A quantum cluster algebra of Kronecker type and the dual canonical basis

Philipp Lampe
University of Bonn

XIV International Conference on Representations of Algebras
Tokyo, August 2010
Table of contents

1. The Kronecker quiver and its representations
2. The quantized universal enveloping algebra
3. Cluster algebras of rank two
4. The quantum cluster algebra structure and the dual canonical basis
5. Summary
The talk concerns the **Kronecker quiver** which we denote by Q.

![Kronecker quiver](image)

Figure: The Kronecker quiver
The Kronecker quiver

The talk concerns the Kronecker quiver which we denote by Q.

![Figure: The Kronecker quiver](image)

Recall the following facts about representations of Q:

1. The category $\text{rep}_\mathbb{C}(Q)$ of finite-dimensional representations of Q can be identified with the category $\text{mod}(\mathbb{C}Q)$ of finite-dimensional modules over the path algebra $\mathbb{C}Q$.
Recall the following facts about representations of Q:

1. The category $\text{rep}_C(Q)$ of finite-dimensional representations of Q can be identified with the category $\text{mod}(\mathbb{C}Q)$ of finite-dimensional modules over the path algebra $\mathbb{C}Q$.

Figure: The preinjective component of the AR quiver
Representations of the Kronecker quiver

Recall the following facts about representations of Q:

1. The category $\text{rep}_\mathbb{C}(Q)$ of finite-dimensional representations of Q can be identified with the category $\text{mod}(\mathbb{C}Q)$ of finite-dimensional modules over the path algebra $\mathbb{C}Q$.

2. The quiver Q is tame. There are infinitely many (isomorphism classes of) indecomposable $\mathbb{C}Q$-modules, and they are classified as preprojective, preinjective, or regular.
Representations of the Kronecker quiver

Recall the following facts about representations of Q:

1. The category $\text{rep}_\mathbb{C}(Q)$ of finite-dimensional representations of Q can be identified with the category $\text{mod}(\mathbb{C}Q)$ of finite-dimensional modules over the path algebra $\mathbb{C}Q$.

2. The quiver Q is tame. There are infinitely many (isomorphism classes of) indecomposable $\mathbb{C}Q$-modules, and they are classified as preprojective, preinjective, or regular.

Figure: The preinjective component of the AR quiver
The definition of the quantized universal enveloping algebra $U_q(\mathfrak{n})$ and Lusztig’s T-automorphisms

The representation theory of Q is truly linked with Lie theory. Therefore recall the following notions:

1. Consider a Kac-Moody Lie algebra \mathfrak{g} of type $A^{(1)}_1$ and let $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be its triangular decomposition.

2. The quantized universal enveloping algebra $U_q(\mathfrak{n})$ is the $\mathbb{Q}(q)$-algebra generated by two elements E_0 and E_1 subject to the relations

 $$E_i^2 E_j - [3] E_i E_j E_i + [3] E_i E_j E_i - E_j E_i^2 = 0,$$

 for $i \neq j$ where $[3] = q^2 + 1 + q^{-2}$.

3. Lusztig defined T-automorphisms $T_i : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ for $i = 0, 1$.

4. The Weyl group W is generated by two elements s_0 and s_1 that act on the simple roots α_1 and α_2 of \mathfrak{g} by $s_0(\alpha_0) = -\alpha_0$, $s_0(\alpha_1) = 2\alpha_0 + \alpha_1$, $s_1(\alpha_0) = \alpha_0 + 2\alpha_1$, and $s_1(\alpha_1) = -\alpha_1$.
The definition of the quantized universal enveloping algebra $U_q(n)$ and Lusztig’s T-automorphisms

The representation theory of Q is truely linked with Lie theory. Therefore recall the following notions:

1. Consider a Kac-Moody Lie algebra g of type $A_1^{(1)}$ and let $g = n_- \oplus h \oplus n$ be its triangular decomposition.
The definition of the quantized universal enveloping algebra $U_q(n)$ and Lusztig’s T-automorphisms

The representation theory of Q is truly linked with Lie theory. Therefore recall the following notions:

1. Consider a Kac-Moody Lie algebra \mathfrak{g} of type $A_1^{(1)}$ and let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}$ be its triangular decomposition.

