Multi-scale problems for Markov evolutions in the continuum

Yuri Kondratiev

Bielefeld University

03.02.2010
NON-LINEAR PDE AND SPDE

as phenomenological macroscopic models of complex systems.

SOME TOPICS FROM MATHEMATICAL ECOLOGY:

Non-linear waves and dissipative structures in biology of populations
Non-linear diffusion equations
Ecology and catastrophes theory
Chaos in models of simple ecological systems
Ecological systems in random environment
Stochastic models in mathematical ecology

FRAMEWORK: infinite dimensional dynamical systems
Problem: derivation of meso- and macroscopic equations from microscopic models via

- scaling limits for dynamics (hydrodynamic, Vlasov, Landau etc.)
- scaling of fluctuations (equilibrium or non-equilibrium)
- closure of (infinite linear) moment systems
- hierarchical chains (BBGKY etc.)
Three levels in physics

In context of the theory of rarefied gases:

(Mi) is the level of particle dynamics (Newton’s laws)

(Me) is the level of Boltzmann description

(Ma) is the level of continuum description.
Interacting Particle Systems

IPS as models in
physics (gases, fluids, condensed matter)
chemical kinetics
population biology, ecology (individual based models=IBM)
sociology, economics (agent based models=ABM)

Lattice and Continuous frameworks
Individual Based Models in Ecology

IBM is a stochastic (Markov) process with events comprising
birth,
death,
and movement.

Ecological models:
Bolker/Pacala, 1997, ...
Dieckmann/Law/Metz, 2000, ...
............................
Meleard et al., 2004
Birch/Young, 2006
Kondratiev/Srorokhud, 2006
Finkelshtein/Kondratiev/Kutovyi, 2007-2009
Microscopic Stochastic Systems

In mathematical terms we are interested in the links between the following mathematical structures:

\((\text{Mi}) \) the micro–scale of stochastically interacting entities (cells, individuals, . . .), in terms of continuous (linear) semigroups of Markov operators – continuous stochastic semigroups

\((\text{Me}) \) the meso–scale of statistical entities, in terms of continuous nonlinear semigroups related to the solutions of nonlinear Boltzmann–type nonlocal kinetic equations

\((\text{Ma}) \) the macro–scale of densities of interacting entities (in terms of dynamical systems related to reaction–diffusion type equations).
Configuration space:

\[\Gamma := \{ \gamma \subset \mathbb{R}^d | |\gamma \cap \Lambda| < \infty \text{ for any compact } \Lambda \subset \mathbb{R}^d \} . \]

| · | = cardinality of the set.

Remark: \(\Gamma \) is a Polish space.

n-point configuration space:

\[\Gamma^{(n)} := \{ \eta \subset \mathbb{R}^d | |\eta| = n \} , \quad n \in \mathbb{N}_0. \]

Space of finite configurations:

\[\Gamma_0 := \bigsqcup_{n \in \mathbb{N}_0} \Gamma^{(n)}. \]
Dynamics of configurations

Deterministic dynamics:

- Hamiltonian dynamics
- Interacting particle dynamical systems

Vlasov equation
due to Braun/Hepp, 1977 and Dobrushin, 1979:
we study asymptotic for $N \to \infty$ of the solution to

$$\frac{d x_i(t)}{dt} = A(x_i(t)) + N^{-1} \sum_{j=1}^{N} B(x_i(t) - x_j(t)),$$

$x_i \in \mathbb{R}^d$, $i = 1, \ldots, N.$
Empirical measure:

\[\mu^N_t = \frac{1}{N} \sum_i \delta_{x_i(t)} \]

VE for the limiting density (sic!):

\[\frac{\partial \rho_t(x)}{\partial t} = -Tr(\nabla_x(A(x)\rho_t(x))) - Tr\nabla_x\{\rho_t(x) \int_{\mathbb{R}^d} B(x-y)\rho_t(y)dy\}. \]

VE for Hamiltonian dynamics from BBGKY hierarchy (heuristic derivation):

Spohn, 1980.

Rigorous derivation meets problems: the lack of detailed knowledge about BBGKY.

VE appeared originally in plasma physics and in the stellar dynamical problem.
Markov evolutions in continuum:

- Diffusions (e.g., gradient diffusion)
- Jumping particles Markov processes (e.g., Kawasaki dynamics)
- Birth-and-death stochastic dynamics (e.g., Glauber, IBM in spatial ecology)
- Other stochastic IPS in \mathbb{R}^d

Questions:

What is possible concept of related Vlasov equations?

