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Ehrhart theory background

• P ⊂ Rd is a d-dimensional lattice polytope.

• nP := {np : p ∈ P} is the n-th dilate of P, n ∈ N.

Definition

The function
ehrP(n) := |nP ∩ Zd |

is a polynomial in n (Ehrhart, 1962), known as the Ehrhart
polynomial of P.

(source: Computing the Contin-

uous Discretely, M. Beck & S.

Robins, Springer, 2007)
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Change of basis

Study ehrP(n) in different basis:{(n+d
d

)
,
(n+d−1

d

)
, ...,

(n
d

)}
and

{(n−1
0

)
,
(n−1

1

)
, ...,

(n−1
d

)}
• ehrP(n) =

d∑
k=0

h∗k
(n+d−k

d

)
and ehrP(n) =

d∑
k=0

f ∗k
(n−1

k

)
.

Proposition

For every lattice polytope P of dimension d , for every 0 ≤ k ≤ d ,

h∗k ≥ 0,

Stanley’s nonnegativity theorem

f ∗k ≥ 0.

Breuer (2012)
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Example

Let P = [0, 1]2 be the 2-dimensional unit cube. Then

ehrP(n) =
∣∣nP ∩ Z2

∣∣ = ∣∣[0, n]2 ∩ Zd
∣∣ = (n+1)2,

and

{
(n + 1)2 = h∗0

(n+2
2

)
+ h∗1

(n+1
2

)
+ h∗2

(n
2

)
(n + 1)2 = f ∗0

(n−1
0

)
+ f ∗1

(n−1
1

)
+ f ∗2

(n−1
2

) ,

hence

(h∗0, h
∗
1, h

∗
2) = (1, 1, 0),

(f ∗0 , f
∗
1 , f

∗
2 ) = (4, 5, 2).

The 6th dilate of P = [0, 1]2.
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Generating function

The f ∗- and h∗-vector can also be defined through the Ehrhart
series of P:

EhrP(z) := 1 +
∑
n≥1

ehrP(n)z
n =

∑d
k=0 h

∗
kz

k

(1− z)d+1

=
d∑

k=−1

f ∗k

(
z

1− z

)k+1

,

where we let f ∗−1 := 1.
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Unimodular simplex

Let P := ∆ be a unimodular d-dimensional simplex, i.e., lattice
equivalent to conv{(0, ..., 0), (1, ..., 0), ..., (0, ..., 1)} ⊂ Rd .

Example

Then, for ∆ we have [h∗0, ..., h
∗
d ] = [1, 0, ..., 0] and

[f ∗−1, f
∗
0 , ..., f

∗
d ] =

[
1,

(
d + 1

1

)
,

(
d + 1

2

)
, . . . ,

(
d + 1

d + 1

)]
.

Observation: Notice that [f ∗−1, f
∗
0 , ..., f

∗
d ] is symmetric.

This is the only lattice polytope with symmetric f ∗-vector!

- Does [f ∗−1, f
∗
0 , ..., f

∗
d ] look familiar?

image source: Wikipedia
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f -vectors

Definition

For a d-dimensional polytopal complex C , let

f (C ) := {f−1, f0, ..., fd}, fk = #{k-dimensional faces in C}.

For a d-dimensional polytope P, let

f (P) := {f−1, f0, ..., fd−1}, fk = #{k-dimensional faces in P}.

Connection: If P admits a unimodular triangulation T then

f ∗(P) = f (T ).
Example:

P = [0, 1]2, T = T1∪T2

T1

T2

f ∗(P) = (f ∗−1, f
∗
0 , f

∗
1 , f

∗
2 ) = (1, 4, 5, 2)

f (T ) = (f−1, f0, f1, f2) = (1, 4, 5, 2)
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h∗-vectors

There are several inequalities holding among the coefficients of the
h∗-vector of a d-dimensional lattice polytope P, for example:

• h∗0 + h∗1 + · · ·+ h∗k+1 ≥ h∗d + h∗d−1 + · · ·+ h∗d−k

for k = 0, . . . ,
⌊
d
2

⌋
− 1 (Hibi, 1990).