2. The quantized universal enveloping algebra $U_q(n)$ is the $\mathbb{Q}(q)$-algebra generated by two elements E_0 and E_1 subject to the relations

$$E_i^3 E_j - [3] E_i E_j E_i + [3] E_i E_j E_i^2 - E_j E_i^3 = 0,$$

for $i \neq j$ where $[3] = q^2 + 1 + q^{-2}$.

The definition of the quantized universal enveloping algebra $U_q(\mathfrak{n})$ and Lusztig's T-automorphisms

The representation theory of Q is truly linked with Lie theory. Therefore recall the following notions:

1. Consider a Kac-Moody Lie algebra \mathfrak{g} of type $A_1^{(1)}$ and let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}$ be its triangular decomposition.
2. The quantized universal enveloping algebra $U_q(\mathfrak{n})$ is the $\mathbb{Q}(q)$-algebra generated by two elements E_0 and E_1 subject to the relations

$$E_i^3 E_j - [3] E_i^2 E_j E_i + [3] E_i E_j E_i^2 - E_j E_i^3 = 0,$$

for $i \neq j$ where $[3] = q^2 + 1 + q^{-2}$.
3. Lusztig defined T-automorphisms $T_i : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ for $i = 0, 1$.

Philipp Lampe (Bonn)
Dual canonical bases
August 2010
The definition of the quantized universal enveloping algebra $U_q(\mathfrak{n})$ and Lusztig’s T-automorphisms

The representation theory of Q is truly linked with Lie theory. Therefore recall the following notions:

1. Consider a Kac-Moody Lie algebra \mathfrak{g} of type $A_1^{(1)}$ and let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}$ be its triangular decomposition.

2. The quantized universal enveloping algebra $U_q(\mathfrak{n})$ is the $\mathbb{Q}(q)$-algebra generated by two elements E_0 and E_1 subject to the relations

$$E_i^3 E_j - [3] E_i^2 E_j E_i + [3] E_i E_j E_i^2 - E_j E_i^3 = 0,$$

for $i \neq j$ where $[3] = q^2 + 1 + q^{-2}$.

3. Lusztig defined T-automorphisms $T_i : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ for $i = 0, 1$.

4. The Weyl group W is generated by two elements s_0 and s_1 that act on the simple roots α_1 and α_2 of \mathfrak{g} by $s_0(\alpha_0) = -\alpha_0$, $s_0(\alpha_1) = 2\alpha_0 + \alpha_1$, $s_1(\alpha_0) = \alpha_0 + 2\alpha_1$, and $s_1(\alpha_1) = -\alpha_1$.

Philipp Lampe (Bonn) Dual canonical bases August 2010
Consider the AR quiver from above.
Consider the AR quiver from above. We focus on the the two injective modules and their τ-translates.
Consider the AR quiver from above. We focus on the two injective modules and their τ-translates.
Consider the AR quiver from above. We focus on the two injective modules and their τ-translates. The dimension vectors (under the correspondence with the positive roots according to Kac’s theorem) can be described by initial subsequences of $w = s_0 s_1 s_0 s_1 \in W$:

\begin{align*}
\alpha_0, \\
s_0(\alpha_1) &= 2\alpha_0 + \alpha_1, \\
s_0 s_1(\alpha_0) &= 3\alpha_0 + 2\alpha_1, \\
s_0 s_1 s_0(\alpha_1) &= 4\alpha_0 + 3\alpha_1.
\end{align*}
Objects attached to a Weyl group element of length 4

Consider the AR quiver from above. We focus on the two injective modules and their \(\tau \)-translates. The \textit{dimension vectors} (under the correspondence with the positive roots according to \textit{Kac’s theorem}) can be described by initial subsequences of \(w = s_0 s_1 s_0 s_1 \in W: \)

