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Counting elements and conjugacy classes

in groups
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Let S3 be the symmetric group on 3 objects.

S3=(a,b|a®=b>=(ab)®=1)

> Elements : words on generating set {a, b}:
{1, a, b, ab, ba, aba}
How many elements? 6
Generating function? 1 4+ 2z 4+ 222 4+ 23
> Conjugacy classes: representatives over {a, b}:
{1, a, ab}
How many conjugacy classes? 3

Generating function? 1 + z + 22
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Let G be a group with finite generating set X.

> The length |g|x of g € G is the length of a shortest word over X representing g.

Growth of G: number of elements in G, depending on length.

> Standard growth functions. For all n > 0:

elements of length=n: a(n):=t{g € G| |g|x = n}

elements of length <n: A(n):=#{ge€G|lglx <
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Counting conjugacy classes in groups

» Conjugacy growth of G: number of conjugacy classes containing an element of

length nin G, for all n > 0.

> |g|c is the shortest length of an element in the conjugacy class [g] (w.r.t. X).

» Conjugacy growth functions:
c(n) :=Hlgl € G | lglec =

C(n):=t{lgl € G |lglc <

|
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[ Examples: free groups — abelian and non-abelian ]
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Cayley graph of Z? with standard generators a and b




7?2 with standard generators a and b

a(k) =4k, A(n)=1+> 4k=2n"+2n+1
k=1




7?2 with standard generators a and b

a(K) = (k) = 4k, A(n) = C(n) =1+ 34k =20 4 20 1 1




Free group F(a, b) with generators a and b
4
T

1\b
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Conjugacy growth in F(a, b)?
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11/53



Conjugacy growth in F(a, b)?

» [aba] = {aba, baa, aab,a*ba™',...}

> ¢(3)=777

11/53



Conjugacy growth in F(a, b)?

» [aba] = {aba, baa, aab,a*ba™',...}
> ¢(3)=777

> c(n): take # of cyclically reduced (!) words of length n, and divide by n.

11/53



Conjugacy growth in F(a, b)?

» [aba] = {aba, baa, aab,a*ba™',...}
> ¢(3)=777

> c(n): take # of cyclically reduced (!) words of length n, and divide by n.

» there are about ~ 3" cyclically reduced words of length n.

11/53



Conjugacy growth in F(a, b)?

» [aba] = {aba, baa, aab,a*ba™',...}
> ¢(3)=777

> c(n): take # of cyclically reduced (!) words of length n, and divide by n.

» there are about ~ 3" cyclically reduced words of length n.

n

— c(n) ~ >

11/53



Conjugacy growth in F(a, b)?

» [aba] = {aba, baa, aab,a*ba™',...}
> ¢(3)=777

> c(n): take # of cyclically reduced (!) words of length n, and divide by n.

» there are about ~ 3" cyclically reduced words of length n.

n

— c(n) ~ >

Not entirely correct: when powers are included, one shouldn't divide by n.
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Asymptotics of conjugacy growth in free groups

Coornaert (2005): For the free group F;, the primitive (non-powers) conjugacy

growth function is given by

(2r— 1)t K(2r —1)"

cp(m) ~ 2(r—1)n n

)

where K = %



[ Comparing standard and conjugacy growth
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» Easy (no partial credit): C(n) < A(n) and C(n) = A(n) for abelian groups.
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C(n) vs A(n)??

» Easy (no partial credit): C(n) < A(n) and C(n) = A(n) for abelian groups.
» Medium:

C(n)

limsup ——=~ =7
e’ A(n)

> Hard:
Conjecture (Guba-Sapir): groups” of standard exponential growth have
exponential conjugacy growth.

* Exclude the Osin or Ivanov type ‘monsters’!

» Easy/Hard: Compare standard and conjugacy growth rates.
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Growth rates
The standard growth rate limsup,_, .. ¢/a(n) of G wrt X is in fact a limit i.e.

a= lim /a(n).
n—oo
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Growth rates

The standard growth rate limsup,_, .. ¢/a(n) of G wrt X is in fact a limit i.e.

a= lim /a(n).
n—oo

The conjugacy growth rate of G wrt X is

v = limsup v/ c(n).

n—oo

Hull: There are groups for which
liminf v/c(n) < limsup 3/ c(n),
n—oo n— oo

that is, the limit does not exist.
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Conjugacy vs. standard growth

Standard growth Conjugacy growth
Type pol., int., exp. pol., int.*, exp.
Quasi-isometry invariant yes no™*, but group invariant
Rate of growth exists exists (not always)

* Bartholdi, Bondarenko, Fink.

** Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.
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» growth of elements (called word growth or standard growth).
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1st Recap

TWO types of counting in groups:

» growth of elements (called word growth or standard growth).

Hundreds of papers, famous results of Gromov, Grigorchuck and others.

‘Robust’ asymptotics.

» growth of conjugacy classes.

About 20-30 papers.

‘Less robust’ asymptotics.
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[ Conjugacy growth: history and motivation
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Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact manifold M

of negative curvature and exponential volume growth gives
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Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact manifold M

of negative curvature and exponential volume growth gives

via quasi-isometries

good exponential asymptotics for the primitive conjugacy growth of 71 (M).

> 1960s (Sinai, Margulis): M = complete Riemannian manifolds or compact

manifolds of pinched negative curvature;

> 1990s - 2000s (Knieper, Coornaert, Link): some classes of (rel) hyperbolic or
CAT(0) groups.
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Conjugacy growth asymptotics

» Babenko (1989): asymptotics for virtually abelian and the discrete

Heisenberg groups.
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Conjugacy growth asymptotics

v

Babenko (1989): asymptotics for virtually abelian and the discrete

Heisenberg groups.

v

Rivin (2000), Coornaert (2005): asymptotics for the free groups.

\{

Guba-Sapir (2010): asymptotics for various groups.

v

Conjecture (Guba-Sapir): groups” of standard exponential growth have

exponential conjugacy growth.



Conjugacy growth asymptotics

» Breuillard-Cornulier (2010): (uniform) exponential conjugacy growth for

soluble (non virt. nilpotent) groups.
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Conjugacy growth asymptotics

» Breuillard-Cornulier (2010): (uniform) exponential conjugacy growth for

soluble (non virt. nilpotent) groups.

» Breuillard-Cornulier-Lubotzky-Meiri (2011): (uniform) exponential

conjugacy growth for linear (non virt. nilpotent) groups.

» Hull-Osin (2014): all acylindrically hyperbolic groups have exponential

conjugacy growth.

21/53



The conjugacy growth series ]




The conjugacy growth series

Let G be a group with finite generating set X.

» The conjugacy growth series of G with respect to X records the number of
conjugacy classes of every length. It is

U(GX ZC

n=

where c(n) is the number of conjugacy classes of length n.
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Conjugacy growth series in Z, Zo * Zo

In Z the conjugacy growth series is:

_1+Z
T 1-z

E(Z,{l,_l})(z) =1+2z+ 27° + -
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Conjugacy growth series in Z, Zo * Zo

In Z the conjugacy growth series is:

~ 1
Gz 1,-11)(2) =14+2z+ 27 4. = 1 i— i
In Zy % Zy a set of conjugacy representatives is 1, a, b, ab, abab, . .., so
~ 142z-22°
Glertafoon(2) = 142242 +2 4270 = %
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Rational, algebraic, transcendental

A generating function f(z) is

> rational if there exist polynomials P(z), Q(z) with integer coefficients

P(z).
Q)

such that f(z) =

> algebraic if there exists a polynomial P(x,y) with integer coefficients such
that P(z,f(z)) =0;

» transcendental otherwise.
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Rational series

If f(z) = g(é)) is a rational generating function for some sequence a,, the roots

of Q(z) give the growth rate of a,.
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Rational series

If f(z) = g((;)) is a rational generating function for some sequence a,, the roots

of Q(z) give the growth rate of a,.

[ Rational conjugacy growth series give conjugacy asymptotics. ]

[ Question: For which groups are conjugacy growth series rational? ]
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Growth series in groups: results and connections




Rationality

Being rational/algebraic/transcendental is not a group invariant!



Rationality

Being rational/algebraic/transcendental is not a group invariant!

Theorem [Stoll, 1996]

The higher Heisenberg groups H,, r > 2, have rational growth with respect to

one choice of generating set and transcendental with respect to another.

[y
)
o
(9}

H, = a,b,c,d,ecZ

o o o
o o
o =
= (1)



Conjugacy in hyperbolic groups



Hyperbolic groups

Motivation: Most (finitely presented) groups are hyperbolic.

‘Definition’: Groups whose Cayley graph looks like the hyperbolic plane.

Examples: free groups, free products of finite groups, SL(2,Z), virtually free groups *,

surface groups, small cancellation groups, and many more.

* Virtually free = groups with a free subgroup of finite index.



