Lineare Algebra 1, Präsenzübungsblatt 7

Aufgabe 1.

- 1. Berechnen Sie AB und BA für $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ und $B=\begin{pmatrix}0&1\\2&3\end{pmatrix}$.
- 2. Bestimmen Sie $\{A \in M_2(\mathbb{R}) \mid AB = BA\}$ für $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- 3. Es sei $A \in M_n(K)$ eine Matrix mit AB = BA für alle $B \in M_n(K)$. Zeigen Sie, dass $A = aE_n$ für ein $a \in K$.

Aufgabe 2. Für $a, n \in \mathbb{Z}$ bezeichne $[a]_n \in \mathbb{Z}/n\mathbb{Z}$ die Äquivalenzklasse von a, also $[a]_n = a + n\mathbb{Z}$.

- 1. Gibt es eine Abbildung $f: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ mit $[a]_3 \mapsto [a]_2$ für alle $a \in \mathbb{Z}$?
- 2. Gibt es eine Abbildung $f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ mit $[a]_6 \mapsto [a]_2$ für alle $a \in \mathbb{Z}$?
- 3. Unter welchen Bedingungen an die ganzen Zahlen n, m gibt es eine Abbildung $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mit $[a]_n \mapsto [a]_m$ für alle $a \in \mathbb{Z}$?

Aufgabe 3. Es sei $f: V \to W$ eine lineare Abbildung zwischen K-Vektorräumen. Zeigen Sie, dass durch $f^*(h) = h \circ f$ für $h \in W^*$ eine lineare Abbildung $f^*: W^* \to V^*$ definiert wird. f^* heißt die duale Abbildung von f.

Aufgabe 4. Zeigen Sie, dass die Multiplikation von Matrizen assoziativ ist.