• If h∗d ̸= 0 then

h∗0 + h∗1 + · · ·+ h∗k ≤ h∗d + h∗d−1 + · · ·+ h∗d−k

for k = 0, ..., d (Stanley, 1991),

and 1 ≤ h∗1 ≤ h∗k for k = 2, ..., d − 1 (Hibi, 1994).

▶ Is h∗(P) unimodal for every lattice polytope P?
(i.e., ∃ j : h∗0 ≤ · · · ≤ h∗p−1 ≤ h∗p ≥ h∗p+1 ≥ · · · ≥ h∗d) No!
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Higashitani (2012) constructed an infinite family of simplices with
nonunimodal h∗-vectors.

Example

The simplex of dimension 15 such that

∆w = conv
{
0, e1, e2, ..., e14,w

}
,

where w = (1, 1, . . . , 1︸ ︷︷ ︸
7

, 131, 131, . . . , 131︸ ︷︷ ︸
7

, 132),

has h∗-vector

h∗(∆w ) = (1, 0, 0, . . . , 0︸ ︷︷ ︸
7

, 131, 0, 0, . . . , 0︸ ︷︷ ︸
7

).

What about the unimodality of f ∗-vectors?
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Nonunimodal f ∗-vectors

Example

The simplex of dimension 15 such that

∆w = conv
{
0, e1, e2, ..., e14,w

}
,

where w = (1, 1, . . . , 1︸ ︷︷ ︸
7

, 131, 131, . . . , 131︸ ︷︷ ︸
7

, 132),

has f ∗-vector

f ∗(∆w ) =(1, 16, 120, 560, 1820, 4368, 8008, 11440, 13001,

12488, 11676, 11704, 10990, 7896, 3788, 1064, 132).

In particular, f ∗8 ≥ f ∗9 ≤ f ∗10 ≥ f ∗11.

So far, this is the smallest-dimensional example we have found.

▶ Hence f ∗-vectors are not unimodal in general!
Happens in the best vector families...
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Inequalities for f -vectors

Let P be a d-dimensional polytope that is simplicial, i.e., all its
faces are simplices. Björner showed that f (P) is not unimodal for
all P, but ...

Theorem (Björner,1981)

The f -vector of a simplicial d-polytope P with d ≥ 3 satisfies

f−1 < f0 < f1 < · · · < f⌊ d
2
⌋−1 ≤ f⌊ d

2
⌋ and f⌊ 3(d−1)

4
⌋−1

> · · · > fd−1.

(Björner,1994): In fact, for p with ⌊d2 ⌋ ≤ p ≤ ⌊3(d−1)
4 ⌋, there is a

simplicial d-polytope whose f-vector is unimodal with a peak at p:

f−1 < f0 < f1 < · · · < fp−1 < fp > fp+1 > · · · > fd−1.
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Shape of f -vectors

Theorem (Björner,1986)

Moreover, f (P) = (f0, f1, ..., fk , ..., f⌊ d
2
⌋, ..., fd−2−k , fd−1−k , ..., fd−1)

satisfies
fk < fd−2−k ,

fk ≤ fd−1−k ,

for 0 ≤ k ≤ ⌊ (d−3)
2 ⌋.

Thus, this is roughly how the
“shape” of the face lattice of
simplicial polytopes looks like.

(G. Ziegler, Lectures on Polytopes, Springer, 1995)

Question: Are there analogous inequalities for f ∗-vectors?
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Inequalities for f ∗-vectors

Theorem (BDHV)

The f ∗-vector of a d-dimensional lattice polytope, d ≥ 2, satisfies

f ∗−1 < f ∗0 < f ∗1 < · · · < f ∗⌊ d
2
⌋−1

≤ f ∗⌊ d
2
⌋ and f ∗⌊ 3d−1

4
⌋ > · · · > f ∗d .

