Conjugacy growth in groups, geometry and combinatorics

Laura Ciobanu
Heriot-Watt University, Edinburgh

Geometry meets Combinatorics in Bielefeld, 6 September 2022

Engineering and Physical Sciences
Research Council

Counting elements and conjugacy classes

 in groupsFinite groups

Let S_{3} be the symmetric group on 3 objects.

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle
$$

- Elements : words on generating set $\{a, b\}$:

$$
\{1, a, b, a b, b a, a b a\}
$$

Finite groups

Let S_{3} be the symmetric group on 3 objects.

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle
$$

- Elements : words on generating set $\{a, b\}$:

$$
\{1, a, b, a b, b a, a b a\}
$$

How many elements? 6
Generating function?

Finite groups

Let S_{3} be the symmetric group on 3 objects.

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle
$$

- Elements : words on generating set $\{a, b\}$:

$$
\{1, a, b, a b, b a, a b a\}
$$

How many elements? 6
Generating function? $1+2 z+2 z^{2}+z^{3}$

Finite groups

Let S_{3} be the symmetric group on 3 objects.

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle
$$

- Elements : words on generating set $\{a, b\}$:

$$
\{1, a, b, a b, b a, a b a\}
$$

How many elements? 6
Generating function? $1+2 z+2 z^{2}+z^{3}$

- Conjugacy classes: representatives over $\{a, b\}$:

$$
\{1, a, a b\}
$$

How many conjugacy classes? 3
Generating function?

Finite groups

Let S_{3} be the symmetric group on 3 objects.

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle
$$

- Elements : words on generating set $\{a, b\}$:

$$
\{1, a, b, a b, b a, a b a\}
$$

How many elements? 6
Generating function? $1+2 z+2 z^{2}+z^{3}$

- Conjugacy classes: representatives over $\{a, b\}$:

$$
\{1, a, a b\}
$$

How many conjugacy classes? 3
Generating function? $1+z+z^{2}$

Counting elements in groups

Let G be a group with finite generating set X.

Counting elements in groups

Let G be a group with finite generating set X.

- The length $|g|_{X}$ of $g \in G$ is the length of a shortest word over X representing g.

Counting elements in groups

Let G be a group with finite generating set X.

- The length $|g|_{X}$ of $g \in G$ is the length of a shortest word over X representing g.

Growth of G : number of elements in G, depending on length.

Counting elements in groups

Let G be a group with finite generating set X.

- The length $|g|_{X}$ of $g \in G$ is the length of a shortest word over X representing g.

Growth of G : number of elements in G, depending on length.

- Standard growth functions. For all $n \geq 0$:

$$
\text { elements of length }=n: \quad a(n):=\sharp\left\{\left.g \in G| | g\right|_{X}=n\right\}
$$

Counting elements in groups

Let G be a group with finite generating set X.

- The length $|g|_{X}$ of $g \in G$ is the length of a shortest word over X representing g.

Growth of G : number of elements in G, depending on length.

- Standard growth functions. For all $n \geq 0$:

$$
\begin{aligned}
& \text { elements of length }=n: \quad a(n):=\sharp\{g \in G| | g \mid x=n\} \\
& \text { elements of length } \leq n:
\end{aligned}
$$

Counting elements in groups

Let G be a group with finite generating set X.

- The length $|g|_{X}$ of $g \in G$ is the length of a shortest word over X representing g.

Growth of G : number of elements in G, depending on length.

- Standard growth functions. For all $n \geq 0$:

$$
\begin{array}{ll}
\text { elements of length }=n: & a(n):=\sharp\left\{\left.g \in G| | g\right|_{x}=n\right\} \\
\text { elements of length } \leq n: & A(n):=\sharp\left\{\left.g \in G| | g\right|_{x} \leq n\right\} .
\end{array}
$$

Counting conjugacy classes in groups

- Conjugacy growth of G : number of conjugacy classes containing an element of length n in G, for all $n \geq 0$.

Counting conjugacy classes in groups

- Conjugacy growth of G : number of conjugacy classes containing an element of length n in G, for all $n \geq 0$.
$-|g|_{c}$ is the shortest length of an element in the conjugacy class [g] (w.r.t. X).