- \(\alpha_0 \quad \sim \quad u_0 = E_0 \in U_q(n), \)
- \(s_0(\alpha_1) = 2\alpha_0 + \alpha_1 \quad \sim \quad u_1 = T_0(E_1) \in U_q(n), \)
- \(s_0 s_1(\alpha_0) = 3\alpha_0 + 2\alpha_1 \quad \sim \quad u_2 = T_0 T_1(E_0) \in U_q(n), \)
- \(s_0 s_1 s_0(\alpha_1) = 4\alpha_0 + 3\alpha_1 \quad \sim \quad u_3 = T_0 T_1 T_0(E_1) \in U_q(n). \)
The subalgebra $U_q(w)$ and its structure

As observed by Leclerc the elements satisfy straightening relations

\[
\begin{align*}
 u_i u_{i+1} &= q^{-2} u_{i+1} u_i, & (0 \leq i \leq 2), \\
 u_i u_{i+2} &= q^{-2} u_{i+2} u_i + (q^{-2} - 1) u_{i+1}^2, & (0 \leq i \leq 1), \\
 u_i u_{i+3} &= q^{-2} u_{i+3} u_i + (q^{-4} - 1) u_{i+2} u_{i+1}, & (i = 0).
\end{align*}
\]
The subalgebra $U_q(w)$ and its structure

As observed by Leclerc the elements satisfy straightening relations

\[u_i u_{i+1} = q^{-2} u_{i+1} u_i, \quad (0 \leq i \leq 2), \]
\[u_i u_{i+2} = q^{-2} u_{i+2} u_i + (q^{-2} - 1) u_{i+1}^2, \quad (0 \leq i \leq 1), \]
\[u_i u_{i+3} = q^{-2} u_{i+3} u_i + (q^{-4} - 1) u_{i+2} u_{i+1}, \quad (i = 0). \]

Let $U_q(w) \subset U_q(n)$ be the $\mathbb{Q}(q)$-subalgebra generated by u_0, u_1, u_2, u_3.

The subalgebra $U_q(w)$ and its structure

As observed by Leclerc the elements satisfy straightening relations

\begin{align*}
u_i u_{i+1} &= q^{-2} u_{i+1} u_i, & (0 \leq i \leq 2), \\
u_i u_{i+2} &= q^{-2} u_{i+2} u_i + (q^{-2} - 1) u_{i+1}^2, & (0 \leq i \leq 1), \\
u_i u_{i+3} &= q^{-2} u_{i+3} u_i + (q^{-4} - 1) u_{i+2} u_{i+1}, & (i = 0).
\end{align*}

Let $U_q(w) \subset U_q(n)$ be the $\mathbb{Q}(q)$-subalgebra generated by u_0, u_1, u_2, u_3. Notice the degeneration to commutativity relations in the classical limit $q = 1$.

Philipp Lampe (Bonn)
Dual canonical bases
August 2010
As observed by Leclerc the elements satisfy straightening relations

\[
\begin{align*}
 u_i u_{i+1} &= q^{-2} u_{i+1} u_i, & (0 \leq i \leq 2), \\
 u_i u_{i+2} &= q^{-2} u_{i+2} u_i + (q^{-2} - 1) u_{i+1}^2, & (0 \leq i \leq 1), \\
 u_i u_{i+3} &= q^{-2} u_{i+3} u_i + (q^{-4} - 1) u_{i+2} u_{i+1}, & (i = 0).
\end{align*}
\]

Let \(U_q(w) \subset U_q(n) \) be the \(\mathbb{Q}(q) \)-subalgebra generated by \(u_0, u_1, u_2, u_3 \). Notice the degeneration to commutativity relations in the classical limit \(q = 1 \).

