Probability Theory III - Homework Assignment 7
 Due date: Friday, December 5, 12:00 h

Solutions to the assigned homework problems must be deposited in Christian Wiesel's drop box 55 located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Exercise 7.I [5 pts]

i) Verify that the given processes solve the given corresponding stochastic differential equations
a) $X_{t}=X_{0} \exp \left\{\int_{0}^{t} a(s) \mathrm{d} s+k\left(W_{t}-\frac{k}{2} t\right)\right\}$ solves $\mathrm{d} X_{t}=a(t) X_{t} \mathrm{~d} t+k X_{t} \mathrm{~d} W_{t}$, where $\left(W_{t}\right)_{t \geq 0}$ is a 1-dim. Brownian motion, k a real constant and $a: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function with bounded variation.
b) $\mathbb{X}_{t}=e^{\mathbb{A} t} \mathbb{X}_{0}+\int_{0}^{t} e^{\mathbb{A}(t-s)} \mathbb{K} d \mathbb{W}_{s}$ solves $\mathrm{d} \mathbb{X}_{t}=\mathbb{A} \mathbb{X}_{t} \mathrm{~d} t+\mathbb{K} \mathrm{d} \mathbb{W}_{t}$, where $\left(\mathbb{W}_{t}\right)_{t \geq 0}$ is a d-dim. Brownian motion, \mathbb{K} and \mathbb{A} are constant $(d \times d)$ matrices.
ii) Solve the following stochastic differential equations
a) $\binom{\mathrm{d} X_{t}^{(1)}}{\mathrm{d} X_{t}^{(2)}}=\binom{1}{0} \mathrm{~d} t+\left(\begin{array}{cc}1 & 0 \\ 0 & X_{t}^{(1)}\end{array}\right)\binom{\mathrm{d} W_{t}^{(1)}}{\mathrm{d} W_{t}^{(2)}}$, where $\left(W_{t}^{(1)}, W_{t}^{(2)}\right)_{t \geq 0}$ is a 2-dim. Brownian motion.
b) $\mathrm{d} X_{t}=X_{t} \mathrm{~d} t+e^{-t} \mathrm{~d} W_{t}$, where $\left(W_{t}\right)_{t \geq 0}$ is a 1-dim. Brownian motion.
c) $\mathrm{d} X_{t}=r \mathrm{~d} t+\alpha X_{t} \mathrm{~d} W_{t}$, where $\left(W_{t}\right)_{t \geq 0}$ is a 1-dim. Brownian motion and r, α are real constants. Hint: Multiply the equation by $F_{t}=e^{-\alpha W_{t}+\alpha^{2} t / 2}$.

Exercise 7.II [2 pts]
Let $\left(W_{t}\right)_{t \geq 0}$ be a 1-dim. Brownian motion. Show that there is a unique strong solution $X_{t}, t \geq 0$, of the 1-dim. stochastic differential equation

$$
\mathrm{d} X_{t}=\ln \left(1+X_{t}^{2}\right) \mathrm{d} t+\mathbb{1}_{\left\{X_{t}>0\right\}} X_{t} \mathrm{~d} W_{t} .
$$

Exercise 7.III [5 pts]

For fixed $a, b \in \mathbb{R}$ consider following 1-dim. stochastic differential equation

$$
\mathrm{d} Y_{t}=\frac{b-Y_{t}}{1-t} \mathrm{~d} t+\mathrm{d} W_{t}, \quad 0 \leq t<1, \quad Y_{0}=a
$$

Verify that

$$
Y_{t}=a(1-t)+b t+(1-t) \int_{0}^{t} \frac{1}{1-s} \mathrm{~d} W_{s}, \quad 0 \leq t<1
$$

solves the equation and prove that $\lim _{t \rightarrow 1} Y_{t}=b$ a.s. The process Y_{t} is called the Brownian bridge (from a to b.)

Hint: Use the Borel-Cantelli Lemma for the events

$$
A_{n}=\left\{\omega \in \Omega: \sup _{t \in\left[1-2^{-n}, 1-2^{-n-1}\right]}(1-t)\left|\int_{0}^{t} \frac{1}{1-s} \mathrm{~d} W_{s}\right|>2^{-n / 4}\right\}, \quad n \in \mathbb{N} .
$$

to show that for a.a. $\omega \in \Omega$ there is $N(\omega)<\infty$ such that for $n>N(\omega)$ follows $\omega \notin A_{n}$.

Exercise 7.IV

Make use of ideas from the proofs for Theorem 2.5 and Problem 2.10 to show that for fixed $T>0$, a stochastic process X_{t} with $(d \times r)$ dispersion matrix $\sigma(t, x)$ and r-dim. Brownian motion $\left(\mathbb{W}_{t}\right)_{t \geq 0}$ the following inequality holds

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left\|\int_{0}^{t} \sigma\left(u, X_{u}\right) \mathrm{d} \mathbb{W}_{u}\right\|^{2}\right] \leq 4 \mathbb{E}\left[\int_{0}^{T}\left\|\sigma\left(u, X_{u}\right)\right\|^{2} \mathrm{~d} u\right] .
$$

(This is an oral exercise, to be prepared for a mini-presentation on Wednesday, December 10)