Is there a notion of a limiting IPS dynamics which creates Vlasov equation?
Framework: kinetic equations from stochastic dynamics (e.g., lattice stochastic dynamics and hydrodynamic scaling).

Markov dynamics of IPS \Rightarrow evolution of states (measures)

Particular scalings \Rightarrow kinetic equations

General discussion: see, e.g., [Dobrushin/Sinai/Suhov], 1985.

Interacting diffusions: McKean-Vlasov limit.
The projection of the Lebesgue product measure \((dx)^n\) to \((\Gamma^{(n)}, \mathcal{B}(\Gamma^{(n)}))\) we denote by \(m^{(n)}\). We set \(m^{(0)} := \delta_{\emptyset}\). The Lebesgue–Poisson measure \(\lambda\) on \(\Gamma_0\) is defined as
\[
\lambda := \sum_{n=0}^{\infty} \frac{1}{n!} m^{(n)}.
\]

Poisson measure \(\pi\) on \((\Gamma, \mathcal{B}(\Gamma))\) is given as the projective limit of the family of measures \(\{\pi^\Lambda\}_{\Lambda \in \mathcal{B}_b(\mathbb{R}^d)}\), where \(\pi^\Lambda := e^{-m(\Lambda)} \lambda\) is the probability measure on \((\Gamma_\Lambda, \mathcal{B}(\Gamma_\Lambda))\). Here \(m(\Lambda)\) is the Lebesgue measure of \(\Lambda \in \mathcal{B}_b(\mathbb{R}^d)\). For any measurable function \(f : \mathbb{R}^d \to \mathbb{R}\) we define the Lebesgue–Poisson exponent
\[
e^{\lambda}(f, \eta) := \prod_{x \in \eta} f(x), \quad \eta \in \Gamma_0; \quad e^{\lambda}(f, \emptyset) := 1.
\]
The following mapping plays a key role:

\[KG(\gamma) := \sum_{\eta \in \gamma} G(\eta), \quad \gamma \in \Gamma. \]

For any fixed \(C > 1 \) we consider the following Banach space of \(B(\Gamma_0) \)-measurable functions

\[\mathcal{L}_C := \left\{ G : \Gamma_0 \to \mathbb{R} \left| \|G\|_C := \int_{\Gamma_0} |G(\eta)|C^{\mid\eta\mid}d\lambda(\eta) < \infty \right. \right\}. \]
Harmonic analysis on configuration space

$L : \frac{dF_t}{dt} = LF_t$

$\hat{L} := K^{-1}LK$

$K\downarrow\uparrow K^{-1}$

$\Gamma, F \xleftarrow{\langle F, \mu \rangle = \int_{\Gamma} F \, d\mu} M_{fm}^1(\Gamma)$

$\Gamma_0, G \xleftarrow{\langle G, k \rangle = \int_{\Gamma_0} G \, k \, d\lambda} \mathcal{K}(\Gamma_0)$

$L^* : \frac{d\mu_t}{dt} = L^* \mu_t$

$\hat{L}^* : \frac{dk_t}{dt} = \hat{L}^* k_t$

K-transform:

$KG(\gamma) := \sum_{\xi \in \gamma} G(\xi), \quad \gamma \in \Gamma.$
Markov evolutions

Let L be a Markov pre-generator defined on some set of functions $\mathcal{F}(\Gamma)$ given on the configuration space Γ.

Kolmogorov equation:

\[
\frac{\partial F_t}{\partial t} = LF_t,
\]

\[
F_t|_{t=0} = F_0;
\]

Duality: $<F, \mu> := \int_\Gamma F d\mu$

Dual Kolmogorov equation:

\[
\frac{\partial \mu_t}{\partial t} = L^* \mu_t,
\]

\[
\mu_t|_{t=0} = \mu_0.
\]
Let
\[\hat{L} := K^{-1}LK \]

K- transform or symbol of the operator \(L \).