The straightening relations enable us to write everything in \(U_q(w) \) as a linear combination of elements of the form

\[
u[a] = u_3^{a_3} u_2^{a_2} u_1^{a_1} u_0^{a_0}, \quad (a = (a_3, a_2, a_1, a_0) \in \mathbb{N}^4).
\]

In fact, \(\{ u[a] : a \in \mathbb{N}^4 \} \) is a \(\mathbb{Q}(q) \)-basis of \(U_q(w) \), a PBW basis.
As observed by Leclerc the elements satisfy straightening relations

\[
\begin{align*}
 u_i u_{i+1} &= q^{-2} u_{i+1} u_i, & (0 \leq i \leq 2), \\
 u_i u_{i+2} &= q^{-2} u_{i+2} u_i + (q^{-2} - 1) u_{i+1}^2, & (0 \leq i \leq 1), \\
 u_i u_{i+3} &= q^{-2} u_{i+3} u_i + (q^{-4} - 1) u_{i+2} u_{i+1}, & (i = 0).
\end{align*}
\]

Let \(U_q(w) \subset U_q(n) \) be the \(\mathbb{Q}(q) \)-subalgebra generated by \(u_0, u_1, u_2, u_3 \). Notice the degeneration to commutativity relations in the classical limit \(q = 1 \).

The straightening relations enable us to write everything in \(U_q(w) \) as a linear combination of elements of the form

\[
u[a] = u_3^{a_3} u_2^{a_2} u_1^{a_1} u_0^{a_0}, \quad (a = (a_3, a_2, a_1, a_0) \in \mathbb{N}^4).
\]

In fact, \(\{ u[a] : a \in \mathbb{N}^4 \} \) is a \(\mathbb{Q}(q) \)-basis of \(U_q(w) \), a PBW basis. For every \(a \) there is some \(E[a] = q^b u_3^{a_3} u_2^{a_2} u_1^{a_1} u_0^{a_0} \) that is adjoint to \(u[a] \) w.r.t. Kashiwara’s bilinear form; \(\{ E[a] : a \in \mathbb{N}^4 \} \) is called dual PBW basis.
The dual canonical basis of $U_q(w)$

Let σ be the antiinvolution fixing E_0 and E_1 s.t. $\sigma(q) = q^{-1}$. By a theorem of Leclerc there is a unique $\mathbb{Q}(q)$-basis $\{ B[a] : a \in \mathbb{N}^4 \}$ of $U_q(w)$ such that for every $a \in \mathbb{N}^4$ the following two conditions hold:

- $B[a] - E[a] \in \bigoplus_{b \in \mathbb{N}^4} q\mathbb{Z}[q]E[b]$;
- $\sigma(B[a]) = q^N B[a]$ for some $N \in \mathbb{Z}$.
The dual canonical basis of $U_q(w)$

Let σ be the antiinvolution fixing E_0 and E_1 s.t. $\sigma(q) = q^{-1}$. By a theorem of Leclerc there is a unique $\mathbb{Q}(q)$-basis $\{ B[a] : a \in \mathbb{N}^4 \}$ of $U_q(w)$ such that for every $a \in \mathbb{N}^4$ the following two conditions hold:

- $B[a] - E[a] \in \bigoplus_{b \in \mathbb{N}^4} q\mathbb{Z}[q]E[b]$;
- $\sigma(B[a]) = q^N B[a]$ for some $N \in \mathbb{Z}$.

The basis is known as the dual canonical basis.
The dual canonical basis of $U_q(w)$

Let σ be the antiinvolution fixing E_0 and E_1 s.t. $\sigma(q) = q^{-1}$. By a theorem of Leclerc there is a unique $\mathbb{Q}(q)$-basis $\{ B[a] : a \in \mathbb{N}^4 \}$ of $U_q(w)$ such that for every $a \in \mathbb{N}^4$ the following two conditions hold:

- $B[a] - E[a] \in \bigoplus_{b \in \mathbb{N}^4} q\mathbb{Z}[q]E[b];$
- $\sigma(B[a]) = q^N B[a]$ for some $N \in \mathbb{Z}$.