Counting conjugacy classes in groups

- Conjugacy growth of G : number of conjugacy classes containing an element of length n in G, for all $n \geq 0$.
$-|g|_{c}$ is the shortest length of an element in the conjugacy class [g] (w.r.t. X).
- Conjugacy growth functions:

$$
\begin{aligned}
& c(n):=\sharp\left\{\left.[g] \in G| | g\right|_{c}=n\right\} \\
& C(n):=\sharp\left\{\left.[g] \in G| | g\right|_{c} \leq n\right\}
\end{aligned}
$$

Examples: free groups - abelian and non-abelian

Cayley graph of \mathbb{Z}^{2} with standard generators a and b

\mathbb{Z}^{2} with standard generators a and b

$$
a(k)=4 k, \quad A(n)=1+\sum_{k=1}^{n} 4 k=2 n^{2}+2 n+1
$$

\mathbb{Z}^{2} with standard generators a and b

$$
a(k)=c(k)=4 k, \quad A(n)=C(n)=1+\sum_{k=1}^{n} 4 k=2 n^{2}+2 n+1
$$

Free group $F(a, b)$ with generators a and b

Conjugacy growth in $F(a, b)$?

- $[a b a]=\left\{a b a, b a a, a a b, a^{3} b a^{-1}, \ldots\right\}$

Conjugacy growth in $F(a, b)$?

- $[a b a]=\left\{a b a, b a a, a a b, a^{3} b a^{-1}, \ldots\right\}$
- $\mathrm{c}(3)=$???

Conjugacy growth in $F(a, b)$?

- $[a b a]=\left\{a b a, b a a, a a b, a^{3} b a^{-1}, \ldots\right\}$
- $\mathrm{c}(3)=$???
- $\mathbf{c}(\mathbf{n})$: take \# of cyclically reduced (!) words of length n, and divide by n.

Conjugacy growth in $F(a, b)$?

- $[a b a]=\left\{a b a, b a a, a a b, a^{3} b a^{-1}, \ldots\right\}$
- $\mathrm{c}(3)=$???
- $\mathbf{c}(\mathbf{n})$: take \# of cyclically reduced (!) words of length n, and divide by n.
- there are about $\sim 3^{n}$ cyclically reduced words of length n.

Conjugacy growth in $F(a, b)$?

- $[a b a]=\left\{a b a, b a a, a a b, a^{3} b a^{-1}, \ldots\right\}$
- $\mathrm{c}(3)=$???
- $\mathbf{c}(\mathbf{n})$: take \# of cyclically reduced (!) words of length n, and divide by n.
- there are about $\sim 3^{n}$ cyclically reduced words of length n.

$$
\Longrightarrow \mathbf{c}(\mathbf{n}) \sim \frac{3^{n}}{n}
$$

Conjugacy growth in $F(a, b)$?

- $[a b a]=\left\{a b a, b a a, a a b, a^{3} b a^{-1}, \ldots\right\}$
- $c(3)=? ? ?$
- $\mathbf{c}(\mathbf{n})$: take \# of cyclically reduced (!) words of length n, and divide by n.
- there are about $\sim 3^{n}$ cyclically reduced words of length n.

$$
\Longrightarrow \mathbf{c}(\mathbf{n}) \sim \frac{3^{n}}{n}
$$

Not entirely correct: when powers are included, one shouldn't divide by n.

Asymptotics of conjugacy growth in free groups

Coornaert (2005): For the free group F_{r}, the primitive (non-powers) conjugacy growth function is given by

$$
c_{p}(n) \sim \frac{(2 r-1)^{n+1}}{2(r-1) n}=K \frac{(2 r-1)^{n}}{n}
$$

where $K=\frac{2 r-1}{2(r-1)}$.

Comparing standard and conjugacy growth

- Easy (no partial credit): $C(n) \leq A(n)$ and $C(n)=A(n)$ for abelian groups.

$C(n)$ vs $A(n) ? ?$

- Easy (no partial credit): $C(n) \leq A(n)$ and $C(n)=A(n)$ for abelian groups.
- Medium:

$$
\limsup _{n \rightarrow \infty} \frac{C(n)}{A(n)}=?
$$

$C(n)$ vs $A(n) ? ?$

- Easy (no partial credit): $C(n) \leq A(n)$ and $C(n)=A(n)$ for abelian groups.
- Medium:

$$
\limsup _{n \rightarrow \infty} \frac{C(n)}{A(n)}=?
$$

- Hard:

Conjecture (Guba-Sapir): groups* of standard exponential growth have exponential conjugacy growth.