We consider
\[\hat{L} : D(\hat{L}) \subset \mathcal{L}_R \to \mathcal{L}_R \]
in Fock type space
\[\mathcal{L}_R := L^1(\Gamma_0, R d\lambda) = \bigoplus_{n=0}^{\infty} L^1\left(\Gamma^{(n)}, R^{(n)}\sigma^{(n)}\right). \]
Existence of Semigroup: Suppose that \((\hat{L}, D(\hat{L}))\) is a generator of a semigroup in \(\mathcal{L}_R\):

\[
\hat{L} \rightarrow \hat{T}_t, \quad t \geq 0.
\]

Introducing duality between Banach spaces \(\mathcal{L}_R\) and

\[
\mathcal{K}_R := \{ k : \Gamma_0 \rightarrow \mathbb{R} \mid k \cdot R^{-1} \in L^\infty(\Gamma_0, \lambda_1) \}:
\]

\[
\ll G, k \rr := \int_{\Gamma_0} G \cdot k \, d\lambda_1 = \int_{\Gamma_0} G \cdot \frac{k}{R} \cdot R \, d\lambda_1, \quad G \in \mathcal{L}_R,
\]

we construct semigroup \(\hat{T}_t^*, t \geq 0\) on \(\mathcal{K}_R\):

\[
\ll \hat{T}_t G, k \rr =: \ll G, \hat{T}_t^* k \rr.
\]
Vlasov scaling

Initial distribution: $\mu_0 \in \mathcal{M}_{\text{fm}}^1(\Gamma)$ with correlation function k_0. $\mu_t \in \mathcal{M}^1(\Gamma)$ the distribution of at time $t > 0$ and k_t its correlation function.

\[
\begin{align*}
\frac{d\mu_t}{dt} &= L^* \mu_t \\
\mu_t \big|_{t=0} &= \mu_0,
\end{align*}
\]

where L^* is the adjoint to the generator of functions

\[
\begin{align*}
\frac{dF_t}{dt} &= LF_t \\
F_t \big|_{t=0} &= F_0.
\end{align*}
\]

\[
\begin{align*}
\frac{dk_t}{dt} &= L^\Delta k_t \\
k_t \big|_{t=0} &= k_0
\end{align*}
\]

where $L^\Delta := \hat{L}^*$ is the generator of a semigroup $T_t^\Delta := \hat{T}_t^*$.

Yuri Kondratiev (Bielefeld)
Choose the initial state of the system:

∀ε > 0 correlation functions $k_0^{(\varepsilon)}$ as $\varepsilon \to 0$:

$$k_{0,\text{ren}}^{(\varepsilon)}(\eta) := \varepsilon |\eta| k_0^{(\varepsilon)}(\eta) \to r_0(\eta), \quad \varepsilon \to 0, \quad \eta \in \Gamma_0,$$

where correlation function r_0 will be chosen properly.

In the case of

$$r_0(\eta) = e^{\lambda(\rho_0, \eta)}, \quad \eta \in \Gamma_0$$

the assumption about the initial conditions means:

$$\rho_0 : \mathbb{R}^d \to (0, +\infty)$$

$$\mu^{(\varepsilon)}_{0,\text{ren}} \to \pi \rho_0,$$

where $\mu_{0,\text{ren}}^{(\varepsilon)}$ has correlation function $\varepsilon |\eta| k_0^{(\varepsilon)}(\eta)$.
2nd step in VS

Scaling of the generator:

\[L \mapsto L_\varepsilon. \]

The concrete type of this scaling will depend on the model.

Suppose that there exist solution of the correlation functional evolution

\[
\begin{aligned}
\frac{dk^{(\varepsilon)}_t}{dt} &= L_\varepsilon k^{(\varepsilon)}_t \\
k^{(\varepsilon)}_t \big|_{t=0} &= k^{(\varepsilon)}_0
\end{aligned}
\]

We expect (and this will be shown in concrete models) that order of the singularity in \(\varepsilon \) for this solution will be the same as for initial function \(k^{(\varepsilon)}_0 \).
3rd step in VS

We consider

\[k_{t, \text{ren}}^{(\varepsilon)}(\eta) := \varepsilon |\eta| k_t^{(\varepsilon)}(\eta), \quad \eta \in \Gamma_0, \]

and want to show that

\[k_{t, \text{ren}}^{(\varepsilon)}(\eta) \to r_t(\eta), \quad \varepsilon \to 0, \quad \eta \in \Gamma_0. \]

In fact, we consider renormalized version of the evolution equation

\[
\begin{cases}
\frac{dk_{t, \text{ren}}^{(\varepsilon)}}{dt} = L_{\varepsilon, \text{ren}} k_{t, \text{ren}}^{(\varepsilon)} \\
k_{t, \text{ren}}^{(\varepsilon)}|_{t=0} = k_0^{(\varepsilon), \text{ren}}
\end{cases}
\]

where

\[L_{\varepsilon, \text{ren}}^{\triangle} = \varepsilon |\eta| L_{\varepsilon}^{\triangle} \varepsilon^{-1} |\eta|. \]
Consider the semigroup $T^\Delta_\varepsilon(t)$ which corresponds to L^Δ_ε.

