Inequalities for f*-vectors of lattice polytopes

Danai Deligeorgaki KTH Royal Institute of Technology

Geometry meets Combinatorics in Bielefeld, September 2022

Inequalities for f^{*}-vectors Geometry meets Combinatorics in Bielefeld

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Joint work with

Matthias Beck

University

Max Hlavacek UC Berkeley

Jerónimo Valencia

Universidad de los Andes

伺 ト イヨト イヨト

We started this project at the online workshop Research Encounters in Algebraic and Combinatorial Topics (REACT 2021).

Ehrhart theory background

- $P \subset \mathbb{R}^d$ is a *d*-dimensional lattice polytope.
- $nP := \{np : p \in P\}$ is the *n*-th dilate of *P*, $n \in \mathbb{N}$.

Definition

The function

$$\mathsf{ehr}_P(n) := |nP \cap \mathbb{Z}^d|$$

is a polynomial in *n* (Ehrhart, 1962), known as the **Ehrhart polynomial** of P.

(source: Computing the Continuous Discretely, M. Beck & S. Robins, Springer, 2007)

・ 同 ト ・ ヨ ト ・ ヨ ト

Change of basis

Study
$$ehr_P(n)$$
 in different basis:
 $\left\{ \binom{n+d}{d}, \binom{n+d-1}{d}, ..., \binom{n}{d} \right\}$ and $\left\{ \binom{n-1}{0}, \binom{n-1}{1}, ..., \binom{n-1}{d} \right\}$
• $ehr_P(n) = \sum_{k=0}^d h_k^* \binom{n+d-k}{d}$ and $ehr_P(n) = \sum_{k=0}^d f_k^* \binom{n-1}{k}$.

Proposition

For every lattice polytope P of dimension d, for every $0 \le k \le d$,

$$h_k^* \ge 0,$$
 $f_k^* \ge 0.$
bey's nonnegativity theorem Breuer (2012)

回ト・ヨト・ヨト

Example

Let $P = [0,1]^2$ be the 2-dimensional unit cube. Then

$$\operatorname{ehr}_P(n) = \left| nP \cap \mathbb{Z}^2 \right| = \left| [0, n]^2 \cap \mathbb{Z}^d \right| = (n+1)^2,$$

and
$$\begin{cases} (n+1)^2 = h_0^* \binom{n+2}{2} + h_1^* \binom{n+1}{2} + h_2^* \binom{n}{2} \\ (n+1)^2 = f_0^* \binom{n-1}{0} + f_1^* \binom{n-1}{1} + f_2^* \binom{n-1}{2} \end{cases}$$

hence

$$(h_0^*, h_1^*, h_2^*) = (1, 1, 0),$$

$$(f_0^*, f_1^*, f_2^*) = (4, 5, 2).$$

1 20

The 6th dilate of $P = [0, 1]^2$.

ヘロト 人間 ト 人注 ト 人注 トー

Э

The f^* - and h^* -vector can also be defined through the **Ehrhart** series of *P*:

$$\mathsf{Ehr}_{P}(z) := 1 + \sum_{n \ge 1} \mathsf{ehr}_{P}(n) z^{n} = \frac{\sum_{k=0}^{d} h_{k}^{*} z^{k}}{(1-z)^{d+1}}$$
$$= \sum_{k=-1}^{d} f_{k}^{*} \left(\frac{z}{1-z}\right)^{k+1},$$

where we let $f_{-1}^* := 1$.

Unimodular simplex

Let $P := \Delta$ be a unimodular *d*-dimensional simplex, i.e., lattice equivalent to conv $\{(0, ..., 0), (1, ..., 0), ..., (0, ..., 1)\} \subset \mathbb{R}^d$.

Example

Then, for Δ we have $[h_0^*, ..., h_d^*] = [1, 0, ..., 0]$ and

$$[f_{-1}^*, f_0^*, ..., f_d^*] = \left[1, \binom{d+1}{1}, \binom{d+1}{2}, \dots, \binom{d+1}{d+1}\right]$$

Observation: Notice that $[f_{-1}^*, f_0^*, ..., f_d^*]$ is symmetric. This is the only lattice polytope with symmetric f^* -vector!

