Lower Bounds on Neural Network Depth via Lattice Polytopes

Christian Haase

Christoph Hertrich

Georg Loho

UNIVERSITY OF TWENTE.

Bielefeld, 6 September 2022

Neural Networks in Action

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

Neural Networks in Action

Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

Neural Networks in Action

Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

DeepL Translator DeepL Pro	Why DeepL? Login
Translate text 26 languages I pdf, doox, pptx	
German (detected) 🗸	English (UK) V Glossary
Das Pferd frisst × keinen Gurkensalat.	The horse does not eat cucumber salad.

Screenshot deepl.com (Feb 18, 2022)

A Single ReLU Neuron

A Single ReLU Neuron

Rectified linear unit (ReLU): $relu(x) = max\{0, x\}$

A Single ReLU Neuron

Acyclic (layered) digraph of ReLU neurons

Acyclic (layered) digraph of ReLU neurons

Computes function

$$T_k \circ \operatorname{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \operatorname{relu} \circ T_1$$

with linear transformations T_i .

Acyclic (layered) digraph of ReLU neurons

Computes function

$$T_k \circ \mathsf{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \mathsf{relu} \circ T_1$$

with linear transformations T_i .

Acyclic (layered) digraph of ReLU neurons

Computes function

$$T_k \circ \mathsf{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \mathsf{relu} \circ T_1$$

with linear transformations T_i .

Example: depth 3 (2 hidden layers).

Usage: Learn weights of T_i from given input-output pairs.

What is the class of functions computable by **ReLU Neural Networks** with a certain depth?

Universal approximation theorems:

One hidden layer enough to approximate any continuous function.

Universal approximation theorems:

One hidden layer enough to approximate any continuous function.

What about exact representability?

Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$

Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$

Example: Computing the Maximum of Four Numbers

Example: Computing the Maximum of Four Numbers

▶ Inductively: Max of *n* numbers with $\lceil \log_2(n) \rceil$ hidden layers.

Representing Arbitrary Piecewise Linear Functions

Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Representing Arbitrary Piecewise Linear Functions

Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Wang, Sun [WS05]) Any CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be written as

$$f(x) = \sum_{i=1}^{p} \lambda_i \max\{a_{i,1}^T x, \dots, a_{i,n+1}^T x\}$$

Representing Arbitrary Piecewise Linear Functions

Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Wang, Sun [WS05]) Any CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be written as

$$f(x) = \sum_{i=1}^{p} \lambda_i \max\{a_{i,1}^T x, \dots, a_{i,n+1}^T x\}.$$

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18]) Any CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(n+1) \rceil$ hidden layers.

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18]) Any CPWL function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(n+1) \rceil$ hidden layers.

Is logarithmic depth best possible?

Conjecture

Yes, there are functions which need $\lceil \log_2(n+1) \rceil$ hidden layers!

Conjecture

Yes, there are functions which need $\lceil \log_2(n+1) \rceil$ hidden layers!

Using [WS05], we show that this is equivalent to:

Conjecture max $\{0, x_1, \ldots, x_{2^k}\}$ cannot be represented with k hidden layers.

Mukherjee, Basu (2017): max{0, x₁, x₂} not representable with 1 hidden layer.

Mukherjee, Basu (2017): max{0, x₁, x₂} not representable with 1 hidden layer.

That's all!

Mukherjee, Basu (2017): max{0, x₁, x₂} not representable with 1 hidden layer.

That's all!

No function known that provably needs more than 2 hidden layers →→ gap between 2 and ⌈log₂(n+1)⌉.

Mukherjee, Basu (2017): max{0, x₁, x₂} not representable with 1 hidden layer.

That's all!

- No function known that provably needs more than 2 hidden layers →→ gap between 2 and ⌈log₂(n+1)⌉.
- Smallest candidate: $\max\{0, x_1, x_2, x_3, x_4\}$.

 Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for max{0, x1, x2, x3, x4} under an additional assumption on the network.

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for max{0, x1, x2, x3, x4} under an additional assumption on the network.
- ► Haase, Hertrich, Loho (this talk!):

Conjecture is true for networks with only integer weights.

How do Polytopes Come into Play?

How do Polytopes Come into Play?

CPWL function = difference of two convex CPWL functions = difference of two tropical polynomials = tropical rational function How do Polytopes Come into Play?

CPWL function = difference of two convex CPWL functions = difference of two tropical polynomials = tropical rational function

→ study Newton polytopes!