Scaling $L \mapsto L_\varepsilon$ s.t. $T^\Delta_\varepsilon(t)$ preserves singularity:

$$(T^\Delta_\varepsilon(t)k_0^{(\varepsilon)})(\eta) \sim \varepsilon^{-|\eta|}r_t(\eta), \quad \varepsilon \to 0, \ \eta \in \Gamma_0.$$

\forall \ \varepsilon > 0 consider a mapping of functions on Γ_0

$$(R_\varepsilon r)(\eta) := \varepsilon^{|\eta|}r(\eta),$$

$$R^{-1}_\varepsilon = R_{\varepsilon^{-1}}.$$

Then $k_0^{(\varepsilon)} \sim R_{\varepsilon^{-1}}r_0$, and we need

$$r_t \sim R_\varepsilon T^\Delta_\varepsilon(t)k_0^{(\varepsilon)} \sim R_\varepsilon T^\Delta_\varepsilon(t)R_{\varepsilon^{-1}}r_0.$$
To show: for any $t \geq 0$ the operator family

$$R_\varepsilon T_\varepsilon \triangle(t)R_{\varepsilon^{-1}}, \ \varepsilon > 0,$$

has a limiting operator $U(t)$.

But

$$R_\varepsilon T_\varepsilon \triangle(t)R_{\varepsilon^{-1}} = \exp \{t R_\varepsilon L_\varepsilon \triangle R_{\varepsilon^{-1}}\}.$$

We search for an operator $V \triangle$ such that

$$\exp \{t R_\varepsilon L_\varepsilon \triangle R_{\varepsilon^{-1}}\} \to \exp \{t V \triangle\} =: U(t).$$

Weak limit of

$$L_\varepsilon, \text{ren} := R_\varepsilon L_\varepsilon \triangle R_{\varepsilon^{-1}}$$

will be a proper candidate for $V \triangle$.
We want to show that the solution $k_{t, \text{ren}}^{(\varepsilon)}$ converges to r_t which satisfied

\[\begin{align*}
\frac{dr_t}{dt} &= V \triangle r_t \\
[r_t]_{t=0} &= r_0
\end{align*} \]

This equation describes an evolution of a virtual interacting particle system appearing in the Vlasov limit.
Consider the case of an initial Poisson measure:

\[r_0(\eta) = e^{\lambda(\rho_0, \eta)}. \]

Under some general conditions, the scaling leads to the solution \(r_t \) of the same form:

\[r_t(\eta) = e^{\lambda(\rho_t, \eta)}, \quad \eta \in \Gamma_0. \]

The Vlasov hierarchical equation in this case implies a non-linear equation for \(\rho_t \):

\[\frac{\partial}{\partial t} \rho_t(x) = v(\rho_t)(x), \quad x \in \mathbb{R}^d, \]

which we will call \textit{Vlasov-type equation} corresponding to the considered Markov evolution.
Derivation of Vlasov hierarchies

Birth, death and hopping evolutions

Two type continuous models: the **birth-and-death** generator $L_{\text{bad}} = L^- + L^+$ and the **hopping** generator L_{hop}, where

\[
\begin{align*}
(L^- F)(\gamma) &:= \sum_{x \in \gamma} d(x, \gamma \setminus x) \left[F(\gamma \setminus x) - F(\gamma) \right], \\
(L^+ F)(\gamma) &:= \int_{\mathbb{R}^d} b(x, \gamma) \left[F(\gamma \cup x) - F(\gamma) \right] dx, \\
(L_{\text{hop}} F)(\gamma) &:= \sum_{x \in \gamma} \int_{\mathbb{R}^d} c(x, y, \gamma) \left[F(\gamma \setminus x \cup y) - F(\gamma) \right] dy.
\end{align*}
\]
Denote $L^- = L^-(d)$, $L^+ = L^+(b)$, $L_{\text{hop}} = L_{\text{hop}}(c)$.

