Inequalities for f^{*}-vectors of lattice polytopes

Danai Deligeorgaki
KTH Royal Institute of Technology

Geometry meets Combinatorics in Bielefeld, September 2022

Joint work with

We started this project at the online workshop Research Encounters in Algebraic and Combinatorial Topics (REACT 2021).

Ehrhart theory background

- $P \subset \mathbb{R}^{d}$ is a d-dimensional lattice polytope.
- $n P:=\{n p: p \in P\}$ is the n-th dilate of $P, n \in \mathbb{N}$.

Definition

The function

$$
\operatorname{ehr}_{P}(n):=\left|n P \cap \mathbb{Z}^{d}\right|
$$

is a polynomial in n (Ehrhart, 1962), known as the Ehrhart polynomial of P.

(source: Computing the Continuous Discretely, M. Beck \& S. Robins, Springer, 2007)

Change of basis

Study $\operatorname{ehr}_{P}(n)$ in different basis:
$\left\{\binom{n+d}{d},\binom{n+d-1}{d}, \ldots,\binom{n}{d}\right\}$ and $\left\{\binom{n-1}{0},\binom{n-1}{1}, \ldots,\binom{n-1}{d}\right\}$

- $\operatorname{ehr}_{P}(n)=\sum_{k=0}^{d} h_{k}^{*}\binom{n+d-k}{d}$ and $\operatorname{ehr}_{P}(n)=\sum_{k=0}^{d} f_{k}^{*}\binom{n-1}{k}$.

Proposition

For every lattice polytope P of dimension d, for every $0 \leq k \leq d$,

$$
h_{k}^{*} \geq 0, \quad f_{k}^{*} \geq 0
$$

Stanley's nonnegativity theorem

Example

Let $P=[0,1]^{2}$ be the 2-dimensional unit cube. Then

$$
\operatorname{ehr}_{P}(n)=\left|n P \cap \mathbb{Z}^{2}\right|=\left|[0, n]^{2} \cap \mathbb{Z}^{d}\right|=(n+1)^{2}
$$

and $\left\{\begin{array}{l}(n+1)^{2}=h_{0}^{*}\binom{n+2}{2}+h_{1}^{*}\binom{n+1}{2}+h_{2}^{*}\binom{n}{2} \\ (n+1)^{2}=f_{0}^{*}\binom{n-1}{0}+f_{1}^{*}\binom{n-1}{1}+f_{2}^{*}\binom{n-1}{2}\end{array}\right.$
hence

$$
\left(h_{0}^{*}, h_{1}^{*}, h_{2}^{*}\right)=(1,1,0)
$$

$$
\left(f_{0}^{*}, f_{1}^{*}, f_{2}^{*}\right)=(4,5,2)
$$

The $6^{\text {th }}$ dilate of $P=[0,1]^{2}$.

Generating function

The f^{*} - and h^{*}-vector can also be defined through the Ehrhart series of P :

$$
\begin{aligned}
\operatorname{Ehr}_{P}(z):=1+\sum_{n \geq 1} \operatorname{ehr} r_{P}(n) z^{n} & =\frac{\sum_{k=0}^{d} h_{k}^{*} z^{k}}{(1-z)^{d+1}} \\
& =\sum_{k=-1}^{d} f_{k}^{*}\left(\frac{z}{1-z}\right)^{k+1},
\end{aligned}
$$

where we let $f_{-1}^{*}:=1$.

Unimodular simplex

Let $P:=\Delta$ be a unimodular d-dimensional simplex, i.e., lattice equivalent to $\operatorname{conv}\{(0, \ldots, 0),(1, \ldots, 0), \ldots,(0, \ldots, 1)\} \subset \mathbb{R}^{d}$.

Then, for Δ we have $\left[h_{0}^{*}, \ldots, h_{d}^{*}\right]=[1,0, \ldots, 0]$ and

$$
\left[f_{-1}^{*}, f_{0}^{*}, \ldots, f_{d}^{*}\right]=\left[1,\binom{d+1}{1},\binom{d+1}{2}, \ldots,\binom{d+1}{d+1}\right] .
$$

Observation: Notice that $\left[f_{-1}^{*}, f_{0}^{*}, \ldots, f_{d}^{*}\right]$ is symmetric.
This is the only lattice polytope with symmetric f^{*}-vector!