$C(n)$ vs $A(n) ? ?$

- Easy (no partial credit): $C(n) \leq A(n)$ and $C(n)=A(n)$ for abelian groups.
- Medium:

$$
\limsup _{n \rightarrow \infty} \frac{C(n)}{A(n)}=?
$$

- Hard:

Conjecture (Guba-Sapir): groups* of standard exponential growth have exponential conjugacy growth.

* Exclude the Osin or Ivanov type 'monsters'!
- Easy/Hard: Compare standard and conjugacy growth rates.

Growth rates

The standard growth rate $\lim \sup _{n \rightarrow \infty} \sqrt[n]{a(n)}$ of G wrt X is in fact a limit i.e.

$$
\alpha=\lim _{n \rightarrow \infty} \sqrt[n]{a(n)}
$$

Growth rates

The standard growth rate $\lim \sup _{n \rightarrow \infty} \sqrt[n]{a(n)}$ of G wrt X is in fact a limit i.e.

$$
\alpha=\lim _{n \rightarrow \infty} \sqrt[n]{a(n)}
$$

The conjugacy growth rate of G wrt X is

$$
\gamma=\limsup _{n \rightarrow \infty} \sqrt[n]{c(n)}
$$

Growth rates

The standard growth rate $\lim \sup _{n \rightarrow \infty} \sqrt[n]{a(n)}$ of G wrt X is in fact a limit i.e.

$$
\alpha=\lim _{n \rightarrow \infty} \sqrt[n]{a(n)}
$$

The conjugacy growth rate of G wrt X is

$$
\gamma=\limsup _{n \rightarrow \infty} \sqrt[n]{c(n)}
$$

Hull: There are groups for which

$$
\liminf _{n \rightarrow \infty} \sqrt[n]{c(n)}<\limsup _{n \rightarrow \infty} \sqrt[n]{c(n)},
$$

that is, the limit does not exist.

Conjugacy vs. standard growth

	Standard growth	Conjugacy growth
Type	pol., int., exp.	pol., int.*, exp.
Quasi-isometry invariant	yes	no**, but group invariant *exists
exists (not always)		

* Bartholdi, Bondarenko, Fink.
** Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.

1st Recap

TWO types of counting in groups:

- growth of elements (called word growth or standard growth).

1st Recap

TWO types of counting in groups:

- growth of elements (called word growth or standard growth).

Hundreds of papers, famous results of Gromov, Grigorchuck and others.

1st Recap

TWO types of counting in groups:

- growth of elements (called word growth or standard growth).

Hundreds of papers, famous results of Gromov, Grigorchuck and others.
'Robust' asymptotics.

- growth of conjugacy classes.

1st Recap

TWO types of counting in groups:

- growth of elements (called word growth or standard growth).

Hundreds of papers, famous results of Gromov, Grigorchuck and others.
'Robust' asymptotics.

- growth of conjugacy classes.

About 20-30 papers.
'Less robust' asymptotics.

Conjugacy growth: history and motivation

Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives

Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives
via quasi-isometries

Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives
via quasi-isometries
good exponential asymptotics for the primitive conjugacy growth of $\pi_{1}(M)$.

Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives

```
via quasi-isometries
```

good exponential asymptotics for the primitive conjugacy growth of $\pi_{1}(M)$.

- 1960s (Sinai, Margulis): $M=$ complete Riemannian manifolds or compact manifolds of pinched negative curvature;
- 1990s-2000s (Knieper, Coornaert, Link): some classes of (rel) hyperbolic or CAT(0) groups.

Conjugacy growth asymptotics

- Babenko (1989): asymptotics for virtually abelian and the discrete Heisenberg groups.

Conjugacy growth asymptotics

- Babenko (1989): asymptotics for virtually abelian and the discrete Heisenberg groups.
- Rivin (2000), Coornaert (2005): asymptotics for the free groups.

