Inequalities for f^*-vectors of lattice polytopes

Danai Deligeorgaki
KTH Royal Institute of Technology

Geometry meets Combinatorics in Bielefeld, September 2022
We started this project at the online workshop

Research Encounters in Algebraic and Combinatorial Topics
(REA CT 2021).
Ehrhart theory background

- $P \subset \mathbb{R}^d$ is a d-dimensional lattice polytope.
- $nP := \{np : p \in P\}$ is the n-th dilate of P, $n \in \mathbb{N}$.

Definition

The function

$$ehr_P(n) := |nP \cap \mathbb{Z}^d|$$

is a polynomial in n (Ehrhart, 1962), known as the **Ehrhart polynomial** of P.

Change of basis

Study $\text{ehr}_P(n)$ in different basis:
\[\left\{ \binom{n+d}{d}, \binom{n+d-1}{d}, \ldots, \binom{n}{d} \right\} \text{ and } \left\{ \binom{n-1}{0}, \binom{n-1}{1}, \ldots, \binom{n-1}{d} \right\} \]

- $\text{ehr}_P(n) = \sum_{k=0}^{d} h_k^*(\binom{n+d-k}{d})$ and $\text{ehr}_P(n) = \sum_{k=0}^{d} f_k^*(\binom{n-1}{k})$.

Proposition

For every lattice polytope P of dimension d, for every $0 \leq k \leq d$,

\[h_k^* \geq 0, \quad f_k^* \geq 0. \]

Stanley’s nonnegativity theorem
Breuer (2012)
Let $P = [0, 1]^2$ be the 2-dimensional unit cube. Then

$$\text{ehr}_P(n) = |nP \cap \mathbb{Z}^2| = |[0, n]^2 \cap \mathbb{Z}^d| = (n+1)^2,$$

and

$$\begin{cases} (n + 1)^2 = h_0^*(\frac{n+2}{2}) + h_1^*(\frac{n+1}{2}) + h_2^*(\frac{n}{2}) \\ (n + 1)^2 = f_0^*(\frac{n-1}{0}) + f_1^*(\frac{n-1}{1}) + f_2^*(\frac{n-1}{2}) \end{cases},$$

hence

$$(h_0^*, h_1^*, h_2^*) = (1, 1, 0),$$

$$(f_0^*, f_1^*, f_2^*) = (4, 5, 2).$$

The 6th dilate of $P = [0, 1]^2$.
The f^*- and h^*-vector can also be defined through the **Ehrhart** series of P:

$$
\text{Ehr}_P(z) := 1 + \sum_{n \geq 1} \text{ehr}_P(n)z^n = \sum_{k=0}^{d} h^*_k z^k \over (1 - z)^{d+1}
$$

$$
= \sum_{k=-1}^{d} f^*_k \left(\frac{z}{1 - z} \right)^{k+1},
$$

where we let $f^*_{-1} := 1$.

Generating function

Geometry meets Combinatorics in Bielefeld

Inequalities for f^*-vectors
Let $P := \Delta$ be a unimodular d-dimensional simplex, i.e., lattice equivalent to $\text{conv}\{(0, \ldots, 0), (1, \ldots, 0), \ldots, (0, \ldots, 1)\} \subset \mathbb{R}^d$.

Example

Then, for Δ we have $[h_0^*, \ldots, h_d^*] = [1, 0, \ldots, 0]$ and

$$[f_{-1}^*, f_0^*, \ldots, f_d^*] = \begin{bmatrix} 1, \binom{d+1}{1}, \binom{d+1}{2}, \ldots, \binom{d+1}{d+1} \end{bmatrix}.$$

Observation: Notice that $[f_{-1}^*, f_0^*, \ldots, f_d^*]$ is **symmetric**. This is the only lattice polytope with symmetric f^*-vector!

- Does $[f_{-1}^*, f_0^*, \ldots, f_d^*]$ look familiar?

image source: Wikipedia
f-vectors

Definition

For a \(d\)-dimensional polytopal complex \(C\), let

\[
f(C) := \{f_{-1}, f_0, \ldots, f_d\}, \quad f_k = \#\{k\text{-dimensional faces in } C\}.
\]

For a \(d\)-dimensional polytope \(P\), let

\[
f(P) := \{f_{-1}, f_0, \ldots, f_{d-1}\}, \quad f_k = \#\{k\text{-dimensional faces in } P\}.
\]

Connection: If \(P\) admits a unimodular triangulation \(T\) then

\[
f^*(P) = f(T).
\]

Example:

\(P = [0, 1]^2, \ T = T_1 \cup T_2\)

\[
f^*(P) = (f_{-1}^*, f_0^*, f_1^*, f_2^*) = (1, 4, 5, 2)
\]

\[
f(T) = (f_{-1}, f_0, f_1, f_2) = (1, 4, 5, 2)
\]
There are several inequalities holding among the coefficients of the h^*-vector of a d-dimensional lattice polytope P, for example:

- $h_0^* + h_1^* + \cdots + h_{k+1}^* \geq h_d^* + h_{d-1}^* + \cdots + h_{d-k}^*$

 for $k = 0, \ldots, \left\lfloor \frac{d}{2} \right\rfloor - 1$ (Hibi, 1990).