- Does $\left[f_{-1}^{*}, f_{0}^{*}, \ldots, f_{d}^{*}\right]$ look familiar?

Definition

For a d-dimensional polytopal complex C, let

$$
f(C):=\left\{f_{-1}, f_{0}, \ldots, f_{d}\right\}, \quad f_{k}=\#\{k \text {-dimensional faces in } C\}
$$

For a d-dimensional polytope P, let

$$
f(P):=\left\{f_{-1}, f_{0}, \ldots, f_{d-1}\right\}, \quad f_{k}=\#\{k \text {-dimensional faces in } P\}
$$

Connection: If P admits a unimodular triangulation T then

Example:

$$
f^{*}(P)=f(T)
$$

$P=[0,1]^{2}, T=T_{1} \cup T_{2}$

$$
\begin{aligned}
& f^{*}(P)=\left(f_{-1}^{*}, f_{0}^{*}, f_{1}^{*}, f_{2}^{*}\right)=(1,4,5,2) \\
& f(T)=\left(f_{-1}, f_{0}, f_{1}, f_{2}\right)=(1,4,5,2)
\end{aligned}
$$

There are several inequalities holding among the coefficients of the h^{*}-vector of a d-dimensional lattice polytope P, for example:

- $h_{0}^{*}+h_{1}^{*}+\cdots+h_{k+1}^{*} \geq h_{d}^{*}+h_{d-1}^{*}+\cdots+h_{d-k}^{*}$
for $k=0, \ldots,\left\lfloor\frac{d}{2}\right\rfloor-1$ (Hibi, 1990).
- If $h_{d}^{*} \neq 0$ then

$$
h_{0}^{*}+h_{1}^{*}+\cdots+h_{k}^{*} \leq h_{d}^{*}+h_{d-1}^{*}+\cdots+h_{d-k}^{*}
$$

for $k=0, \ldots, d$ (Stanley, 1991),
and $\quad 1 \leq h_{1}^{*} \leq h_{k}^{*} \quad$ for $\quad k=2, \ldots, d-1$ (Hibi, 1994).

- Is $h^{*}(P)$ unimodal for every lattice polytope P ?
(i.e., $\exists j: h_{0}^{*} \leq \cdots \leq h_{p-1}^{*} \leq h_{p}^{*} \geq h_{p+1}^{*} \geq \cdots \geq h_{d}^{*}$)

Higashitani (2012) constructed an infinite family of simplices with nonunimodal h^{*}-vectors.

The simplex of dimension 15 such that

$$
\begin{gathered}
\Delta_{w}=\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{14}, w\right\} \\
\text { where } \quad w=(\underbrace{1,1, \ldots, 1}_{7}, \underbrace{131,131, \ldots, 131}_{7}, 132)
\end{gathered}
$$

has h^{*}-vector

$$
h^{*}\left(\Delta_{w}\right)=(1, \underbrace{0,0, \ldots, 0}_{7}, 131, \underbrace{0,0, \ldots, 0}_{7}) .
$$

What about the unimodality of f^{*}-vectors?

Nonunimodal f^{*}-vectors

The simplex of dimension 15 such that

$$
\begin{gathered}
\Delta_{w}=\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{14}, w\right\} \\
\text { where } \quad w=(\underbrace{1,1, \ldots, 1}_{7}, \underbrace{131,131, \ldots, 131}_{7}, 132)
\end{gathered}
$$

has f^{*}-vector

$$
\begin{aligned}
f^{*}\left(\Delta_{w}\right)= & (1,16,120,560,1820,4368,8008,11440,13001 \\
& 12488,11676,11704,10990,7896,3788,1064,132) .
\end{aligned}
$$

In particular, $f_{8}^{*} \geq f_{9}^{*} \leq f_{10}^{*} \geq f_{11}^{*}$.
So far, this is the smallest-dimensional example we have found.

- Hence f^{*}-vectors are not unimodal in general!

Happens in the best vector families...

Inequalities for f-vectors

Let P be a d-dimensional polytope that is simplicial, i.e., all its faces are simplices. Björner showed that $f(P)$ is not unimodal for all P, but ...