RECALL: conjugacy growth series for Z, Zo x Z

Z, Z * Zy: virtually cyclic groups C hyperbolic
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RECALL: conjugacy growth series for Z, Zo x Z

Z, Z * Zy: virtually cyclic groups C hyperbolic

In Z the conjugacy growth series is:

~ 1
o@,-1(2) =1+2z+ 2784 = 1 i— i
In Z x Z» the conjugacy growth series is:
6 _ l+2z-27°

Geata (oo (2) = 14224+ 2 42 420 = =
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The conjugacy growth series in free groups

Free groups C hyperbolic
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The conjugacy growth series in free groups

Free groups C hyperbolic

e Rivin (2000, 2010): the conjugacy growth series of Fj is not rational:

o z):/ Mdt‘7 where
0 t
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and

only if G is virtually cyclic.
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and

only if G is virtually cyclic.

=
Theorem (Antolin - C., 2017)

If G is ‘large’ hyperbolic, the conjugacy growth series is transcendental.

=
Theorem (C. - Hermiller - Holt - Rees, 2016)

If G is virtually cyclic, the conjugacy growth series of G is rational.

NB: Both results hold for all symmetric generating sets of G.

33/53



2nd Recap

Conjugacy growth was first studied in geometry
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Recently: results on rationality of standard and conjugacy growth series.
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Conjugacy Growth Series
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Rationality of standard and conjugacy growth series

Standard Growth Series

Conjugacy Growth Series

Hyperbolic

Rational

(Cannon, Gromov, Thurston)

Transcendental

(Antolin - C. '17)

Virtually abelian

Rational (Benson '83)

Rational (Evetts '19)

FOR ALL GENERATING SETS!
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[ Where are the geometry and the combinatorics? ]
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Theorem (Antolin - C., 2017)

[ If G is hyperbolic!, the conjugacy growth series is transcendental. ]

 not virtually cyclic

37/53



Idea of proof: GEOMETRY

Theorem. (Coornaert - Knieper 2007, Antolin - C. 2017)

Let G be a ‘large’ hyperbolic group. There are constants A, B, ng > 0 such that
AL <c(n) < BY
n n

for all n > ng, where « is the word growth rate of G.



Idea of proof: GEOMETRY

Theorem. (Coornaert - Knieper 2007, Antolin - C. 2017)

Let G be a ‘large’ hyperbolic group. There are constants A, B, ng > 0 such that
AL <c(n) < BY
n n

for all n > ng, where « is the word growth rate of G.

MESSAGE:

The number of conjugacy classes of length n is asymptotically the number of

elements of length n divided by n.



End of the proof: COMBINATORICS

The transcendence of the conjugacy growth series follows from the bounds

AL <c¢(n) < B:
n n
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End of the proof: COMBINATORICS

The transcendence of the conjugacy growth series follows from the bounds
AL < c(n) < B:
n n

together with

Lemma (Flajolet: Trancendence of series based on bounds).

Suppose there are positive constants A, B, h and an integer np > 0 s.t.

n

for all n > ng. Then the power series > °) a,z" is not algebraic.
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Consequence of Rivin's (confirmed) Conjecture

Corollary (Antolin - C.)
For any hyperbolic group G with generating set X the standard and conjugacy

growth rates are the same:

lim +/c(n) = v¢,x = ag x.
n— oo

40 /53



Rivin's conjecture for other groups: GEOMETRY

Theorem (Gekhtman and Yang, 2019)

Let G be a non-elementary group with a finite generating set S. If G has a
contracting element with respect to the action on the corresponding Cayley

graph, then the conjugacy growth series is transcendental.

41/53



Groups with contracting element
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Relatively hyperbolic groups,
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right-angled Coxeter groups,
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right-angled Artin groups,
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graphical small cancellation groups.



Groups with contracting element

v

Relatively hyperbolic groups,

v

right-angled Coxeter groups,

v

right-angled Artin groups,

v

graphical small cancellation groups.

All have transcendental conjugacy growth series w.r.t. standard generating sets.



More groups and their conjugacy growth series

Conjugacy Growth Series® Formula
Wreath products? Transcendental (Mercier '17) v
Graph products® | Transcendental (C.- Hermiler - Mercier '22) v
BS(1,m) Transcendental (C.- Evetts - Ho, '20) v

lw.r.t. standard gen. sets

2certain wreath products

3in most cases
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Computing the conjugacy growth series



Counting cyclic representatives

> Let L be a set of words, a(k) the number of words of length k in L, and

fL(t) =2 4>y alk )t* the generating function of L.

Assume L is closed under taking powers and cyclic permutations of words.
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Counting cyclic representatives

> Let L be a set of words, a(k) the number of words of length k in L, and

fL(t) =2 i1 a(k)t* the generating function of L.

