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A lattice Λ ⊂ Rd is a discrete additive subgroup, or Λ ∼= Zi , for
some i .

The dual lattice Λ∗ ⊆ (Rd )∗ of Λ is the lattice of functionals
taking integer values on points of Λ.

A unimodular tranformation φ is a linear transformation of Rd

with φ(Λ) = Λ.
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Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).
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Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1

Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1

Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1

Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1

Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2 Width: 2



Width

Given K a convex body in Rd ; and Zd ∼= Λ ⊂ Rd a lattice

Definition
I The width of K w.r.t. a functional c ∈ (Rd )∗ is

max
p∈K

cT · p −min
p∈K

cT · p

.

I The (lattice) width of K is the minimum width w.r.t.
functionals in Λ∗ \ 0. We denote it widthΛ(K ).

Width: 1 Width: 2 Width: 10
3



Flatness theorem

A convex body is hollow if there are no lattice points in its interior.

Theorem (Kinchine 1948)

If K ⊂ Rd is a hollow convex body, then its width is bounded by a
constant Flt(d).

Lenstra exploited it to find a polynomial time algorithm to solve
ILP problems in fixed dimension (1983). This stimulated a lot of
research on upper bounds for Flt(d).

Exact values are mostly unknown!
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Our goals

I Discuss examples of lower bounds and exact values of the
flatness constant and certain generalizations.

Finding lower bounds means constructing examples of hollow
convex bodies with large width.

For an exact value, we need to show that anything of larger
width is not hollow.

I Introduce lattice-reduced convex bodies and explore their
connection to flatness.

Theorem (Lovász ‘89)

Bounded inclusion-maximal hollow convex sets in Rd are polytopes
with ≤ 2d facets and a lattice point in the interior of each facet.
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Flt(2) = 1 + 2√
3
: Hurkens’ construction

A B

C

A triangular lattice
and a unimodular tri-
angle ABC .

Theorem (Hurkens 1990)

This triangle has the largest lattice width of any hollow convex
body in R2; that is, Flt(2) = 1 + 2√

3
.
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Flt(3): A wide tetrahedron

In the (affine) lattice
{(a, b, c) : a, b, c ∈ 1 + 2Z, a+ b+ c ∈ 1 + 4Z},

x

y

Γ = conv{(−1, 1, 1), (−1,−1,−1),

(1,−1, 1), (1, 1,−1)}

is a unimodular simplex.

Consider the family of tetrahedra
∆(x , y , z) circumscribed to Γ and
with vertices of the form

A = (x , y , z),

B = (−y , x ,−z),
C = (−x ,−y , z),

D = (y ,−x ,−z).
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Flt(3): A wide tetrahedron

HOLLOW POLYTOPES OF LARGE WIDTH 11

[�3,�↵]
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Figure 4. A hollow lattice 3-simplex � of width 2 +p
2 = 3.4142 in the lattice ⇤. For each vertical lattice

line intersecting � the minimum and maximum height
of intersection are shown. We use ↵ = 1 +

p
2 = 2.4142

[�3,�3]

[�1,�1] [1, 1]

[3, 3]

[�1,�1] [�3, 1] [�1, 3] [1, 1]

[1, 1] [�1, 3] [�3, 1] [�1,�1]

[3, 3]

[�1,�1] [1, 1]

[�3,�3]

x

y

Figure 5. The third dilation of a unimodular tetrahe-
dron, drawn in the same lattice and with the same con-
ventions as in Figures 3 and 4.

and observe that

~⇤⇤ =

⇢
(a, b, c) 2 1

4
Z : a + b, a + c, b + c 2 1

2
Z3

�
.

Here and in what follows we use the standard coordinates in (R3)⇤ so
that (a, b, c) denotes the functional (x, y, z) 7! ax + by + cz.

Figure:
∆̄ := ∆(2 +

√
2,
√

2, 2 +
√

2)
has width 2 +

√
2

Theorem (C.-Santos, 2020)

The width of any ∆(x , y , z) in
this family is at most 2 +

√
2,

with equality if and only if
(x , y , z) =(

2 +
√

2,
√

2, 2 +
√

2
)

, or

(x , y , z) =(√
2, 2 +

√
2, 2 +

√
2
)

.

Thus,

Corollary (C.-Santos, 2020)

Flt(3) ≥ 2 +
√

2.



Flt(3) = 2 +
√

2?

Conjecture (C.-Santos)

∆̄ is the hollow 3-body of maximum width. That is,
Flt(3) = 2 +

√
2.