The basis is known as the dual canonical basis. Examples of dual canonical basis elements are:

- the generators u_0, u_1, u_2, u_3;
- $p_0 = u_2u_0 - q^2u_1^2$ and $p_1 = u_3u_1 - q^2u_2^2$.
The dual canonical basis of $U_q(w)$

Let σ be the antiinvolution fixing E_0 and E_1 s.t. $\sigma(q) = q^{-1}$. By a theorem of Leclerc there is a unique $\mathbb{Q}(q)$-basis \{ $B[a]: a \in \mathbb{N}^4$ \} of $U_q(w)$ such that for every $a \in \mathbb{N}^4$ the following two conditions hold:

- $B[a] - E[a] \in \bigoplus_{b \in \mathbb{N}^4} q\mathbb{Z}[q]E[b];$
- $\sigma(B[a]) = q^N B[a]$ for some $N \in \mathbb{Z}$.

The basis is known as the dual canonical basis. Examples of dual canonical basis elements are:

- the generators u_0, u_1, u_2, u_3;
- $p_0 = u_2 u_0 - q^2 u_1^2$ and $p_1 = u_3 u_1 - q^2 u_2^2$.

Remarkably, both p_0 and p_1 q-commute with every u_i (with $0 \leq i \leq 3$) and they correspond to the two indecomposable projective-injective modules over the associated preprojective algebra Λ.
Let σ be the antiinvolution fixing E_0 and E_1 s.t. $\sigma(q) = q^{-1}$. By a theorem of Leclerc there is a unique $\mathbb{Q}(q)$-basis $\{B[a] : a \in \mathbb{N}^4\}$ of $U_q(w)$ such that for every $a \in \mathbb{N}^4$ the following two conditions hold:

- $B[a] - E[a] \in \bigoplus_{b \in \mathbb{N}^4} q\mathbb{Z}[q]E[b]$;
- $\sigma(B[a]) = q^N B[a]$ for some $N \in \mathbb{Z}$.

The basis is known as the dual canonical basis. Examples of dual canonical basis elements are:

- the generators u_0, u_1, u_2, u_3;
- $p_0 = u_2u_0 - q^2u_1^2$ and $p_1 = u_3u_1 - q^2u_2^2$.

Remarkably, both p_0 and p_1 q-commute with every u_i (with $0 \leq i \leq 3$) and they correspond to the two indecomposable projective-injective modules over the associated preprojective algebra Λ.

The integral form $U_q(w)_{\mathbb{Z}}$ of $U_q(w)$ turns out to be a q-deformation of Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$.
The cluster algebra

Cluster algebras have been introduced by Fomin-Zelevinsky. Let us look at the cluster algebra $\mathcal{A}(C_w)$ Geiß-Leclerc-Schröer attached to w.
Cluster algebras have been introduced by Fomin-Zelevinsky. Let us look at the cluster algebra $\mathcal{A}(C_w)$ Geiß-Leclerc-Schröer attached to w.

Start with an initial cluster consisting of two frozen variables P_0 and P_1 and two mutable variables U_0 and U_1.
Cluster algebras have been introduced by Fomin-Zelevinsky. Let us look at the cluster algebra $\mathcal{A}(C_w)$ Geiß-Leclerc-Schröer attached to w.

Mutation exchanges U_0 with another variable U_2 such that

$$U_0 U_2 = U_1^2 + P_0.$$
Cluster algebras have been introduced by Fomin-Zelevinsky. Let us look at the cluster algebra $\mathcal{A}(C_w)$ Geiß-Leclerc-Schröer attached to w.

Mutation exchanges U_1 with another variable U_3 such that

$$U_1 U_3 = U_2^2 + P_1.$$
Cluster algebras have been introduced by Fomin-Zelevinsky. Let us look at the cluster algebra $\mathcal{A}(C_w)$ Geiß-Leclerc-Schröer attached to w.

Mutation exchanges U_1 with another variable U_{-1} such that

$$U_1 U_{-1} = U_0^2 P_1 + P_0^2.$$
Cluster algebras have been introduced by Fomin-Zelevinsky. Let us look at the cluster algebra $\mathcal{A}(C_w)$ Geiß-Leclerc-Schröer attached to w.

The cluster algebra $\mathcal{A}(C_w) \subset \mathbb{Q}(U_0, U_1)$ is the \mathbb{Q}-algebra generated by the cluster variables $\ldots, U_{-1}, U_0, U_1, U_2, U_3, U_4, \ldots$ and P_0 and P_1.

