Maß- und Integrationstheorie

Katharina von der Lühe Nora Müller SS 2016

Blatt 3

Abgabe: Donnerstag 8.9.2016, 12 Uhr

Aufgabe 1 (Beweis von Satz 5.6).

(4 Punkte)

Sei (Ω, \mathcal{A}) ein messbarer Raum, sei $f: \Omega \to \overline{\mathbb{R}}$ eine Funktion. Zeigen Sie, dass dann folgende Aussagen äquivalent sind:

- (i) f ist A-messbar
- (ii) $\forall \alpha \in \mathbb{R} : \{f \geq \alpha\} \in \mathcal{A}$
- (iii) $\forall \alpha \in \mathbb{R} : \{f > \alpha\} \in \mathcal{A}$
- (iv) $\forall \alpha \in \mathbb{R} : \{ f \leq \alpha \} \in \mathcal{A}$
- $(v) \ \forall \ \alpha \in \mathbb{R} : \{f < \alpha\} \in \mathcal{A}$

Aufgabe 2 (vgl. Beweis von Satz 5.8 (ii)).

(2+2 *Punkte*)

- (a) Seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $A \in \mathcal{A}$. Zeigen Sie, dass $\mathcal{A} \cap A := \{B \cap A \mid B \in \mathcal{A}\}$ eine σ -Algebra ist (sogenannte Spur- σ -Algebra).
- (b) Sei (Ω, \mathcal{A}) ein messbarer Raum. Seien $f, g: \Omega \to \overline{\mathbb{R}}$ \mathcal{A} -messbare Funktionen. Zeigen Sie, dass $f \cdot g$ \mathcal{A} -messbar ist, indem Sie den Beweis aus der Vorlesung ausführen.

Aufgabe 3 (Beweis von Satz 6.4).

 $(2+2 \ Punkte)$

Sei u eine A-messbare Elementarfunktion. Zeigen Sie, dass

- (a) $\int \mathbb{1}_A d\mu = \mu(A) \quad \forall A \in \mathcal{A}$
- (b) $\int \alpha \cdot u \, d\mu = \alpha \int u \, d\mu \quad \forall \alpha \in \mathbb{R}_+$

Aufgabe 4 (zum Satz 6.8.).

(4 Punkte)

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und sei $f_n : \Omega \to \overline{\mathbb{R}}, n \in \mathbb{N}$, eine Folge von \mathcal{A} -messbaren Funktionen mit $0 \ge f_n(\omega) \ge f_{n+1}(\omega)$ für alle $n \in \mathbb{N}$ und alle $\omega \in \Omega$. Zeigen Sie, dass dann

$$\int \inf_{n \in \mathbb{N}} f_n \, d\mu = \inf_{n \in \mathbb{N}} \int f_n \, d\mu$$

Bitte wenden!

Maß- und Integrationstheorie

Katharina von der Lühe Nora Müller

SS 2016

Aufgabe 5 (zum Satz 6.8).

 $(2+2 \ Punkte)$

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und sei $f_n \colon \Omega \to \overline{\mathbb{R}}, n \in \mathbb{N}$, eine Folge von \mathcal{A} -messbaren Funktionen. Zudem existiere eine μ -integrierbare Funktion g auf Ω mit $f_n \geq g$ für alle $n \in \mathbb{N}$. Zeigen Sie:

(a) Ist $(f_n)_{n\in\mathbb{N}}$ monoton steigend, so ist

$$\int \sup_{n \in \mathbb{N}} f_n \, d\mu = \sup_{n \in \mathbb{N}} \int f_n \, d\mu$$

(b) $\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu$

Aufgabe 6 (Definition 7.8).

(4 Punkte)

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Sei $(\Omega, \bar{\mathcal{A}}, \bar{\mu})$ die Vervollständigung von $(\Omega, \mathcal{A}, \mu)$ und sei P eine Eigenschaft von Punkten in Ω , so dass P μ -f. \ddot{u} . gilt.

Zeigen Sie, dass $N_P := \{ \omega \in \Omega \mid \omega \text{ hat Eigenschaft } P \text{ nicht} \} \text{ in } \bar{\mathcal{A}} \text{ liegt.}$

Aufgabe 7 (Beweis von Satz 7.11).

(4 Punkte)

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und seien $f, g: \Omega \to \overline{\mathbb{R}}$ zwei \mathcal{A} -messbare Funktionen. Zeigen Sie folgende Aussagen:

- (i) Aus $f, g \ge 0$ und $f \le g$ μ -f. \ddot{u} . folgt, dass $\int f d\mu \le \int g d\mu$ gilt.
- (ii) Ist $g \mu$ -integrierbar mit $|f| \leq g \mu$ -f. \ddot{u} ., so folgt, dass $f \mu$ -integrierbar ist.
- (iii) Ist g μ -integrierbar und f = g μ -f. \ddot{u} ., so ist f ebenfalls μ -integrierbar und es gilt $\int f d\mu = \int g d\mu$.
- (iv) Sind f und g beide μ -integrierbar mit $f \leq g$ μ -f. \ddot{u} ., so folgt $\int f d\mu \leq \int g d\mu$.

Aufgabe 8.

(1+2+1 Punkte)

- (a) Zeigen Sie, dass jede abzählbare Teilmenge von \mathbb{R} eine m-Nullmenge ist.
- (b) Zeigen Sie, dass eine Zahl

$$x = \sum_{n=1}^{\infty} \frac{x_n}{3^n} \in [0, 1] \ x_n \in \{0, 1, 2\}$$

zur Cantormenge P gehört, wenn für alle $n \in \mathbb{N}$ gilt $x_n \neq 1$.

(c) Zeigen Sie: Zu $x \in P$ der Cantor-Menge existiert genau eine Darstellung

$$x = \sum_{n=1}^{\infty} \frac{x_n}{3^n}, \quad x_n \in \{0, 2\} \quad d.h. \ x \in P_0.$$