We will use scaling of rates b, d, c, say, $b_\varepsilon, d_\varepsilon, c_\varepsilon$, correspondingly, $\varepsilon > 0$.

Scaling of L_{bad} and L_{hop}:

\[
L_{\text{bad}, \varepsilon} = L^-(d_\varepsilon) + \varepsilon^{-1}L^+(b_\varepsilon),
\]

\[
L_{\text{hop}, \varepsilon} = L_{\text{hop}}(c_\varepsilon).
\]

General conditions for the weak convergence of $L_{\varepsilon}^\triangle$ to the limiting Vlasov generator V^\triangle considered in

Birth-and-death systems

Example (Contact model = branching with mortality)

\[
(LF)(\gamma) = m \sum_{x \in \gamma} [F(\gamma \setminus x) - F(\gamma)]
+ \lambda \sum_{x \in \gamma} \int_{\mathbb{R}^d} a(x - y) [F(\gamma \cup y) - F(\gamma)] dy;
\]

\[(VE) : \quad \frac{\partial}{\partial t} \rho_t(x) = -m \rho_t(x) + \lambda (\rho_t * a)(x).\]

Scaling:

\[
\lambda \mapsto \varepsilon^{-1} \lambda, \quad a \mapsto \varepsilon a
\]
Example (Migration model)

\[(LF)(\gamma) = \sum_{x \in \gamma} \sum_{y \in \gamma \setminus x} a(x - y)\left[F(\gamma \setminus x) - F(\gamma) \right] \]

\[+ \sigma \int_{\mathbb{R}^d} \left[F(\gamma \cup x) - F(\gamma) \right] dx; \]

\[\text{(VE)} : \quad \frac{\partial}{\partial t} \rho_t(x) = -\rho_t(x)(\rho_t * a)(x) + \sigma. \]

Scaling:

\[a \mapsto \varepsilon a \]

\[\sigma \mapsto \varepsilon^{-1} \sigma \]
Example (Bolker–Pacala model in spatial ecology)

\[(LF)(\gamma) = \sum_{x \in \gamma} \left(m + \sum_{y \in \gamma \setminus x} a^-(x - y) \right) \left[F(\gamma \setminus x) - F(\gamma) \right] \]
\[+ \sum_{x \in \gamma} \int_{\mathbb{R}^d} a^+(x - y) \left[F(\gamma \cup y) - F(\gamma) \right] dy; \]

\[(VE) : \frac{\partial}{\partial t} \rho_t(x) = -m\rho_t(x) - \rho_t(x)(\rho_t \ast a^-)(x) + (\rho_t \ast a^+)(x). \]

Scaling:
\[a^- \mapsto \varepsilon a^- \]
\[a^+ \mapsto \varepsilon^{-1} \varepsilon a^+ = a^+. \]
Example (Ecological model with establishment)

\[(LF)(\gamma) = m \sum_{x \in \gamma} [F(\gamma \setminus x) - F(\gamma)]\]
\[+ \lambda \sum_{x \in \gamma} \int_{\mathbb{R}^d} a(x - y)e^{-\sum_{u \in \gamma} \phi(y - u)}[F(\gamma \cup y) - F(\gamma)]dy;\]

\[(VE): \quad \frac{\partial}{\partial t} \rho_t(x) = -m \rho_t(x) + \lambda (a \ast \rho_t)(x)e^{-(\phi \ast \rho_t)(x)}.\]

Scaling:

\[a \mapsto \varepsilon a, \quad \phi \mapsto \varepsilon \phi\]
\[\lambda \mapsto \varepsilon^{-1} \lambda\]
Example (Ecological model with fecundity)

\[(LF)(\gamma) = m \sum_{x \in \gamma} [F(\gamma \setminus x) - F(\gamma)] + \lambda \sum_{x \in \gamma} \int_{\mathbb{R}^d} a(x - y) e^{-\sum_{u \in \gamma \setminus x} \phi(x - u)} [F(\gamma \cup y) - F(\gamma)] dy;\]

\[(VE) : \frac{\partial}{\partial t} \rho_t(x) = -m \rho_t(x) + \lambda (a \ast (\rho_t e^{-\phi \rho_t}))(x).\]

