Lineare Algebra 1, Übungsblatt 5

Abgabe Donnerstag 15.11.2018 bis 10:15 Uhr im Postfach des Tutors in V3-216

Die Abgabe ist in Zweiergruppen möglich. K ist ein Körper.

Aufgabe 1. Es sei $n \geq 2$ eine natürliche Zahl, $w = (1, 1, ..., 1) \in \mathbb{R}^n$, und $e_1, ..., e_n$ die Standardbasis von \mathbb{R}^n . Zeigen Sie, dass die Vektoren

$$w-e_1, w-e_2, \ldots, w-e_n$$

eine Basis von \mathbb{R}^n bilden.

Aufgabe 2. Es sei $f: V \to W$ eine lineare Abbildung zwischen K-Vektorräumen und v_1, \ldots, v_n eine Basis von V. Zeigen Sie, dass f genau dann injektiv ist, wenn $f(v_1), \ldots, f(v_n)$ linear unabhängig sind.

Aufgabe 3. Es sei V ein K-Vektorraum der Dimension $n < \infty$. Eine Hyperebene von V ist ein Untervektorraum der Dimension n-1. Zeigen Sie:

- 1. Für eine Hyperebene $H \subseteq V$ und einen Untervektorraum $W \subseteq V$ mit der Eigenschaft $W \not\subseteq H$ gilt $\dim(W \cap H) = \dim(W) 1$.
- 2. Für Hyperebenen H_1, \ldots, H_r von V gilt $\dim(H_1 \cap \ldots \cap H_r) \geq n r$
- 3. Für einen Unterraum $W \subseteq V$ der Dimension n-d gibt es Hyperebenen H_1, \ldots, H_d von V mit $W = H_1 \cap \ldots \cap H_d$.

Aufgabe 4. Es seien V und W zwei K-Vektorräume, $\dim(V) < \infty$. Zeigen Sie:

- 1. Eine lineare Abbildung $f: V \to W$ ist genau dann injektiv, wenn $\dim(V) = \dim(\operatorname{Im}(f))$ gilt.
- 2. Für eine lineare Abbildung $f: V \to V$ sind folgende Bedingungen äquivalent:
 - (a) f ist injektiv
 - (b) f ist ein Isomorphismus
 - (c) f ist surjektiv