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Probability Theory III - Homework Assignment 8
Due date: Friday, December 12, 12:00 h

Solutions to the assigned homework problems must be deposited in Christian Wiesel’s drop box 55
located in V3-128 no later than 12:00 h on the due date. Homework solutions must be completely
legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

Unless stated otherwise, let ‖ · ‖ be the euclidean norm in Rd.

Exercise 8.I [4 pts]
Show that the assertions of Theorem 5.2.9 remain valid if the assumption E ‖ξ‖2 <∞ is dropped.
Hint: Let k be a positive integer. Show that the proof still works for ξk := ξ 1{‖ξ‖≤k} and a
corresponding {Ft}t-stopping time Tk, which is zero on {‖ξ‖ > k} and ∞ else. Conclude from
this result that there exists a strong solution X with initial condition ξ.

Exercise 8.II [8 pts] (Kramers-Smoluchowski Approximation, see background information below)
Let b(x, t) : Rd×[0,∞) → R

d be a continuous, bounded function which satisfies a Lipschitz
condition, i.e. ‖b(x, t)− b(y, t)‖ ≤ κ‖x− y‖ for every 0 ≤ t <∞ and x ∈ Rd, y ∈ Rd, where κ
is a positive constant. For every finite α > 0 consider the stochastic differential system

dXα
t = Y α

t dt,
dY α

t = α (b(Xα
t , t)− Y α

t ) dt+ α dWt,
for 0 ≤ t <∞, (1)

with initial condition (Xα
0 , Y

α
0 ) = (ξ, η), where ξ, η are a.s finite random variables, jointly indepen-

dent of the Brownian motion (Wt)t≥0. Furthermore X is the unique, strong solution to

dXt = b(Xt, t) dt+ dWt, for 0 ≤ t <∞, (2)

with initial condition X0 = ξ.

a) Show that the system (1) admits a unique, strong solution for every value α ∈ (0,∞).
Hint: Rewrite the coupled system (1) as special case of dZt = b̃(Zt, t) dt+ σ dWt.

b) Prove that for every fixed, finite T > 0, we have

lim
α→∞

sup
t∈[0,T ]

‖Xα
t −Xt‖ = 0, a.s.. (3)

Therefore use the following outline:

i) On an arbitrary time interval [tn, tn+1] ⊆ [0, T ], n ∈ N, holds

Xα
t −Xt = Xα

tn −Xtn +
Y α
tn − Y

α
t

α
+
∫ t

tn
b(Xα

s , s)− b(Xs, s) ds, for all t ∈ [tn, tn+1].
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ii) Choose a value for tn such that the integral in i) is bounded by sups∈[tn,tn+1] ‖Xα
s −Xs‖/2

and conclude

sup
s∈[tn,tn+1]

‖Xα
s −Xs‖ ≤ 2‖Xα

tn −Xtn‖+ 4 sup
s∈[tn,tn+1]

‖Y α
s ‖
α

, for all n ∈ N .

iii) Suppose we can prove that

lim
α→∞

sup
s∈[tn,tn+1]

‖Y α
s ‖
α

= 0, a.s. for all n ∈ N, (4)

and show the claim (3). Hint: Use an induction over n.

c) Consider the time interval from b.ii) and give a proof for the statement (4). For this purpose
show:

i) Y α
t = e−α(t−tn)Y α

tn + α
∫ t
tn
e−α(t−s)b(Xα

s , s) ds+ α
∫ t
tn
e−α(t−s) dWs a.s.

Hint: Use a similar approach as for the solution of homework assignment 7 exercise I.i.b).

ii) It holds, for all n ∈ N,

sup
s∈[tn,tn+1]

‖b(Xα
s , s)‖ ≤ 2‖b(Xα

tn , tn)‖+ 4κ sup
s∈[tn,tn+1]

‖Y α
s ‖
α

+ 2κ sup
s∈[tn,tn+1]

‖Ws −Wtn‖,

and thereby follows with c.i)

sup
s∈[tn,tn+1]

‖Y α
s ‖
α
≤ 2
‖Y α

tn‖
α

+ 4
‖b(Xα

tn , tn)‖
α

+ εn(α), for all n ∈ N,

where
εn(α) := 4κ

α
sup

s∈[tn,tn+1]
‖Ws −Wtn‖+ 2 sup

s∈[tn,tn+1]

∥∥∥∥∫ s

tn
e−α(s−u) dWu

∥∥∥∥ .
iii) Show εn(α)→ 0 by α→∞, for all n ∈ N, and conclude with this (4).

Exercise 8.III
Prepare a mini-presentation for the tutorial on Wednesday, December 17, on the proof of Proposition
5.2.13 by the use of the auxiliary facts of the function

ψn(x) :=
∫ |x|

0

∫ y

0
%n(u) du dy, x ∈ R,

which have been presented in the proof of Proposition 5.2.18. Suppose that there are two strong
solutions X(1) and X(2) of

dXt = b(Xt, t) dt+ σ(Xt, t) dWt,



Homework Assignment 8 Probability Theory III 3

with X(1)
0 = X

(2)
0 a.s and show the indistinguishably of X(1) and X(2) under the assumption1

E

[∫ t

0
|σ(X(i)

s , s)|2 ds
]
<∞, 0 ≤ t <∞, i = 1, 2.

Some background information for Exercise 8.II:
The motion of a particle of mass 1/α in a force field b(xαt , t) with the friction proportional to the
velocity is defined by the Newton law (mass ∗ acceleration = force):

1
α
ẍαt = b(xαt , t)− ẋt, xα0 = ξ, ẋα0 = η,

where xt is the position of the particle, ẋt the velocity and ẍt the acceleration. This second order
ODE can be rewritten as the following differential system

ẋαt = yαt ,

ẏαt = α (b(xαt , t)− yt) ,

with initial value (xα0 , yα0 ) = (ξ, η). If we now add some random perturbation to the force field,
i.e. b(xαt , t) dt+ dWt, we end up with the stochastic differential system (1), thereby considering a
particle which is exposed to some random impulses given by dWt.
The Property (3) is called Kramers-Smoluchowski Approximation (of Xα

t by Xt) which states that
the solution of (1) converges to the solution of equation (2) as mass goes to zero. This result is
the main justification for using the ’simpler’ equation (2) for describe small particle motion.
Some nice animation for an equation of type (2) can be found at http://www.math.
uni-bielefeld.de/~daltemeier/simulator1.html. Here you can see the effect of so cal-
led stochastic resonance, where the red ball states the deterministic case and the red ball the
stochastic case.

1Otherwise use (iii) of Definition 2.1 and go on with a localization argument.

http://www.math.uni-bielefeld.de/~daltemeier/simulator1.html
http://www.math.uni-bielefeld.de/~daltemeier/simulator1.html