Conjugacy growth asymptotics

- Babenko (1989): asymptotics for virtually abelian and the discrete Heisenberg groups.
- Rivin (2000), Coornaert (2005): asymptotics for the free groups.
- Guba-Sapir (2010): asymptotics for various groups.
- Conjecture (Guba-Sapir): groups* of standard exponential growth have exponential conjugacy growth.

Conjugacy growth asymptotics

- Breuillard-Cornulier (2010): (uniform) exponential conjugacy growth for soluble (non virt. nilpotent) groups.

Conjugacy growth asymptotics

- Breuillard-Cornulier (2010): (uniform) exponential conjugacy growth for soluble (non virt. nilpotent) groups.
- Breuillard-Cornulier-Lubotzky-Meiri (2011): (uniform) exponential conjugacy growth for linear (non virt. nilpotent) groups.

Conjugacy growth asymptotics

- Breuillard-Cornulier (2010): (uniform) exponential conjugacy growth for soluble (non virt. nilpotent) groups.
- Breuillard-Cornulier-Lubotzky-Meiri (2011): (uniform) exponential conjugacy growth for linear (non virt. nilpotent) groups.
- Hull-Osin (2014): all acylindrically hyperbolic groups have exponential conjugacy growth.

The conjugacy growth series

The conjugacy growth series

Let G be a group with finite generating set X.

- The conjugacy growth series of G with respect to X records the number of conjugacy classes of every length. It is

$$
\widetilde{\sigma}_{(G, X)}(z):=\sum_{n=0}^{\infty} c(n) z^{n},
$$

where $c(n)$ is the number of conjugacy classes of length n.

Conjugacy growth series in $\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$

In \mathbb{Z} the conjugacy growth series is:

$$
\widetilde{\sigma}_{(\mathbb{Z},\{1,-1\})}(z)=1+2 z+2 z^{2}+\cdots=\frac{1+z}{1-z} .
$$

Conjugacy growth series in $\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$

In \mathbb{Z} the conjugacy growth series is:

$$
\widetilde{\sigma}_{(\mathbb{Z},\{1,-1\})}(z)=1+2 z+2 z^{2}+\cdots=\frac{1+z}{1-z} .
$$

In $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ a set of conjugacy representatives is $1, a, b, a b, a b a b, \ldots$, so

$$
\widetilde{\sigma}_{\left(\mathbb{Z}_{2} * \mathbb{Z}_{2},\{a, b\}\right)}(z)=1+2 z+z^{2}+z^{4}+z^{6} \cdots=\frac{1+2 z-2 z^{3}}{1-z^{2}} .
$$

Rational, algebraic, transcendental

A generating function $f(z)$ is

- rational if there exist polynomials $P(z), Q(z)$ with integer coefficients such that $f(z)=\frac{P(z)}{Q(z)}$;
- algebraic if there exists a polynomial $P(x, y)$ with integer coefficients such that $P(z, f(z))=0$;
- transcendental otherwise.

Rational series

If $f(z)=\frac{P(z)}{Q(z)}$ is a rational generating function for some sequence a_{n}, the roots of $Q(z)$ give the growth rate of a_{n}.

Rational series

If $f(z)=\frac{P(z)}{Q(z)}$ is a rational generating function for some sequence a_{n}, the roots of $Q(z)$ give the growth rate of a_{n}.

Rational conjugacy growth series give conjugacy asymptotics.

Question: For which groups are conjugacy growth series rational?

Growth series in groups: results and connections

Rationality

Being rational/algebraic/transcendental is not a group invariant!

Rationality

Being rational/algebraic/transcendental is not a group invariant!

Theorem [Stoll, 1996]
The higher Heisenberg groups $H_{r}, r \geq 2$, have rational growth with respect to one choice of generating set and transcendental with respect to another.

$$
H_{2}=\left\{\left.\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & 0 & d \\
0 & 0 & 1 & e \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d, e \in \mathbb{Z}\right\}
$$

Conjugacy in hyperbolic groups

Hyperbolic groups

Motivation: Most (finitely presented) groups are hyperbolic.
'Definition': Groups whose Cayley graph looks like the hyperbolic plane.

Examples: free groups, free products of finite groups, $S L(2, \mathbb{Z})$, virtually free groups *, surface groups, small cancellation groups, and many more.

* Virtually free $=$ groups with a free subgroup of finite index.