- Does $[f_{-1}^*, f_0^*, \dots, f_d^*]$ look familiar?

image source: Wikipedia 📳 📄 🔊 🔍 🔿

f-vectors

Definition

For a d-dimensional polytopal complex C, let

 $f(C) := \{f_{-1}, f_0, ..., f_d\}, f_k = \#\{k \text{-dimensional faces in } C\}.$

For a d-dimensional polytope P, let

 $f(P) := \{f_{-1}, f_0, ..., f_{d-1}\}, \ f_k = \#\{k \text{-dimensional faces in } P\}.$

Connection: If P admits a unimodular triangulation T then

$$f^*(P)=f(T).$$

Example: $P = [0, 1]^2, T = T_1 \cup T_2$

$$f^*(P) = (f^*_{-1}, f^*_0, f^*_1, f^*_2) = (1, 4, 5, 2)$$

$$f(T) = (f_{-1}, f_0, f_1, f_2) = (1, 4, 5, 2)$$

There are several inequalities holding among the coefficients of the h^* -vector of a *d*-dimensional lattice polytope *P*, for example:

•
$$h_0^* + h_1^* + \dots + h_{k+1}^* \ge h_d^* + h_{d-1}^* + \dots + h_{d-k}^*$$

for $k = 0, \dots, \lfloor \frac{d}{2} \rfloor - 1$ (Hibi, 1990).
• If $h_d^* \neq 0$ then
 $h_0^* + h_1^* + \dots + h_k^* \le h_d^* + h_{d-1}^* + \dots + h_{d-k}^*$
for $k = 0, \dots, d$ (Stanley, 1991),
and $1 \le h_1^* \le h_k^*$ for $k = 2, \dots, d - 1$ (Hibi, 1994).
• Is $h^*(P)$ unimodal for every lattice polytope P ?
(i.e., $\exists j : h_0^* \le \dots \le h_{p-1}^* \le h_p^* \ge h_{p+1}^* \ge \dots \ge h_d^*$) No!

白 ト イヨ ト イヨ ト

Higashitani (2012) constructed an infinite family of simplices with nonunimodal h^* -vectors.

Example

The simplex of dimension 15 such that

$$\Delta_w = \operatorname{conv}\{0, e_1, e_2, ..., e_{14}, w\},\$$

where
$$w = (\underbrace{1, 1, \dots, 1}_{7}, \underbrace{131, 131, \dots, 131}_{7}, 132),$$

has h^* -vector

$$h^*(\Delta_w) = (1, \underbrace{0, 0, \ldots, 0}_7, 131, \underbrace{0, 0, \ldots, 0}_7).$$

What about the unimodality of f^* -vectors?

イロト 人間 ト イヨト イヨト

Nonunimodal *f**-vectors

Example

The simplex of dimension 15 such that

$$\Delta_{w} = \operatorname{conv}\{0, e_{1}, e_{2}, ..., e_{14}, w\},\$$
where $w = (\underbrace{1, 1, ..., 1}_{7}, \underbrace{131, 131, ..., 131}_{7}, 132),$
has f^{*} -vector

 $f^*(\Delta_w) = (1, 16, 120, 560, 1820, 4368, 8008, 11440, 13001, 12488, 11676, 11704, 10990, 7896, 3788, 1064, 132).$

In particular, $f_8^* \ge f_9^* \le f_{10}^* \ge f_{11}^*$.

So far, this is the smallest-dimensional example we have found.

► Hence f*-vectors are not unimodal in general!
Happens in the best vector families...

Let P be a *d*-dimensional polytope that is **simplicial**, i.e., all its faces are simplices. Björner showed that f(P) is not unimodal for all P, but ...