Philipp Lampe (Bonn)
Dual canonical bases
August 2010
9 / 12
The Laurent phenomenon and linear exchange relations

Put $P_0 = P_1 = 1$. Exchange relations become $U_{n-1} U_{n+1} = U_n^2 + 1$ (for $n \in \mathbb{Z}$); the cluster algebra $\mathcal{A}(C_w)$ degenerates to the coefficient-free cluster algebra \mathcal{A} which was studied by Caldero-Zelevinsky.
The Laurent phenomenon and linear exchange relations

Put $P_0 = P_1 = 1$. Exchange relations become $U_{n-1} U_{n+1} = U_n^2 + 1$ (for $n \in \mathbb{Z}$); the cluster algebra $\mathcal{A}(\mathcal{C}_w)$ degenerates to the coefficient-free cluster algebra \mathcal{A} which was studied by Caldero-Zelevinsky.

1. Put $U_0 = U_1 = 1$.

Philipp Lampe (Bonn)
Dual canonical bases
August 2010
10 / 12
The Laurent phenomenon and linear exchange relations

Put $P_0 = P_1 = 1$. Exchange relations become $U_{n-1} U_{n+1} = U_n^2 + 1$ (for $n \in \mathbb{Z}$); the cluster algebra $\mathcal{A}(C_w)$ degenerates to the coefficient-free cluster algebra \mathcal{A} which was studied by Caldero-Zelevinsky.

1. Put $U_0 = U_1 = 1$. The sequence becomes 2, 5, 13, 34, 89, etc.
The Laurent phenomenon and linear exchange relations

Put $P_0 = P_1 = 1$. Exchange relations become $U_{n-1} U_{n+1} = U_n^2 + 1$ (for $n \in \mathbb{Z}$); the cluster algebra $\mathcal{A}(C_w)$ degenerates to the coefficient-free cluster algebra \mathcal{A} which was studied by Caldero-Zelevinsky.

Put $U_0 = U_1 = 1$. The sequence becomes 2, 5, 13, 34, 89, etc. Every term in the sequence turns out to be a natural number. In fact, the sequence is every other Fibonacci number. The integrality is an instance of the Laurent phenomenon: Every cluster variable is a Laurent polynomial in U_0 and U_1.

Note 1
The Laurent phenomenon and linear exchange relations

Put $P_0 = P_1 = 1$. Exchange relations become $U_{n-1}U_{n+1} = U_n^2 + 1$ (for $n \in \mathbb{Z}$); the cluster algebra $\mathcal{A}(C_w)$ degenerates to the coefficient-free cluster algebra \mathcal{A} which was studied by Caldero-Zelevinsky.

1 Put $U_0 = U_1 = 1$. The sequence becomes 2, 5, 13, 34, 89, etc. Every term in the sequence turns out to be a natural number. In fact, the sequence is every other Fibonacci number. The integrality is an instance of the Laurent phenomenon: Every cluster variable is a Laurent polynomial in U_0 and U_1.

2 The nonlinear exchange relation from above may be replaced by the linear three-term recursion

$$U_{n+1} + U_{n-1} = TU_n$$

where $T = \frac{U_0^2 + U_1^2 + 1}{U_0U_1}$ (for $n \in \mathbb{Z}$). For example, $U_{n+1} + U_{n-1} = 3U_n$ (for $n \in \mathbb{Z}$) in the case $U_0 = U_1 = 1$.
The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(C_w)$ in the classical limit $q = 1$.

Figure: The initial cluster with frozen (blue) and mutable (red) variables
The algebra $U_q(w) \mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

1. The dual canonical basis element $B[n + 1, 0, 0, n]$ (for $n \in \mathbb{N}$) specializes to the cluster variable U_{n+3} of the cluster algebra $\mathcal{A}(\mathcal{C}_w)$ of Kronecker type from above in the classical limit $q = 1$.