RECALL: conjugacy growth series for $\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$
$\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$: virtually cyclic groups \subseteq hyperbolic

RECALL: conjugacy growth series for $\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$
$\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$: virtually cyclic groups \subseteq hyperbolic
In \mathbb{Z} the conjugacy growth series is:

$$
\widetilde{\sigma}_{(\mathbb{Z},\{1,-1\})}(z)=1+2 z+2 z^{2}+\cdots=\frac{1+z}{1-z} .
$$

RECALL: conjugacy growth series for $\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$
$\mathbb{Z}, \mathbb{Z}_{2} * \mathbb{Z}_{2}$: virtually cyclic groups \subseteq hyperbolic
In \mathbb{Z} the conjugacy growth series is:

$$
\widetilde{\sigma}_{(\mathbb{Z},\{1,-1\})}(z)=1+2 z+2 z^{2}+\cdots=\frac{1+z}{1-z}
$$

$\ln \mathbb{Z}_{2} * \mathbb{Z}_{2}$ the conjugacy growth series is:

$$
\widetilde{\sigma}_{\left(\mathbb{Z}_{2} * \mathbb{Z}_{2},\{a, b\}\right)}(z)=1+2 z+z^{2}+z^{4}+z^{6} \cdots=\frac{1+2 z-2 z^{3}}{1-z^{2}} .
$$

The conjugacy growth series in free groups

Free groups \subseteq hyperbolic

The conjugacy growth series in free groups

Free groups \subseteq hyperbolic

- Rivin $(2000,2010)$: the conjugacy growth series of F_{k} is not rational:

$$
\begin{gathered}
\widetilde{\sigma}(z)=\int_{0}^{z} \frac{\mathcal{H}(t)}{t} d t, \text { where } \\
\mathcal{H}(x)=1+(k-1) \frac{x^{2}}{\left(1-x^{2}\right)^{2}}+\sum_{d=1}^{\infty} \phi(d)\left(\frac{1}{1-(2 k-1) x^{d}}-1\right) .
\end{gathered}
$$

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.
\Rightarrow
Theorem (Antolín - C., 2017)
If G is 'large' hyperbolic, the conjugacy growth series is transcendental.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.
\Rightarrow
Theorem (Antolín - C., 2017)
If G is 'large' hyperbolic, the conjugacy growth series is transcendental.
\Leftarrow
Theorem (C. - Hermiller - Holt - Rees, 2016)
If G is virtually cyclic, the conjugacy growth series of G is rational.

NB: Both results hold for all symmetric generating sets of G.

2nd Recap

Conjugacy growth was first studied in geometry

2nd Recap

Conjugacy growth was first studied in geometry
Recently: results on rationality of standard and conjugacy growth series.

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational (Cannon, Gromov, Thurston)	Transcendental (C.- Antolín' 17)
Virtually abelian		

FOR ALL GENERATING SETS!

Rationality of standard and conjugacy growth series

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational (Cannon, Gromov, Thurston)	Transcendental (Antolín - C. '17)
Virtually abelian	Rational (Benson '83)	Rational (Evetts '19)

FOR ALL GENERATING SETS!

Where are the geometry and the combinatorics?

Theorem (Antolín - C., 2017)
If G is hyperbolic ${ }^{1}$, the conjugacy growth series is transcendental.
${ }^{1}$ not virtually cyclic

Theorem. (Coornaert - Knieper 2007, Antolín - C. 2017)
Let G be a 'large' hyperbolic group. There are constants $A, B, n_{0}>0$ such that

$$
A \frac{\alpha^{n}}{n} \leq c(n) \leq B \frac{\alpha^{n}}{n}
$$

for all $n \geq n_{0}$, where α is the word growth rate of G.

Idea of proof: GEOMETRY

Theorem. (Coornaert - Knieper 2007, Antolín - C. 2017)
Let G be a 'large' hyperbolic group. There are constants $A, B, n_{0}>0$ such that

$$
A \frac{\alpha^{n}}{n} \leq c(n) \leq B \frac{\alpha^{n}}{n}
$$

for all $n \geq n_{0}$, where α is the word growth rate of G.

MESSAGE:

The number of conjugacy classes of length n is asymptotically the number of elements of length n divided by n.