Assume L is closed under taking powers and cyclic permutations of words.

» The generating function for the language L. of cyclic representatives is

[Tt ,

45 /53



Rivin's formula for free groups

> Take L = the cyclically reduced words in the free group, and f; its gen. function.
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Rivin's formula for free groups

> Take L = the cyclically reduced words in the free group, and f; its gen. function.

The generating function for L~ (the cyclic representatives) is

z d
m(z):/o Mdt
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Rivin's formula for free groups

> Take L = the cyclically reduced words in the free group, and f; its gen. function.

The generating function for L~ (the cyclic representatives) is

z d
fL(z):/0 Mdt

> Rivin's formula for conjugacy series of free groups

z
5(2):/ Mdt, where
0 t
oo

x? 1
H(x):l—i—(k—l)m-i-Z(b(d) (m_1>.

d=1
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Rivin's formula for free groups

> Take L = the cyclically reduced words in the free group, and f; its gen. function.

The generating function for L~ (the cyclic representatives) is

z d
fL(z):/0 Mdt

> Rivin's formula for conjugacy series of free groups

o(z) = Mdt, where
0 t

x? = 1
H(x):l—i—(k—l)m-i-Z(b(d) (m_1>.

d=1

» SURPRISE:
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Graph products, |

Thm. (Rivin) For groups G = (X) and H = (Y'), the conjugacy growth

function of the direct product G x Hw.r.t. Z:=XUY is

OGxH = 0G-OH.
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Graph products, |

Thm. (Rivin) For groups G = (X) and H = (Y'), the conjugacy growth

function of the direct product G x Hw.r.t. Z:=XUY is

OGxH = 0G-OH.

Thm. (Rivin) Formula for the conjugacy growth series o of the free product
Fo=7%7Z={ab]| ) with X = {a, b}*.

(Not rational!)

Goal. Compute the conjugacy growth series for raAg's and graph products.
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Graph products, Il

Def. The graph product associated to a finite graph I = (V, E) with vertex

groups G, = (X,) for u € V is the group
Gv:=(G,|{lg;h=1|g € G,heG, e—ecE}
with generating set Xv 1= Uu,ev Xy.

e [ has noedges —> Gy = *,G, is the free product.

e [ iscomplete =— Gy = X,G, is the direct product.

A right-angled Artin group, or raAg, is a graph product with every G, = Z.

A right-angled Coxeter group, or raCg, has each G, = Z,.
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Graph product formula

Theorem (C.- Hermiller-Mercier)

Let Gy be a graph product and v € V. The conjugacy growth series of Gy is given by

. . . . 3 ocy(s
Gv = G\ +Gcn (G — 1D+ D 68N <<W—1> (U{v}—1)> .
SCCt(v) ICt(v)NCt(S)

Moreover, if {v} U Ct(v) = V, then &y = Gcy(,)Gv-
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Graph product formula

Theorem (C.- Hermiller-Mercier)

Let Gy be a graph product and v € V. The conjugacy growth series of Gy is given by

. . . . . ocy(s
Gv = G\ + e (G — D+ D 0?4N<<t()\{V})—1> (U{v}—1)>-

SCCt(v) Ict(v)NCe(s

Moreover, if {v} U Ct(v) = V, then &y = Gcy(,)Gv-

o0

Log — ().
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Graph product formula

~ - - - - ocy(s v
Gv = 0y\ (v} ’UCt(v)(U{v} - 1) + Z rT'S\/[ N<<t()\{}) - 1) (O'{V} - 1))

SCCt(v) IcCt(v)NCt(S
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Final recap

» Conjugacy growth series for most groups studied so far are transcendental.
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Final recap

» Conjugacy growth series for most groups studied so far are transcendental.

» Source of transcendental-ness: counting cyclic representatives of a set

introduces Euler’s ¢, infinitely many poles etc.

» Conjecture (C, Evetts, Ho):
The only finitely generated groups with rational conjugacy growth series

are virtually abelian.

51/53
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> Are the standard and conjugacy growth rates equal for all ‘natural’ groups?

This holds for EVERY class of groups studied so far, but the proof is local.
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Questions

> Are the standard and conjugacy growth rates equal for all ‘natural’ groups?

This holds for EVERY class of groups studied so far, but the proof is local.

> Are there groups with algebraic conjugacy growth series?

» How do the conjugacy growth series behave when we change generators?

Stoll: The rationality of the standard growth series depends on generators.



Thank you!