- If $h_d^* \neq 0$ then

 $$h_0^* + h_1^* + \cdots + h_k^* \leq h_d^* + h_{d-1}^* + \cdots + h_{d-k}^*$$

 for $k = 0, \ldots, d$ (Stanley, 1991),

 and $1 \leq h_1^* \leq h_k^*$ for $k = 2, \ldots, d-1$ (Hibi, 1994).

Is $h^*(P)$ unimodal for every lattice polytope P?

(i.e., $\exists j : h_0^* \leq \cdots \leq h_{p-1}^* \leq h_p^* \geq h_{p+1}^* \geq \cdots \geq h_d^*$) No!
Higashitani (2012) constructed an infinite family of simplices with nonunimodal h^*-vectors.

Example

The simplex of dimension 15 such that

$$\Delta_w = \text{conv}\{0, e_1, e_2, \ldots, e_{14}, w\},$$

where

$$w = (1, 1, \ldots, 1, \underbrace{131, 131, \ldots, 131, 132}_7, \underbrace{131, 132}_7),$$

has h^*-vector

$$h^*(\Delta_w) = (1, 0, 0, \ldots, 0, \underbrace{131, 0, 0, \ldots, 0}_7).$$

What about the unimodality of f^*-vectors?
Nonunimodal f^*-vectors

Example

The simplex of dimension 15 such that

$$\Delta_w = \text{conv}\{0, e_1, e_2, \ldots, e_{14}, w\},$$

where

$$w = (1, 1, \ldots, 1, 131, 131, \ldots, 131, 132),$$

has f^*-vector

$$f^*(\Delta_w) = (1, 16, 120, 560, 1820, 4368, 8008, 11440, 13001, 12488, 11676, 11704, 10990, 7896, 3788, 1064, 132).$$

In particular,

$$f_8^* \geq f_9^* \leq f_{10}^* \geq f_{11}^*. $$

So far, this is the smallest-dimensional example we have found.

▶ Hence f^*-vectors are not unimodal in general!

Happens in the best vector families...
Let P be a d-dimensional polytope that is simplcial, i.e., all its faces are simplices. Bj"orner showed that $f(P)$ is not unimodal for all P, but ...

Theorem (Bj"orner,1981)

The f-vector of a simplicial d-polytope P with $d \geq 3$ satisfies

$$f_{-1} < f_0 < f_1 < \cdots < f_{\lfloor d/2 \rfloor - 1} \leq f_{\lfloor d/2 \rfloor} \quad \text{and} \quad f_{\lfloor 3(d-1)/4 \rfloor - 1} > \cdots > f_{d-1}.$$

(Bj"orner,1994): In fact, for p with $\lfloor d/2 \rfloor \leq p \leq \lfloor 3(d-1)/4 \rfloor$, there is a simplicial d-polytope whose f-vector is unimodal with a peak at p:

$$f_{-1} < f_0 < f_1 < \cdots < f_{p-1} < f_p > f_{p+1} > \cdots > f_{d-1}.$$
Shape of f-vectors

Theorem (Björner, 1986)

Moreover, $f(P) = (f_0, f_1, ..., f_k, ..., f_{\lfloor \frac{d}{2} \rfloor}, ..., f_{d-2-k}, f_{d-1-k}, ..., f_{d-1})$ satisfies

$$f_k < f_{d-2-k},$$

$$f_k \leq f_{d-1-k},$$

for $0 \leq k \leq \lfloor \frac{(d-3)}{2} \rfloor$.

Thus, this is roughly how the “shape” of the face lattice of simplicial polytopes looks like.

Question: Are there analogous inequalities for f^*-vectors?
Theorem (BDHV)

The f^*-vector of a d-dimensional lattice polytope, $d \geq 2$, satisfies

\[f_{-1}^* < f_0^* < f_1^* < \cdots < f_{\left\lfloor \frac{d}{2} \right\rfloor - 1}^* \leq f_{\left\lfloor \frac{d}{2} \right\rfloor}^* \text{ and } f_{\left\lfloor \frac{3d-1}{4} \right\rfloor}^* > \cdots > f_d^*. \]

Moreover, for the bounds $\left\lfloor \frac{d}{2} \right\rfloor$ and $\left\lfloor \frac{3d-1}{4} \right\rfloor$ we have:

