A^{(i, j)}(\omega)$ on $[0, t]$. Let $T_{s}(\omega)$ be the inverse of the function $A_{t}(\omega)+t$, i.e. $A_{T_{s}(\omega)}+T_{s}(\omega)=s$ for all $0 \leq s<\infty$.
a) Show that for each s, T_{s} is a stopping time of $\left\{\mathcal{F}_{t}\right\}$.
b) Define $\mathcal{G}_{s}:=\mathcal{F}_{T_{s}} ; 0 \leq s<\infty$. Show that if $\left\{\mathcal{F}_{t}\right\}$ satisfies the usual conditions, then $\left\{\mathcal{G}_{s}\right\}$ does also.
c) Define

$$
N_{s}^{(i)}:=M_{T_{s}}^{(i)} \quad 1 \leq i \leq d ; 0 \leq s<\infty .
$$

Show that for each $1 \leq i \leq d$ we have $N^{(i)} \in \mathcal{M}^{c, l o c}$, and the cross-variation $\left\langle N^{(i)}, N^{(j)}\right\rangle_{s}$ is \mathbb{P}-a.s. an absolutely continuous function of s.

Exercise 4.IV

Prepare a mini-presentation for the tutorial on Wednesday, November 19, on the topic of the Martingale Moment Inequalities (proposition 3.26.). It suffices to consider case 3 within the proof, i.e. to provide the lower bound in the case of $1 / 2<m \leq 1$.