Moreover, for the bounds ⌊d2 ⌋ and ⌊3d−1
4 ⌋ we have:

▶ If P is the d-dimensional unimodular simplex ∆ then

f ∗−1 < f ∗0 < · · · < f ∗⌊ d
2
⌋−1

≤ f ∗⌊ d
2
⌋ > f ∗⌊ d

2
⌋+1

> · · · > f ∗d .

▶ If P is the d-dimensional cube [−1, 1]d then

f ∗−1 < f ∗0 < · · · < f ∗⌊ 3d−1
4

⌋ > · · · > f ∗d

holds (at least) for d ≤ 9.
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Inequalities for f ∗-vectors

Theorem (BDHV)

The f ∗-vector of a d-dimensional lattice polytope, d ≥ 2, satisfies

f ∗−1 < f ∗0 < f ∗1 < · · · < f ∗⌊ d
2
⌋−1

≤ f ∗⌊ d
2
⌋ and f ∗⌊ 3d−1

4
⌋ > · · · > f ∗d .

Comment: When P is the unimodular simplex, the theorem holds
by Björner’s inequalities for f -vectors.

• The proof makes use of the relation between f ∗ and h∗ vectors,
and the inequalities given by Hibi:

h∗d + h∗d−1 + · · ·+ h∗d−k ≤ h∗0 + h∗1 + · · ·+ h∗k+1

for k = 0, . . . ,
⌊
d
2

⌋
− 1, for a d-dimensional lattice polytope P.
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Gorenstein polytopes

Definition

We say that the d-dimensional lattice polytope P is Gorenstein of
index g , g ≥ 1, whenever the polynomial h∗(P; z) :=

∑d
k=0 h

∗
kz

has degree d + 1− g and is symmetric with respect to its degree.

Example: The 5-dimensional unit cube P = [0, 1]5 with h∗-vector

h∗(P) = (1, 26, 66, 26, 1, 0)

is Gorenstein of index 2.

Theorem (BDHV)

Let P be a d-dimensional Gorenstein polytope of index g . Then

f ∗k > · · · > f ∗⌊ 3d−1
4

⌋ > · · · > f ∗d for k =
1

2

(
d − 1 +

⌊
d + 1− g

2

⌋)
.
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Proposition (BDHV)

Let P be a d-dimensional lattice polytope. Then,

f ∗k < f ∗d−2−k and f ∗k ≤ f ∗d−1−k , for 0 ≤ k ≤ (d − 3)

2
.

Moreover, if h∗d ̸= 0 and h∗(P) ̸= (1, 1, ..., 1) then

f ∗k < f ∗d−k , for 0 < k <
d

2
,

and f ∗0 ≤ f ∗d .

Note: It follows that for every d-dimensional lattice polytope:

min{f ∗0 , f ∗d } ≤ f ∗k , for 0 ≤ k ≤ d .

The analogous question for f -vectors is harder. Bárány asked it in
1997 and it was only recently answered positively:

min{f0, fd−1} ≤ fk , for 0 ≤ k ≤ d − 1 (Hinman, 2022+).
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Examples of unimodal f ∗-vectors

Corollary: It directly follows from the theorem that polytopes of
dimension 2 ≤ d ≤ 6 have unimodal f ∗-vectors. In fact:

Proposition (BDHV)

The f ∗-vector of a d-dimensional lattice polytope, where
1 ≤ d ≤ 10, is unimodal.

Another family of unimodal f ∗-vectors is the following:

Proposition (BDHV)

Let P be a d-dimensional lattice polytope such that

h∗k = 0 for k ≥ 4.

Then f ∗(P) is unimodal with a peak either at f ∗⌊ d
2
⌋ or f ∗⌊ d

2
⌋+1

.
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Questions

Future work:

▶ Compute f ∗-vectors for other families of polytopes.

▶ Is f ∗(P) unimodal when P admits a unimodular
triangulation?

▶ Are there polytopes with unimodal h∗-vector and
nonunimodal f ∗-vector?

▶ So far we know that for a lattice d-dimensional polytope P,
f ∗(P) is unimodal when d ≤ 10, but unimodality fails for
polytopes of order 15. Can we close this gap for 11 ≤ d ≤ 14?
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