Scaling:

\[a \mapsto \varepsilon a, \quad \phi \mapsto \varepsilon \phi\]

\[\lambda \mapsto \varepsilon^{-1} \lambda\]
Example (Dieckmann--Law model)

\[
(LF)(\gamma) = \sum_{x \in \gamma} \left(m + \sum_{y \in \gamma \setminus x} a^-(x - y) \right) \left[F(\gamma \setminus x) - F(\gamma) \right] + \sum_{x \in \gamma} \int_{\mathbb{R}^d} a^+(x - y) \left(\lambda + \sum_{u \in \gamma \setminus x} b(x - u) \right) \left[F(\gamma \cup y) - F(\gamma) \right] dy;
\]

\[
(VE): \quad \frac{\partial}{\partial t} \rho_t(x) = -m \rho_t(x) - \rho_t(x)(\rho_t * a^-)(x) + \lambda(\rho_t * a^+)(x) + (((b * \rho_t) \rho_t) * a^+)(x).
\]

Scaling:

\[
 a^- \mapsto \varepsilon a^-, \quad a^+ \mapsto \varepsilon^{-1} \varepsilon a^+ = a^+.
\]

\[
b \mapsto \varepsilon b
\]
Example (Glauber G^+ dynamics)

$$(LF)(\gamma) = \sum_{x \in \gamma} [F(\gamma \setminus x) - F(\gamma)]$$

$$+ z \int_{\mathbb{R}^d} e^{-\sum_{u \in \gamma} \phi(y-u)} [F(\gamma \cup y) - F(\gamma)] dy;$$

$$(VE) : \quad \frac{\partial}{\partial t} \rho_t(x) = -\rho_t(x) + ze^{-(\rho_t * \phi)(x)}.$$

Scaling:

$$\phi \mapsto \varepsilon \phi$$

$$z \mapsto \varepsilon^{-1} z$$
Stationary VE for Glauber dynamics

Stationary hierarchy for stochastic Glauber dynamics = Kirkwood-Salsburg equation (K/Oliveira,'06)

KSE = Gibbs state = Bogoliubov equation for generating functional (all appear from Hamiltonian dynamics).

Stationary solution to VE satisfies

\[\rho(x) = ze^{-\left(\rho\ast\phi\right)(x)}. \]

The latter in nothing but the well-known Kirkwood-Monroe equation introduced in 1941 (!) in the theory of freezing.

We see a dynamical source of the Kirkwood-Monroe equation.
Example (Glauber G^- dynamics)

$$(LF)(\gamma) = \sum_{x \in \gamma} e^{\sum_{u \in \gamma} \phi(x-u)} [F(\gamma \setminus x) - F(\gamma)]$$

$$+ z \int_{\mathbb{R}^d} [F(\gamma \cup y) - F(\gamma)]dy;$$

$$(VE) : \quad \frac{\partial}{\partial t} \rho_t(x) = -\rho_t(x)e^{(\rho_t*\phi)(x)} + z.$$

Scaling:

$$\phi \mapsto \varepsilon \phi$$

$$z \mapsto \varepsilon^{-1} z$$
Conservative particle systems

Example (Free Kawasaki)

\[(LF)(\gamma) = \sum_{x \in \gamma} \int_{\mathbb{R}^d} a(x - y) \left[F(\gamma \setminus x \cup y) - F(\gamma) \right] dy;\]

\[(VE): \quad \frac{\partial}{\partial t} \rho_t(x) = (\rho_t * a)(x) - \rho_t(x) \langle a \rangle.\]
Example (Density dependent Kawasaki)

\[(LF)(\gamma) = \sum_{x \in \gamma} \int_{\mathbb{R}^d} a(x - y) \sum_{u \in \gamma} b(x, y, u) [F(\gamma \setminus x \cup y) - F(\gamma)] \, dy;\]

\[\frac{\partial}{\partial t} \rho_t(x) = \int_{\mathbb{R}^d} \rho_t(y) a(x - y) \int_{\mathbb{R}^d} \rho_t(u) b(y, x, u) \, dudy\]

\[- \rho_t(x) \int_{\mathbb{R}^d} a(x - y) \int_{\mathbb{R}^d} \rho_t(u) b(x, y, u) \, dudy.\]