We can prove a local version of the conjecture, namely:

Theorem (Averkov-C.-Macchia-Santos)

∆̄ is a strict local maximizer for width among hollow tetrahedra.
That is, every small perturbation of ∆̄ is either non-hollow or has
width strictly smaller than 2 +

√
2.

Corollary

∆̄ is a strict local maximizer for width among hollow convex bodies.



Flt(d)?

Recently, wide hollow simplices in arbitrary dimension were
constructed:

Theorem (Mayrhofer-Schade-Weltge)

Flt(d) ≥ 2d −O(d), attained by a family of hollow simplices.

The examples seen so far bring us to the following conjecture:

Conjecture (1)
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Hollow width-maximising convex bodies in any dimension d are
always simplices.



Flt(d)?

Recently, wide hollow simplices in arbitrary dimension were
constructed:

Theorem (Mayrhofer-Schade-Weltge)

Flt(d) ≥ 2d −O(d), attained by a family of hollow simplices.

The examples seen so far bring us to the following conjecture:

Conjecture (1’)

There is a hollow width-maximising simplex in any dimension d .



A generalization of flatness

Definition
Let K ⊂ Rd be a convex body, and let X ⊂ Rd .

K is hollow
def⇔ its interior doesn’t contain any affine

unimodular transformation of the origin.

K is
def⇔ its interior doesn’t contain any unimodular

transformation of X .

are these...

Z-∆2-free?
R-∆2-free?

Y N Y Y
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Generalization of flatness

Theorem (Averkov-Hofscheier-Nill ‘19)

For fixed d ∈N, X ⊂ Rd , A ∈ {Z, R}, there exists a constant
FltAX (d) larger than the width of any A-X-free convex body.

Inclusion-maximal A-X -free convex bodies are special:

Theorem (C.-Hall-Hofscheier)

If X ⊂ Rd is a full-dimensional polytope, then every
inclusion-maximal A-X -free convex body K ⊂ Rd is a polytope.
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A dimension 2 case for X = ∆2

Consider the unimodular simplex X = ∆2 inside of R2.

Theorem
We have FltZ

∆2
(2) = 10

3 , achieved
uniquely by the triangle to the right.

Theorem
We have FltR

∆2
(2) = 2 and it is

achieved by the polygons on the left.

Question
Is there always at least one simplex among width maximizers of
FltA∆d

(d)? If A = Z, are all maximizers simplices?
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Lattice-reduced convex bodies

Definition
A convex body K is lattice-reduced
if it is inclusion-minimal among
convex bodies of the same width, i.e.,

K ′ ( K =⇒ width(K ) > width(K ′).

Proposition

A lattice-reduced convex body K is always a polytope and for
every vertex v of K there is a direction c ∈ Λ∗ such that

(i) widthc(K ) = widthΛ(K ),

(ii) cT · v > cT · x for any x ∈ K \ {v}.
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Lattice-reduced and flatness

Recall our bold conjecture:

Conjecture (1)

All hollow width-maximising convex bodies are simplices.

Conjecture (2)

All hollow width-maximising convex bodies are lattice-reduced.

(1) implies (2), thanks to the following result:

Theorem (C., 22+)

Hollow simplices which are width-maximisers are lattice-reduced.
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Lattice-reduced convex bodies

So what can we say about lattice-reduced convex bodies? How
many vertices can they have?

The following is a Lovász-style result:

Theorem (C.-Freyer, 22+)

A lattice-reduced convex body K is always a polytope with at most
2d+1 − 2 vertices. Furthermore, this bound is tight: the dual of
the permutohedron has exactly this many vertices and is
lattice-reduced.



Lattice-reduced convex bodies

So what can we say about lattice-reduced convex bodies? How
many vertices can they have?

The following is a Lovász-style result:

Theorem (C.-Freyer, 22+)

A lattice-reduced convex body K is always a polytope with at most
2d+1 − 2 vertices. Furthermore, this bound is tight: the dual of
the permutohedron has exactly this many vertices and is
lattice-reduced.



Lattice-reduced convex bodies

Why should we care about lattice-reduced polytopes?

I They are cool and as far as I can tell haven’t been studied!

I Analogue of the well-studied analogue for Euclidean width.

I Could all hollow width-maximisers be lattice-reduced?

I If not, studying those that are might still yield new
constructions for lower bounds on flatness constant(s)...
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Thank you for your attention!
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