Philipp Lampe (Bonn)

Dual canonical bases

August 2010
The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiβ-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

1. The dual canonical basis element $B[n + 1, 0, 0, n]$ (for $n \in \mathbb{N}$) specializes to the cluster variable U_{n+3} of the cluster algebra $\mathcal{A}(\mathcal{C}_w)$ of Kronecker type from above in the classical limit $q = 1$.

2. Two adjacent quantized cluster variables $B[n + 1, 0, 0, n]$ and $B[n, 0, 0, n - 1]$ are q-commutative.
The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

1. The dual canonical basis element $B[n + 1, 0, 0, n]$ (for $n \in \mathbb{N}$) specializes to the cluster variable U_{n+3} of the cluster algebra $\mathcal{A}(\mathcal{C}_w)$ of Kronecker type from above in the classical limit $q = 1$.

2. Two adjacent quantized cluster variables $B[n + 1, 0, 0, n]$ and $B[n, 0, 0, n - 1]$ are q-commutative.

3. We give recursions of Chebychev type for the quantized cluster variables $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ that allow to compute the elements explicitly.
The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(C_w)$ in the classical limit $q = 1$.

Further results are:

2. Two adjacent quantized cluster variables $B[n+1, 0, 0, n]$ and $B[n, 0, 0, n-1]$ are q-commutative.

3. We give recursions of Chebychev type for the quantized cluster variables $B[n, 0, 0, n]$ and $B[n+1, 0, 0, n]$ that allow to compute the elements explicitly.
The algebra $U_q(w)\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

2. Two adjacent quantized cluster variables $B[n+1,0,0,n]$ and $B[n,0,0,n-1]$ are q-commutative.

3. We give recursions of Chebychev type for the quantized cluster variables $B[n,0,0,n]$ and $B[n+1,0,0,n]$ that allow to compute the elements explicitly.

4. The dual canonical basis elements $B[n,0,0,n]$ and $B[n+1,0,0,n]$ specialized at $q = 1$ become elements in Caldero-Zelevinsky’s semicanonical basis of $\mathcal{A}(\mathcal{C}_w)$.
The algebra $U_q(w) \mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

3. We give recursions of Chebychev type for the quantized cluster variables $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ that allow to compute the elements explicitly.

4. The dual canonical basis elements $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ specialized at $q = 1$ become elements in Caldero-Zelevinsky’s semicanonical basis of $\mathcal{A}(\mathcal{C}_w)$.
Results

Theorem

The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $A(C_w)$ in the classical limit $q = 1$.

Further results are:

3. We give recursions of Chebychev type for the quantized cluster variables $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ that allow to compute the elements explicitly.

4. The dual canonical basis elements $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ specialized at $q = 1$ become elements in Caldero-Zelevinsky’s semicanonical basis of $A(C_w)$.

5. We give an explicit formula for the quantized cluster variables $B[n + 1, 0, 0, n]$ quantizing Caldero-Zelevinsky’s formula for ordinary cluster variables.
The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

4. The dual canonical basis elements $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ specialized at $q = 1$ become elements in Caldero-Zelevinsky’s semicanonical basis of $\mathcal{A}(\mathcal{C}_w)$.

5. We give an explicit formula for the quantized cluster variables $B[n + 1, 0, 0, n]$ quantizing Caldero-Zelevinsky’s formula for ordinary cluster variables.
Results

Theorem

The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

4. The dual canonical basis elements $B[n, 0, 0, n]$ and $B[n + 1, 0, 0, n]$ specialized at $q = 1$ become elements in Caldero-Zelevinsky’s semicanonical basis of $\mathcal{A}(\mathcal{C}_w)$.

5. We give an explicit formula for the quantized cluster variables $B[n + 1, 0, 0, n]$ quantizing Caldero-Zelevinsky’s formula for ordinary cluster variables.

6. We give an explicit formula for the elements $B[n, 0, 0, n]$ that quantizes Caldero-Zelevinsky’s formula for semicanonical basis elements of $\mathcal{A}(\mathcal{C}_w)$.
The algebra $U_q(w)_{\mathbb{Z}}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $A(C_w)$ in the classical limit $q = 1$.

