Probability Theory III - Homework Assignment 6

Due date: Friday, November 28, 12:00 h

Solutions to the assigned homework problems must be deposited in Diana Kämpfe's drop box 84 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 6.1 [4 pts]

Denote by

$$
h(t ; b, \mu):=\frac{|b|}{\sqrt{2 \pi t^{3}}} \exp \left\{-\frac{(b-\mu t)^{2}}{2 t}\right\} ; \quad t>0, b \neq 0, \mu \in \mathbb{R}
$$

the (possibly defective) density of the passage time T_{b} to the level $b \neq 0$ under the measure $\mathbb{P}^{(\mu)}$ of a Brownian motion with drift μ. Show that

$$
h\left(\cdot ; b_{1}+b_{2}, \mu\right)=h\left(\cdot ; b_{1}, \mu\right) * h\left(\cdot ; b_{2}, \mu\right) ; \quad b_{1}, b_{2}>0, \mu \in \mathbb{R}
$$

where $*$ denotes convolution.

Exercise 6.II [4 pts]

The following exercise provides an example in which $Z(X)$ is not a martingale.
With $W=\left\{W_{t}, \mathcal{F}_{t} ; 0 \leq t \leq 1\right\}$ a Brownian motion, we define $T:=\inf \left\{0 \leq t \leq 1 \mid t+W_{t}^{2}=1\right\}$ and for $0 \leq t<1 X_{t}:=-\left(2 /(1-t)^{2}\right) \cdot W_{t} \cdot 1_{\{t \leq T, t<1\}}$.
a) Prove that $\mathbb{P}[T<1]=1$, and therefore $\int_{0}^{1} X_{t}^{2} d t<\infty$ a.s.
b) Apply Itô's rule to the process $\left\{\left(W_{t} /(1-t)\right)^{2} ; 0 \leq t<1\right\}$ to conclude that

$$
\int_{0}^{1} X_{t} d W_{t}-\frac{1}{2} \int_{0}^{1} X_{t}^{2} d t=-1-2 \int_{0}^{T}\left[\frac{1}{(1-t)^{4}}-\frac{1}{(1-t)^{3}}\right] W_{t}^{2} d t \leq-1
$$

c) Show that the exponential supermartingale $\left\{Z_{t}(X), \mathcal{F}_{t} ; 0 \leq t \leq 1\right\}$, defined by

$$
Z_{t}(X):=\exp \left[\int_{0}^{t} X_{s} d W_{s}-\frac{1}{2} \int_{0}^{t}\left|X_{s}\right|^{2} d s\right]
$$

is not a martingale.
d) Show that for each $n \leq 1$ and $\sigma_{n}:=1-(1 / \sqrt{n}),\left\{Z_{t \wedge \sigma_{n}(X)}, \mathcal{F}_{t} ; 0 \leq t \leq 1\right\}$ is a martingale.

Exercise 6.III [4 pts]
Suppose that $\left\{L_{t}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\} \in \mathcal{M}^{c, l o c}$ is such that $Z_{t}:=\exp \left[L_{t}-1 / 2\langle L\rangle_{t}\right]$ is a martingale
under \mathbb{P}, and define the new probability measure $\tilde{\mathbb{P}}_{T}(A):=\mathbb{E}\left(1_{A} \cdot Z_{T}\right) ; A \in \mathcal{F}_{T}$. Establish the following generalization of Proposition 5.4 and of the Girsanov theorem: if $M \in \mathcal{M}^{c, l o c}$, then

$$
\tilde{M}_{t}:=M_{t}-\langle L, M\rangle_{t}=M_{t}-\int_{0}^{t} \frac{1}{Z_{s}} d\langle Z, M\rangle_{s}, \quad \mathcal{F}_{t} ; \quad 0 \leq t \leq T
$$

is in $\tilde{M}^{c, l o c}$.
Hint: Imitate the proof of Proposition 5.4.

Exercise 6.IV

Prepare a mini-presentation for the tutorial on Wednesday, December 3, on the Remark following Corollary 5.2.