- If P is the d-dimensional unimodular simplex Δ then
 \[f_{-1}^* < f_0^* < \cdots < f_{\left\lfloor \frac{d}{2} \right\rfloor - 1}^* \leq f_{\left\lfloor \frac{d}{2} \right\rfloor}^* > f_{\left\lfloor \frac{d}{2} \right\rfloor + 1}^* > \cdots > f_d^*. \]

- If P is the d-dimensional cube $[-1, 1]^d$ then
 \[f_{-1}^* < f_0^* < \cdots < f_{\left\lfloor \frac{3d-1}{4} \right\rfloor}^* \cdots > f_d^* \]

holds (at least) for $d \leq 9$.
Inequalities for f^*-vectors

Theorem (BDHV)

The f^*-vector of a d-dimensional lattice polytope, $d \geq 2$, satisfies

$$f_{-1}^* < f_0^* < f_1^* < \cdots < f_{\lfloor d/2 \rfloor - 1}^* \leq f_{\lfloor d/2 \rfloor}^* \quad \text{and} \quad f_{\lfloor 3d-1/4 \rfloor}^* > \cdots > f_d^*.$$

Comment: When P is the unimodular simplex, the theorem holds by Björner's inequalities for f-vectors.

- The proof makes use of the relation between f^* and h^* vectors, and the inequalities given by Hibi:

$$h_d^* + h_{d-1}^* + \cdots + h_{d-k}^* \leq h_0^* + h_1^* + \cdots + h_{k+1}^*$$

for $k = 0, \ldots, \lfloor d/2 \rfloor - 1$, for a d-dimensional lattice polytope P.

Geometry meets Combinatorics in Bielefeld
Gorenstein polytopes

Definition

We say that the d-dimensional lattice polytope P is **Gorenstein of index** g, $g \geq 1$, whenever the polynomial $h^*(P; z) := \sum_{k=0}^{d} h_k^* z$ has degree $d + 1 - g$ and is symmetric with respect to its degree.

Example: The 5-dimensional unit cube $P = [0, 1]^5$ with h^*-vector

$$h^*(P) = (1, 26, 66, 26, 1, 0)$$

is Gorenstein of index 2.

Theorem (BDHV)

Let P be a d-dimensional Gorenstein polytope of index g. Then

$$f_k^* \gg \cdots \gg f_{\lfloor \frac{3d-1}{4} \rfloor}^* \gg \cdots \gg f_d^* \quad \text{for} \quad k = \frac{1}{2} \left(d - 1 + \left\lfloor \frac{d + 1 - g}{2} \right\rfloor \right).$$
Proposition (BDHV)

Let P be a d-dimensional lattice polytope. Then,

$$f^*_k < f^*_{d-2-k} \quad \text{and} \quad f^*_k \leq f^*_{d-1-k}, \quad \text{for} \quad 0 \leq k \leq \frac{(d-3)}{2}.$$

Moreover, if $h^*_d \neq 0$ and $h^*(P) \neq (1, 1, \ldots, 1)$ then

$$f^*_k < f^*_{d-k}, \quad \text{for} \quad 0 < k < \frac{d}{2},$$

and $f^*_0 \leq f^*_d$.

Note: It follows that for every d-dimensional lattice polytope:

$$\min\{f^*_0, f^*_d\} \leq f^*_k, \quad \text{for} \quad 0 \leq k \leq d.$$

The analogous question for f-vectors is harder. Bárány asked it in 1997 and it was only recently answered positively:

$$\min\{f_0, f_{d-1}\} \leq f_k, \quad \text{for} \quad 0 \leq k \leq d - 1 \quad (\text{Hinman, 2022+}).$$
Examples of unimodal f^*-vectors

Corollary: It directly follows from the theorem that polytopes of dimension $2 \leq d \leq 6$ have unimodal f^*-vectors. In fact:

Proposition (BDHV)

The f^*-vector of a d-dimensional lattice polytope, where $1 \leq d \leq 10$, is unimodal.

Another family of unimodal f^*-vectors is the following:

Proposition (BDHV)

Let P be a d-dimensional lattice polytope such that $h_k^* = 0$ for $k \geq 4$.

Then $f^*(P)$ is unimodal with a peak either at $f^*\left\lfloor \frac{d}{2} \right\rfloor$ or $f^*\left\lfloor \frac{d}{2} \right\rfloor + 1$.
Questions

Future work:

▶ Compute f^*-vectors for other families of polytopes.

▶ Is $f^*(P)$ unimodal when P admits a unimodular triangulation?

▶ Are there polytopes with unimodal h^*-vector and nonunimodal f^*-vector?

▶ So far we know that for a lattice d-dimensional polytope P, $f^*(P)$ is unimodal when $d \leq 10$, but unimodality fails for polytopes of order 15. Can we close this gap for $11 \leq d \leq 14$?
References

• Felix Breuer, *Ehrhart f*-coefficients of polytopal complexes are non-negative integers*, 2012.