In particular, if \(b(x, y, u) = b(x - u)\) then

\[(VE) : \quad \frac{\partial}{\partial t} \rho_t(x) = (\rho_t(\rho_t * b)) * a)(x) - \langle a \rangle \rho_t(x) (\rho_t * b)(x).\]

If \(b(x, y, u) = b(y - u)\) then

\[\frac{\partial}{\partial t} \rho_t(x) = (\rho_t * b)(x) (\rho_t * a)(x) - \rho_t(x) (\rho_t * a * b)(x).\]
Example (Gibbs--Kawasaki)

\[(LF')(\gamma) = \sum_{x \in \gamma} \int_{\mathbb{R}^d} a(x - y) e^{-E\phi(x,\gamma)} \left[F(\gamma \setminus x \cup y) - F(\gamma) \right] dy;\]

\[(VE): \quad \frac{\partial}{\partial t} \rho_t(x) = (\rho_t * a)(x) \exp \left\{ - (\rho_t * \phi)(x) \right\} \]
\[\quad - \rho_t(x) (a * \exp \{ - \rho_t * \phi \})(x).\]

Scaling:

\[\phi \mapsto \varepsilon \phi\]
Example (Gradient diffusion)

\[(LF)(\gamma) = \sum_{x \in \gamma} \Delta x F(\gamma) - \sum_{x \in \gamma} \sum_{y \in \gamma \setminus x} \langle \nabla \phi(x - y), \nabla_x F \rangle \]

\[(VE) \quad \frac{\partial}{\partial t} \rho_t(x) = \Delta \rho_t(x) - \int \phi(x - y) \langle \nabla \rho_t(x), \nabla \rho_t(y) \rangle \, dy \]

\[-\rho_t(x) \int \langle \nabla \phi(x - y), \nabla \rho_t(y) \rangle \, dy \]

Scaling:

\[\phi \mapsto \varepsilon \phi \]
Convergence problem

In all models above the weak convergence of the generators

\[L_{\varepsilon}^{\Delta} \to V^{\Delta}, \quad \varepsilon \to 0 \]

is proven.

A difficult question: convergence of solutions of hierarchical equations to the Vlasov hierarchy solution.

Known results (Finkelshtein/K/Kutoviy) concern

- Contact Model
- Glauber Dynamics
- BDLP Model in spatial ecology
Potts model

Consider a continuous system consisting of two types of particles:

\[\gamma^+ \in \Gamma^+ = \Gamma(\mathbb{R}^d), \quad \gamma^- \in \Gamma^- = \Gamma(\mathbb{R}^d). \]

Gibbs measure (heuristic)

\[d\mu(\gamma^+, \gamma^-) = \frac{1}{Z} \exp(-\beta \sum_{x \in \gamma^+, y \in \gamma^-} \phi(x - y)) d\pi_z(\gamma^+) d\pi_z(\gamma^-). \]

Here \(\beta, z > 0, \ \phi \geq 0. \)
Glauber dynamics in Potts model

Generator

$$(LF)(\gamma^+, \gamma^-) = \sum_{x \in \gamma^+} [F(\gamma^+ \setminus x, \gamma^-) - F(\gamma^+, \gamma^-)]$$

$$+ z \int_{\mathbb{R}^d} e^{-\beta \sum_{u \in \gamma^-} \phi(y-u)} [F(\gamma^+ \cup y, \gamma^-) - F(\gamma^+, \gamma^-)] dy$$

$$+ \text{symm.} \ (\leftrightarrow)$$
Scaling of generator:

\[\phi \mapsto \varepsilon \phi, \quad z \mapsto \varepsilon^{-1} z. \]

Vlasov equation:

\[
\begin{align*}
\frac{\partial}{\partial t} \rho_t^+(x) &= -\rho_t^+(x) + z e^{-\beta (\phi^* \rho_t^-)}(x) \\
\frac{\partial}{\partial t} \rho_t^-(x) &= -\rho_t^-(x) + z e^{-\beta (\phi^* \rho_t^+)}(x)
\end{align*}
\]
Consider space-homogeneous Vlasov equation (SHVE):

\[
\begin{align*}
\frac{\partial}{\partial t} \rho^+_t &= -\rho^+_t + ze^{-\beta<\phi>} \rho^-_t \\
\frac{\partial}{\partial t} \rho^-_t &= -\rho^-_t + ze^{-\beta<\phi>} \rho^+_t
\end{align*}
\]

Denote \(a := z\beta <\phi> \).