End of the proof: COMBINATORICS

The transcendence of the conjugacy growth series follows from the bounds

$$
A \frac{\alpha^{n}}{n} \leq c(n) \leq B \frac{\alpha^{n}}{n}
$$

End of the proof: COMBINATORICS

The transcendence of the conjugacy growth series follows from the bounds

$$
A \frac{\alpha^{n}}{n} \leq c(n) \leq B \frac{\alpha^{n}}{n}
$$

together with

Lemma (Flajolet: Trancendence of series based on bounds).
Suppose there are positive constants A, B, \mathbf{h} and an integer $n_{0} \geq 0$ s.t.

$$
A \frac{e^{\mathrm{h} n}}{n} \leq a_{n} \leq B \frac{e^{\mathrm{h} n}}{n}
$$

for all $n \geq n_{0}$. Then the power series $\sum_{i=0}^{\infty} a_{n} z^{n}$ is not algebraic.

Consequence of Rivin's (confirmed) Conjecture

Corollary (Antolín - C.)
For any hyperbolic group G with generating set X the standard and conjugacy growth rates are the same:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{c(n)}=\gamma_{G, X}=\alpha_{G, X}
$$

Rivin's conjecture for other groups: GEOMETRY

Theorem (Gekhtman and Yang, 2019)
Let G be a non-elementary group with a finite generating set S. If G has a contracting element with respect to the action on the corresponding Cayley graph, then the conjugacy growth series is transcendental.

Groups with contracting element

- Relatively hyperbolic groups,
- right-angled Coxeter groups,
- right-angled Artin groups,
- graphical small cancellation groups.

Groups with contracting element

- Relatively hyperbolic groups,
- right-angled Coxeter groups,
- right-angled Artin groups,
- graphical small cancellation groups.

All have transcendental conjugacy growth series w.r.t. standard generating sets.

More groups and their conjugacy growth series

	Conjugacy Growth Series 1	Formula
Wreath products 2	Transcendental (Mercier '17)	\checkmark
Graph products 3	Transcendental (C.- Hermiler - Mercier '22) $^{\prime}$	\checkmark
BS(1,m)	Transcendental (C.- Evetts - Ho, '20)	\checkmark

[^0]Computing the conjugacy growth series

Counting cyclic representatives

- Let L be a set of words, $a(k)$ the number of words of length k in L, and $f_{L}(t)=\sum_{k \geq 1} a(k) t^{k}$ the generating function of L.

Assume L is closed under taking powers and cyclic permutations of words.

Counting cyclic representatives

- Let L be a set of words, $a(k)$ the number of words of length k in L, and $f_{L}(t)=\sum_{k \geq 1} a(k) t^{k}$ the generating function of L.

Assume L is closed under taking powers and cyclic permutations of words.

- The generating function for the language L_{\sim} of cyclic representatives is

$$
\int_{0}^{z} \frac{\sum_{k \geq 1} \phi(k) f_{L}\left(t^{k}\right)}{t} d t
$$

Rivin's formula for free groups

- Take $L=$ the cyclically reduced words in the free group, and f_{L} its gen. function.

Rivin's formula for free groups

- Take $L=$ the cyclically reduced words in the free group, and f_{L} its gen. function. The generating function for L_{\sim} (the cyclic representatives) is

$$
f_{L_{\sim}}(z)=\int_{0}^{z} \frac{\sum_{d \geq 1} \phi(d) f_{L}\left(t^{d}\right)}{t} d t
$$

Rivin's formula for free groups

- Take $L=$ the cyclically reduced words in the free group, and f_{L} its gen. function. The generating function for L_{\sim} (the cyclic representatives) is

$$
f_{L_{\sim}}(z)=\int_{0}^{z} \frac{\sum_{d \geq 1} \phi(d) f_{L}\left(t^{d}\right)}{t} d t
$$

- Rivin's formula for conjugacy series of free groups

$$
\begin{gathered}
\widetilde{\sigma}(z)=\int_{0}^{z} \frac{\mathcal{H}(t)}{t} d t, \quad \text { where } \\
\mathcal{H}(x)=1+(k-1) \frac{x^{2}}{\left(1-x^{2}\right)^{2}}+\sum_{d=1}^{\infty} \phi(d)\left(\frac{1}{1-(2 k-1) x^{d}}-1\right) .
\end{gathered}
$$