Further results are:

5. We give an explicit formula for the quantized cluster variables $B[n + 1, 0, 0, n]$ quantizing Caldero-Zelevinsky’s formula for ordinary cluster variables.

6. We give an explicit formula for the elements $B[n, 0, 0, n]$ that quantizes Caldero-Zelevinsky’s formula for semicanonical basis elements of $A(C_w)$.
The algebra $U_q(w)_\mathbb{Z}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. It degenerates to Geiß-Leclerc-Schröer’s cluster algebra $\mathcal{A}(\mathcal{C}_w)$ in the classical limit $q = 1$.

Further results are:

5. We give an explicit formula for the quantized cluster variables $B[n+1,0,0,n]$ quantizing Caldero-Zelevinsky’s formula for ordinary cluster variables.

6. We give an explicit formula for the elements $B[n,0,0,n]$ that quantizes Caldero-Zelevinsky’s formula for semicanonical basis elements of $\mathcal{A}(\mathcal{C}_w)$.

7. We give some expansions of products, e.g., $B[1,0,0,1]B[n,0,0,n-1] = q^{1-4n}B[n+1,0,0,n] + q^{-4n}B[n,1,1,n-1]$.

My project concerns the connection between the dual of Lusztig’s canonical basis and cluster algebras in the Kronecker case.
My project concerns the connection between the dual of Lusztig’s canonical basis and cluster algebras in the Kronecker case. One expects that the algebras $U_q(w)_\mathbb{Z}$ carry a quantum cluster algebra structure in general with cluster variables given by dual canonical basis elements. Due to the fact that the dual canonical basis is hard to compute this conjecture has only been studied in a few cases (for A_2 and A_3 see Berenstein-Zelevinsky). Therefore, particular examples are important.

Thanks you for attention!
My project concerns the connection between the dual of Lusztig’s canonical basis and cluster algebras in the Kronecker case. One expects that the algebras $U_q(w)_\mathbb{Z}$ carry a quantum cluster algebra structure in general with cluster variables given by dual canonical basis elements. Due to the fact that the dual canonical basis is hard to compute this conjecture has only been studied in a few cases (for A_2 and A_3 see Berenstein-Zelevinsky). Therefore, particular examples are important.

Our quantum cluster algebra $U_q(w)_\mathbb{Z}$ is a quantization of Geiß-Leclerc-Schröer’s cluster algebra $A(C_w)$. Thanks you for attention!
My project concerns the connection between the dual of Lusztig’s canonical basis and cluster algebras in the Kronecker case.

One expects that the algebras $U_q(w)_\mathbb{Z}$ carry a quantum cluster algebra structure in general with cluster variables given by dual canonical basis elements. Due to the fact that the dual canonical basis is hard to compute this conjecture has only been studied in a few cases (for A_2 and A_3 see Berenstein-Zelevinsky). Therefore, particular examples are important.

Our quantum cluster algebra $U_q(w)_\mathbb{Z}$ is a quantization of Geiβ-Leclerc-Schröer’s cluster algebra $A(C_w)$.

Caldero-Zelevinsky’s explicit formula for the cluster variables and the simplification of exchange relations to linear recursions and their q-analogs in our case enable us to verify the quantum cluster algebra structure on $U_q(w)_\mathbb{Z}$.
My project concerns the connection between the dual of Lusztig’s canonical basis and cluster algebras in the Kronecker case. One expects that the algebras $U_q(w)_\mathbb{Z}$ carry a quantum cluster algebra structure in general with cluster variables given by dual canonical basis elements. Due to the fact that the dual canonical basis is hard to compute this conjecture has only been studied in a few cases (for A_2 and A_3 see Berenstein-Zelevinsky). Therefore, particular examples are important.

Our quantum cluster algebra $U_q(w)_\mathbb{Z}$ is a quantization of Geiß-Leclerc-Schröer’s cluster algebra $A(C_w)$.

Caldero-Zelevinsky’s explicit formula for the cluster variables and the simplification of exchange relations to linear recursions and their q-analogs in our case enable us to verify the quantum cluster algebra structure on $U_q(w)_\mathbb{Z}$.

Thanks you for attention!