Theorem (F/K/K,’09)

If \(a \leq e \), then SHVE has a unique stationary point \((x_0, x_0)\).

If \(a > e \) we have exactly three stationary points

\[
(x_1, x_3), \ (x_2, x_2), \ (x_3, x_1).
\]

All stationary points of SHVE are stable focuses.
Therefore, the Vlasov hierarchy exhibits the dynamical phase transition. For low temperature-high density regime corresponding virtual particle system has broken \mathbb{Z}_2-symmetry.

The latter may be considered a sign of a phase transition in the initial Potts model. Actually, this phase transition was shown by H.-O.Georgii et.al. using the percolation techniques. Our approach may lead to the dynamical explanation of this phenomena.
(\text{I}\!\!F)(\gamma^+, \gamma^-) := \sum_{x \in \gamma^+} \left(m^+ + \sum_{x' \in \gamma^+ \setminus x} a_1^-(x - x') + \sum_{y \in \gamma^-} b_1^-(x - y) \right)
\times \left[F(\gamma^+ \setminus x, \gamma^-) - F(\gamma^+, \gamma^-) \right]

+ \sum_{y \in \gamma^-} \left(m^- + \sum_{y' \in \gamma^- \setminus y} a_2^-(y - y') + \sum_{x \in \gamma^+} b_2^-(x - y) \right)
\times \left[F(\gamma^+, \gamma^- \setminus y) - F(\gamma^+, \gamma^-) \right]
\[\begin{align*}
\sum_{x' \in \gamma^+} \int_{\mathbb{R}^d} & \left(a_1^+ (x - x') + \sum_{y \in \gamma^-} b_1^+ (y, x, x') \right) \\
& \left[F(\gamma^+ \cup x, \gamma^-) - F(\gamma^+, \gamma^-) \right] \, dx \\
\sum_{y' \in \gamma^-} \int_{\mathbb{R}^d} & \left(a_2^+ (y - y') + \sum_{x \in \gamma^+} b_2^+ (x, y, y') \right) \\
& \left[F(\gamma^+, \gamma^- \cup y) - F(\gamma^+, \gamma^-) \right] \, dy.
\end{align*}\]
Scaling:

\[a_{1,\varepsilon}^{\pm} = \varepsilon a_{1}^{\pm}, \quad b_{1,2,\varepsilon}^{-} = \varepsilon b_{1,2}^{-} \]

\[b_{1,2,\varepsilon}^{+} = \varepsilon^2 b_{1,2}^{+} \]

Birth intensity:

\[1 \mapsto \varepsilon^{-1} \]
Vlasov equation in ecology

\[
\frac{\partial}{\partial t} \rho_t^+ (x) = -m^+ \rho_t^+ (x) - \rho_t^+ (x) (a_1^- * \rho_t^+) (x) \\
\quad - \rho_t^+ (x) (\rho_t^- * b_1^-) (x) + (\rho_t^+ * a_1^+) (x) \\
\quad + \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \rho_t^+ (x') \rho_t^- (y) b_1^+ (y, x, x') \, dx' \, dy
\]

and

\[
\frac{\partial}{\partial t} \rho_t^- (y) = -m^- \rho_t^- (y) - \rho_t^- (y) (a_1^+ * \rho_t^-) (y) \\
\quad - \rho_t^- (y) (\rho_t^+ * b_1^+) (y) + (\rho_t^- * a_1^-) (y) \\
\quad + \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \rho_t^- (x) \rho_t^+ (y') b_1^+ (x, y, y') \, dx \, dy'
\]
Relations with jump generators

\[(\rho * a)(x) = \int a(x-y)\rho(y)dy =
\]
\[
\int a(x-y)(\rho(y) - \rho(x))dy + <a> \rho(x) = L_a \rho(x) + <a> \rho(x).
\]
In translation invariant case

\[
\begin{align*}
\frac{d}{dt} \rho^+_t &= (a_1^+ - m^+) \rho^+_t - a_1^- (\rho^+_t)^2 + (b_1^+ - b_1^-) \rho^+_t \rho^-_t \\
\frac{d}{dt} \rho^-_t &= (a_2^+ - m^-) \rho^-_t - a_2^- (\rho^-_t)^2 + (b_2^+ - b_2^-) \rho^+_t \rho^-_t.
\end{align*}
\]