Theorem (Björner,1981)

The f-vector of a simplicial d-polytope P with $d \geq 3$ satisfies

$$
f_{-1}<f_{0}<f_{1}<\cdots<f_{\left\lfloor\frac{d}{2}\right\rfloor-1} \leq f_{\left\lfloor\frac{d}{2}\right\rfloor} \text { and } f_{\left\lfloor\frac{3(d-1)}{4}\right\rfloor-1}>\cdots>f_{d-1} .
$$

(Björner,1994): In fact, for p with $\left\lfloor\frac{d}{2}\right\rfloor \leq p \leq\left\lfloor\frac{3(d-1)}{4}\right\rfloor$, there is a simplicial d-polytope whose f -vector is unimodal with a peak at p :

$$
f_{-1}<f_{0}<f_{1}<\cdots<f_{p-1}<f_{p}>f_{p+1}>\cdots>f_{d-1} .
$$

Shape of f-vectors

Theorem (Björner, 1986)

Moreover, $f(P)=\left(f_{0}, f_{1}, \ldots, f_{k}, \ldots, f_{\left\lfloor\frac{d}{2}\right\rfloor}, \ldots, f_{d-2-k}, f_{d-1-k}, \ldots, f_{d-1}\right)$ satisfies

$$
\begin{aligned}
& f_{k}<f_{d-2-k}, \\
& f_{k} \leq f_{d-1-k},
\end{aligned}
$$

for $0 \leq k \leq\left\lfloor\frac{(d-3)}{2}\right\rfloor$.

Thus, this is roughly how the "shape" of the face lattice of simplicial polytopes looks like.

(G. Ziegler, Lectures on Polytopes, Springer, 1995)

Question: Are there analogous inequalities for f^{*}-vectors?

Inequalities for f^{*}-vectors

Theorem (BDHV)

The f^{*}-vector of a d-dimensional lattice polytope, $d \geq 2$, satisfies

$$
f_{-1}^{*}<f_{0}^{*}<f_{1}^{*}<\cdots<f_{\left\lfloor\frac{d}{2}\right\rfloor-1}^{*} \leq f_{\left\lfloor\frac{d}{2}\right\rfloor}^{*} \text { and } f_{\left\lfloor\frac{3 d-1}{4}\right\rfloor}^{*}>\cdots>f_{d}^{*} \text {. }
$$

Moreover, for the bounds $\left\lfloor\frac{d}{2}\right\rfloor$ and $\left\lfloor\frac{3 d-1}{4}\right\rfloor$ we have:

- If P is the d-dimensional unimodular simplex Δ then

$$
f_{-1}^{*}<f_{0}^{*}<\cdots<f_{\left\lfloor\frac{d}{2}\right\rfloor-1}^{*} \leq f_{\left\lfloor\frac{d}{2}\right\rfloor}^{*}>f_{\left\lfloor\frac{d}{2}\right\rfloor+1}^{*}>\cdots>f_{d}^{*} .
$$

- If P is the d-dimensional cube $[-1,1]^{d}$ then

$$
f_{-1}^{*}<f_{0}^{*}<\cdots<f_{\left\lfloor\frac{3 d-1}{4}\right\rfloor}^{*}>\cdots>f_{d}^{*}
$$

holds (at least) for $d \leq 9$.

Inequalities for f^{*}-vectors

Theorem (BDHV)

The f^{*}-vector of a d-dimensional lattice polytope, $d \geq 2$, satisfies

$$
f_{-1}^{*}<f_{0}^{*}<f_{1}^{*}<\cdots<f_{\left\lfloor\frac{d}{2}\right\rfloor-1}^{*} \leq f_{\left\lfloor\frac{d}{2}\right\rfloor}^{*} \text { and } f_{\left\lfloor\frac{3 d-1}{4}\right\rfloor}^{*}>\cdots>f_{d}^{*} \text {. }
$$

Comment: When P is the unimodular simplex, the theorem holds by Björner's inequalities for f-vectors.

- The proof makes use of the relation between f^{*} and h^{*} vectors, and the inequalities given by Hibi:

$$
h_{d}^{*}+h_{d-1}^{*}+\cdots+h_{d-k}^{*} \leq h_{0}^{*}+h_{1}^{*}+\cdots+h_{k+1}^{*}
$$

for $k=0, \ldots,\left\lfloor\frac{d}{2}\right\rfloor-1$, for a d-dimensional lattice polytope P.

Gorenstein polytopes

Definition

We say that the d-dimensional lattice polytope P is Gorenstein of index $g, g \geq 1$, whenever the polynomial $h^{*}(P ; z):=\sum_{k=0}^{d} h_{k}^{*} z$ has degree $d+1-g$ and is symmetric with respect to its degree.