Rivin's formula for free groups

- Take $L=$ the cyclically reduced words in the free group, and f_{L} its gen. function. The generating function for L_{\sim} (the cyclic representatives) is

$$
f_{L_{\sim}}(z)=\int_{0}^{z} \frac{\sum_{d \geq 1} \phi(d) f_{L}\left(t^{d}\right)}{t} d t
$$

- Rivin's formula for conjugacy series of free groups

$$
\begin{gathered}
\widetilde{\sigma}(z)=\int_{0}^{z} \frac{\mathcal{H}(t)}{t} d t, \quad \text { where } \\
\mathcal{H}(x)=1+(k-1) \frac{x^{2}}{\left(1-x^{2}\right)^{2}}+\sum_{d=1}^{\infty} \phi(d)\left(\frac{1}{1-(2 k-1) x^{d}}-1\right) .
\end{gathered}
$$

- SURPRISE:

$$
f_{L_{\sim}}(z)=\widetilde{\sigma}(z)
$$

Graph products, I

Thm. (Rivin) For groups $G=\langle X\rangle$ and $H=\langle Y\rangle$, the conjugacy growth function of the direct product $G \times H$ w.r.t. $Z:=X \cup Y$ is

$$
\widetilde{\sigma}_{G \times H}=\widetilde{\sigma}_{G} \cdot \widetilde{\sigma}_{H} .
$$

Graph products, I

Thm. (Rivin) For groups $G=\langle X\rangle$ and $H=\langle Y\rangle$, the conjugacy growth function of the direct product $G \times H$ w.r.t. $Z:=X \cup Y$ is

$$
\widetilde{\sigma}_{G \times H}=\widetilde{\sigma}_{G} \cdot \widetilde{\sigma}_{H} .
$$

Thm. (Rivin) Formula for the conjugacy growth series $\widetilde{\sigma}$ of the free product $F_{2}=\mathbb{Z} * \mathbb{Z}=\langle a, b \mid\rangle$ with $X=\{a, b\}^{ \pm 1}$.

Graph products, I

Thm. (Rivin) For groups $G=\langle X\rangle$ and $H=\langle Y\rangle$, the conjugacy growth function of the direct product $G \times H$ w.r.t. $Z:=X \cup Y$ is

$$
\widetilde{\sigma}_{G \times H}=\widetilde{\sigma}_{G} \cdot \widetilde{\sigma}_{H} .
$$

Thm. (Rivin) Formula for the conjugacy growth series $\widetilde{\sigma}$ of the free product $F_{2}=\mathbb{Z} * \mathbb{Z}=\langle a, b \mid\rangle$ with $X=\{a, b\}^{ \pm 1}$.
(Not rational!)

Goal. Compute the conjugacy growth series for raAg's and graph products.

Graph products, II

Def. The graph product associated to a finite graph $\Gamma=(V, E)$ with vertex groups $G_{u}=\left\langle X_{u}\right\rangle$ for $u \in V$ is the group

$$
G_{V}:=\left\langle G_{u} \mid\left\{[g, h]=1 \mid g \in G_{u}, h \in G_{v}, \quad \stackrel{u}{\bullet} \in E\right\}\right\rangle
$$

with generating set $X_{V}:=\cup_{u \in V} X_{u}$.

- Γ has no edges $\Longrightarrow G_{V}=*_{u} G_{u}$ is the free product.
- Γ is complete $\Longrightarrow G_{V}=\times_{u} G_{u}$ is the direct product.

A right-angled Artin group, or raAg, is a graph product with every $G_{u} \cong \mathbb{Z}$.

A right-angled Coxeter group, or raCg, has each $G_{u} \cong \mathbb{Z}_{2}$.

Graph product formula

Theorem (C.- Hermiller-Mercier)
Let G_{V} be a graph product and $v \in V$. The conjugacy growth series of G_{V} is given by
$\tilde{\sigma}_{V}=\tilde{\sigma}_{V \backslash\{v\}}+\tilde{\sigma}_{\mathrm{Ct}(v)}\left(\tilde{\sigma}_{\{v\}}-1\right)+\sum_{S \subseteq C \mathrm{Ct}(v)} \tilde{\sigma}_{S}^{\mathcal{M}} \mathrm{N}\left(\left(\frac{\sigma_{\mathrm{Ct}(S) \backslash\{v\}}}{\sigma_{\mathrm{Ct}(v) \cap C \mathrm{Ct}(S)}}-1\right)\left(\sigma_{\{v\}}-1\right)\right)$.