Theorem (Björner, 1981)

The f-vector of a simplicial d-polytope P with $d \ge 3$ satisfies

$$f_{-1} < f_0 < f_1 < \cdots < f_{\lfloor \frac{d}{2} \rfloor - 1} \leq f_{\lfloor \frac{d}{2} \rfloor}$$
 and $f_{\lfloor \frac{3(d-1)}{4} \rfloor - 1} > \cdots > f_{d-1}$.

(Björner,1994): In fact, for p with $\lfloor \frac{d}{2} \rfloor \le p \le \lfloor \frac{3(d-1)}{4} \rfloor$, there is a simplicial d-polytope whose f-vector is unimodal with a peak at p:

$$f_{-1} < f_0 < f_1 < \cdots < f_{p-1} < f_p > f_{p+1} > \cdots > f_{d-1}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Shape of *f*-vectors

Theorem (Björner, 1986)

Moreover, $f(P) = (f_0, f_1, ..., f_k, ..., f_{\lfloor \frac{d}{2} \rfloor}, ..., f_{d-2-k}, f_{d-1-k}, ..., f_{d-1})$ satisfies

$$f_k < f_{d-2-k},$$

$$f_k \le f_{d-1-k},$$

for $0 \leq k \leq \lfloor \frac{(d-3)}{2} \rfloor$.

Thus, this is roughly how the "shape" of the **face lattice** of simplicial polytopes looks like.

(G. Ziegler, Lectures on Polytopes, Springer, 1995)

Question: Are there analogous inequalities for f^* -vectors?

Theorem (BDHV)

The f^* -vector of a d-dimensional lattice polytope, $d \ge 2$, satisfies

$$f^*_{-1} < f^*_0 < f^*_1 < \cdots < f^*_{\lfloor rac{d}{2}
floor -1} \leq f^*_{\lfloor rac{d}{2}
floor}$$
 and $f^*_{\lfloor rac{3d-1}{4}
floor} > \cdots > f^*_d$.

Moreover, for the bounds $\lfloor \frac{d}{2} \rfloor$ and $\lfloor \frac{3d-1}{4} \rfloor$ we have: If *P* is the *d*-dimensional unimodular simplex Δ then

$$f^*_{-1} < f^*_0 < \cdots < f^*_{\lfloor \frac{d}{2} \rfloor - 1} \le f^*_{\lfloor \frac{d}{2} \rfloor} > f^*_{\lfloor \frac{d}{2} \rfloor + 1} > \cdots > f^*_d.$$

▶ If P is the d-dimensional cube $[-1, 1]^d$ then

$$f^*_{-1} < f^*_0 < \cdots < f^*_{\lfloor \frac{3d-1}{4} \rfloor} > \cdots > f^*_d$$

holds (at least) for $d \leq 9$.

Theorem (BDHV)

The f^* -vector of a d-dimensional lattice polytope, $d \ge 2$, satisfies

$$f^*_{-1} < f^*_0 < f^*_1 < \cdots < f^*_{\lfloor rac{d}{2}
floor -1} \leq f^*_{\lfloor rac{d}{2}
floor}$$
 and $f^*_{\lfloor rac{3d-1}{4}
floor} > \cdots > f^*_d$.

Comment: When P is the unimodular simplex, the theorem holds by Björner's inequalities for f-vectors.

• The proof makes use of the relation between f^* and h^* vectors, and the inequalities given by Hibi:

$$h_d^* + h_{d-1}^* + \dots + h_{d-k}^* \leq h_0^* + h_1^* + \dots + h_{k+1}^*$$

for $k = 0, ..., \lfloor \frac{d}{2} \rfloor - 1$, for a *d*-dimensional lattice polytope *P*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

We say that the *d*-dimensional lattice polytope *P* is **Gorenstein of index** *g*, $g \ge 1$, whenever the polynomial $h^*(P; z) := \sum_{k=0}^{d} h_k^* z$ has degree d + 1 - g and is symmetric with respect to its degree.