Example: The 5-dimensional unit cube $P=[0,1]^{5}$ with h^{*}-vector

$$
h^{*}(P)=(1,26,66,26,1,0)
$$

is Gorenstein of index 2.

Theorem (BDHV)

Let P be a d-dimensional Gorenstein polytope of index g. Then

$$
f_{k}^{*}>\cdots>f_{\left\lfloor\frac{3 d-1}{4}\right\rfloor}^{*}>\cdots>f_{d}^{*} \text { for } k=\frac{1}{2}\left(d-1+\left\lfloor\frac{d+1-g}{2}\right\rfloor\right) .
$$

Proposition (BDHV)

Let P be a d-dimensional lattice polytope. Then,

$$
f_{k}^{*}<f_{d-2-k}^{*} \quad \text { and } \quad f_{k}^{*} \leq f_{d-1-k}^{*}, \quad \text { for } \quad 0 \leq k \leq \frac{(d-3)}{2}
$$

Moreover, if $h_{d}^{*} \neq 0$ and $h^{*}(P) \neq(1,1, \ldots, 1)$ then

$$
\begin{aligned}
& \quad f_{k}^{*}<f_{d-k}^{*}, \quad \text { for } \quad 0<k<\frac{d}{2} \text {, } \\
& \text { and } \quad f_{0}^{*} \leq f_{d}^{*}
\end{aligned}
$$

Note: It follows that for every d-dimensional lattice polytope:

$$
\min \left\{f_{0}^{*}, f_{d}^{*}\right\} \leq f_{k}^{*}, \quad \text { for } 0 \leq k \leq d
$$

The analogous question for f-vectors is harder. Bárány asked it in 1997 and it was only recently answered positively:

$$
\min \left\{f_{0}, f_{d-1}\right\} \leq f_{k}, \quad \text { for } 0 \leq k \leq d-1 \text { (Hinman, 2022+). }
$$

Examples of unimodal f^{*}-vectors

Corollary: It directly follows from the theorem that polytopes of dimension $2 \leq d \leq 6$ have unimodal f^{*}-vectors. In fact:

Proposition (BDHV)

The f^{*}-vector of a d-dimensional lattice polytope, where $1 \leq d \leq 10$, is unimodal.

Another family of unimodal f^{*}-vectors is the following:

Proposition (BDHV)

Let P be a d-dimensional lattice polytope such that

$$
h_{k}^{*}=0 \text { for } k \geq 4
$$

Then $f^{*}(P)$ is unimodal with a peak either at $f_{\left\lfloor\frac{d}{2}\right\rfloor}^{*}$ or $f_{\left\lfloor\frac{d}{2}\right\rfloor+1}^{*}$.

Future work:

- Compute f^{*}-vectors for other families of polytopes.
- Is $f^{*}(P)$ unimodal when P admits a unimodular triangulation?
- Are there polytopes with unimodal h^{*}-vector and nonunimodal f^{*}-vector?
- So far we know that for a lattice d-dimensional polytope P, $f^{*}(P)$ is unimodal when $d \leq 10$, but unimodality fails for polytopes of order 15 . Can we close this gap for $11 \leq d \leq 14$?
- Felix Breuer, Ehrhart f^{*}-coefficients of polytopal complexes are non-negative integers, 2012.
- Gunter Ziegler, Lectures on Polytopes, Springer, 1995
- Anders Bjorner, The unimodality conjecture for convex polytopes, Bulletin Amer. Math. Soc. 4, 1981.
- Anders Bjorner, Partial unimodality for f-vectors of simplicial polytopes and spheres, in: "Jerusalem Combinatorics '93" (H. Barcelo and G. Kalai, eds.), Contemporary Mathematics 178, Amer. Math. Soc. 1994, 45-54. (269-272, 279, 288)
- Takayuki Hibi, Some results on Ehrhart polynomials of convex polytopes, Discrete Math. 83, 1990.
- Takayuki Hibi, A lower bound theorem for Ehrhart polynomials of convex polytopes, Adv. Math. 105, 1994.
- Akihiro Higashitani, Counterexamples of the conjecture on roots of Ehrhart polynomials, Discrete Com- put. Geom., 47(3), 2012.
- Alan Stapledon, Inequalities and Ehrhart δ-vectors, Trans. Amer. Math. Soc., 316(10), 2009.