Moreover, if $\{v\} \cup \operatorname{Ct}(v)=V$, then $\tilde{\sigma}_{V}=\tilde{\sigma}_{C t(v)} \tilde{\sigma}_{v}$.

Graph product formula

Theorem (C.- Hermiller-Mercier)
Let G_{V} be a graph product and $v \in V$. The conjugacy growth series of G_{V} is given by

$$
\tilde{\sigma}_{V}=\tilde{\sigma}_{V \backslash\{v\}}+\tilde{\sigma}_{\mathrm{Ct}(v)}\left(\tilde{\sigma}_{\{v\}}-1\right)+\sum_{S \subseteq C \mathrm{Ct}(v)} \tilde{\sigma}_{S}^{\mathcal{M}} \mathrm{N}\left(\left(\frac{\sigma_{\mathrm{Ct}(S) \backslash\{v\}}}{\sigma_{\mathrm{Ct}(v) \cap C \mathrm{Ct}(S)}}-1\right)\left(\sigma_{\{v\}}-1\right)\right) .
$$

Moreover, if $\{v\} \cup \operatorname{Ct}(v)=V$, then $\tilde{\sigma}_{V}=\tilde{\sigma}_{C t(v)} \tilde{\sigma}_{v}$.

$$
\mathrm{N}(f)(z):=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{\phi(k)}{k l}\left(f\left(z^{k}\right)\right)^{\prime}=\sum_{k=1}^{\infty} \frac{-\phi(k)}{k} \log \left(1-f\left(z^{k}\right)\right) .
$$

Graph product formula

$$
\tilde{\sigma}_{V}=\tilde{\sigma}_{V \backslash\{v\}}+\tilde{\sigma}_{C t(v)}\left(\tilde{\sigma}_{\{v\}}-1\right)+\sum_{S \subseteq C t(v)} \tilde{\sigma}_{S}^{\mathcal{M}} N\left(\left(\frac{\sigma_{\mathrm{Ct}(S) \backslash\{v\}}}{\sigma_{\mathrm{Ct}(v) \cap \mathrm{Ct}(S)}}-1\right)\left(\sigma_{\{v\}}-1\right)\right) .
$$

$$
\mathrm{N}(f)(z):=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{\phi(k)}{k l}\left(f\left(z^{k}\right)\right)^{\prime}=\sum_{k=1}^{\infty} \frac{-\phi(k)}{k} \log \left(1-f\left(z^{k}\right)\right)
$$

Final recap

- Conjugacy growth series for most groups studied so far are transcendental.

Final recap

- Conjugacy growth series for most groups studied so far are transcendental.
- Source of transcendental-ness: counting cyclic representatives of a set introduces Euler's φ, infinitely many poles etc.

Final recap

- Conjugacy growth series for most groups studied so far are transcendental.
- Source of transcendental-ness: counting cyclic representatives of a set introduces Euler's φ, infinitely many poles etc.
- Conjecture (C, Evetts, Ho):

The only finitely generated groups with rational conjugacy growth series are virtually abelian.

Questions

- Are the standard and conjugacy growth rates equal for all 'natural' groups?

This holds for EVERY class of groups studied so far, but the proof is local.

Questions

- Are the standard and conjugacy growth rates equal for all 'natural' groups?

This holds for EVERY class of groups studied so far, but the proof is local.

- Are there groups with algebraic conjugacy growth series?

Questions

- Are the standard and conjugacy growth rates equal for all 'natural' groups?

This holds for EVERY class of groups studied so far, but the proof is local.

- Are there groups with algebraic conjugacy growth series?
- How do the conjugacy growth series behave when we change generators?

Stoll: The rationality of the standard growth series depends on generators.

Thank you!

[^0]: ${ }^{1}$ w.r.t. standard gen. sets
 ${ }^{2}$ certain wreath products
 ${ }^{3}$ in most cases