Example: The 5-dimensional unit cube $P = [0, 1]^5$ with h^* -vector

$$h^{*}(P) = (1, 26, 66, 26, 1, 0)$$

is Gorenstein of index 2.

Theorem (BDHV) Let P be a d-dimensional Gorenstein polytope of index g. Then $f_k^* > \cdots > f_{\lfloor \frac{3d-1}{4} \rfloor}^* > \cdots > f_d^*$ for $k = \frac{1}{2} \left(d - 1 + \left\lfloor \frac{d+1-g}{2} \right\rfloor \right)$.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Э

Proposition (BDHV)

Let P be a d-dimensional lattice polytope. Then,

$$f_k^* < f_{d-2-k}^*$$
 and $f_k^* \le f_{d-1-k}^*$, for $0 \le k \le \frac{(d-3)}{2}$

Moreover, if $h_d^* \neq 0$ and $h^*(P) \neq (1, 1, ..., 1)$ then

$$f_k^* < f_{d-k}^*, \quad \textit{for} \quad 0 < k < rac{d}{2},$$
 and $f_0^* \leq f_d^*.$

Note: It follows that for every *d*-dimensional lattice polytope:

$$\min\{f_0^*, f_d^*\} \le f_k^*, \text{ for } 0 \le k \le d.$$

The analogous question for f-vectors is harder. Bárány asked it in 1997 and it was only recently answered positively:

$$\min\{f_0, f_{d-1}\} \le f_k$$
, for $0 \le k \le d-1$ (Hinman, 2022+).

白 ト イヨ ト イヨ ト

Examples of unimodal f^* -vectors

Corollary: It directly follows from the theorem that polytopes of dimension $2 \le d \le 6$ have unimodal f^* -vectors. In fact:

Proposition (BDHV)

The f^* -vector of a d-dimensional lattice polytope, where $1 \le d \le 10$, is unimodal.

Another family of unimodal f^* -vectors is the following:

Proposition (BDHV)

Let P be a d-dimensional lattice polytope such that

 $h_k^* = 0$ for $k \ge 4$.

Then $f^*(P)$ is unimodal with a peak either at $f^*_{\lfloor \frac{d}{2} \rfloor}$ or $f^*_{\lfloor \frac{d}{2} \rfloor+1}$.

・ ロ ト ・ 何 ト ・ 日 ト ・ 日 ト

Future work:

Compute f*-vectors for other families of polytopes.

ls $f^*(P)$ unimodal when P admits a unimodular triangulation?

► Are there polytopes with unimodal *h**-vector and nonunimodal *f**-vector?

So far we know that for a lattice *d*-dimensional polytope *P*, $f^*(P)$ is unimodal when $d \le 10$, but unimodality fails for polytopes of order 15. Can we close this gap for $11 \le d \le 14$?

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト

References

- Felix Breuer, *Ehrhart f*-coefficients of polytopal complexes are non-negative integers*, 2012.
- Gunter Ziegler, Lectures on Polytopes, Springer, 1995
- Anders Bjorner, *The unimodality conjecture for convex polytopes*, Bulletin Amer. Math. Soc. 4, 1981.
- Anders Bjorner, *Partial unimodality for f-vectors of simplicial polytopes and spheres*, in: "Jerusalem Combinatorics '93" (H. Barcelo and G. Kalai, eds.), Contemporary Mathematics 178, Amer. Math. Soc. 1994, 45–54. (269–272, 279, 288)
- Takayuki Hibi, *Some results on Ehrhart polynomials of convex polytopes*, Discrete Math. 83, 1990.
- Takayuki Hibi, *A lower bound theorem for Ehrhart polynomials of convex polytopes*, Adv. Math. 105, 1994.
- Akihiro Higashitani, *Counterexamples of the conjecture on roots of Ehrhart polynomials*, Discrete Com- put. Geom., 47(3), 2012.

• Alan Stapledon, *Inequalities and Ehrhart* δ -vectors, Trans. Amer. Math. Soc., 316(10), 2009.