Newton Polytope of a Convex CPWL Function

Newton Polytope of a Convex CPWL Function

Convex CPWL functions≅Newton Polytopes(positive) scalar multiplication
addition
taking maximumaddition
taking convex hull of union

 $\mathcal{P}'_2 = \{P \text{ polytope } | P \text{ convex hull of union of two zonotopes}\}$

 $\mathcal{P}'_2 = \{P \text{ polytope } | P \text{ convex hull of union of two zonotopes}\}$ $\mathcal{P}_2 = \{P \text{ polytope } | P \text{ finite Minkowski sum of polytopes in } \mathcal{P}'_2\}$

 $\mathcal{P}'_{2} = \{P \text{ polytope } | P \text{ convex hull of union of two zonotopes} \}$ $\mathcal{P}_{2} = \{P \text{ polytope } | P \text{ finite Minkowski sum of polytopes in } \mathcal{P}'_{2} \}$

Newton polytope of max{ $0, x_1, x_2, x_3, x_4$ }: 4-dim. simplex Δ^4 . Are there polytopes $Q, R \in \mathcal{P}_2$ with $Q + \Delta^4 = R$?

Polytopal Reformulation of the Conjecture

$$\mathcal{P}_{0} \coloneqq \{\text{points}\}$$
$$\mathcal{P}_{1} \coloneqq \{\text{zonotopes}\}$$
$$\mathcal{P}_{k} \coloneqq \left\{\sum_{i=1}^{m} \operatorname{conv}(P_{i}, Q_{i}) \middle| P_{i}, Q_{i} \in \mathcal{P}_{k-1}, m \in \mathbb{N}\right\}$$
$$\Delta^{n} \coloneqq \operatorname{conv}\{0, e_{1}, e_{2}, \dots, e_{n}\}$$

Polytopal Reformulation of the Conjecture

$$\mathcal{P}_{0} \coloneqq \{\text{points}\}$$
$$\mathcal{P}_{1} \coloneqq \{\text{zonotopes}\}$$
$$\mathcal{P}_{k} \coloneqq \left\{\sum_{i=1}^{m} \operatorname{conv}(P_{i}, Q_{i}) \middle| P_{i}, Q_{i} \in \mathcal{P}_{k-1}, m \in \mathbb{N}\right\}$$
$$\Delta^{n} \coloneqq \operatorname{conv}\{0, e_{1}, e_{2}, \dots, e_{n}\}$$

Conjecture

There is no pair of polytopes $P, Q \in \mathcal{P}_k$ such that $P + \Delta^{2^k} = Q$.

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!

Note: logarithmic upper bound only uses integer weights

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!

Note: logarithmic upper bound only uses integer weights

 \Rightarrow All Newton polytopes are lattice polytopes

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!

Note: logarithmic upper bound only uses integer weights

 \Rightarrow All Newton polytopes are lattice polytopes

Let $\mathcal{P}_k^{\mathbb{Z}} \coloneqq \mathcal{P}_k \cap \{ \text{lattice polytopes} \}.$

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!

Note: logarithmic upper bound only uses integer weights

 \Rightarrow All Newton polytopes are lattice polytopes

Let $\mathcal{P}_k^{\mathbb{Z}} \coloneqq \mathcal{P}_k \cap \{ \text{lattice polytopes} \}.$

Theorem

There is no pair of polytopes $P, Q \in \mathcal{P}_k^{\mathbb{Z}}$ such that $P + \Delta^{2^k} = Q$.

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!

Note: logarithmic upper bound only uses integer weights

 \Rightarrow All Newton polytopes are lattice polytopes

Let $\mathcal{P}_k^{\mathbb{Z}} \coloneqq \mathcal{P}_k \cap \{ \text{lattice polytopes} \}.$

Theorem

There is no pair of polytopes $P, Q \in \mathcal{P}_k^{\mathbb{Z}}$ such that $P + \Delta^{2^k} = Q$.

Corollary

The minimum number of hidden layers to represent $\max\{0, x_1, \dots, x_{2^k}\}$ with integer weights is precisely k + 1.

Proof Idea

• Consider normalized volume of lattice polytopes ($\in \mathbb{Z}$)

By carefully subdividing Minkowski sums and convex hulls:

Lemma

A 2^k-dimensional polytope in $\mathcal{P}_{k}^{\mathbb{Z}}$ has even normalized volume.

Proof Idea

• Consider normalized volume of lattice polytopes ($\in \mathbb{Z}$)

By carefully subdividing Minkowski sums and convex hulls:

Lemma

A 2^k-dimensional polytope in $\mathcal{P}_{k}^{\mathbb{Z}}$ has even normalized volume.

Theorem follows because Δ^{2^k} has normalized volume one.
 Example in 2D:

Outlook

- Volume unsuitable for non-integer case
- Find different way to separate \mathcal{P}_k from each other!

Outlook

- Volume unsuitable for non-integer case
- Find different way to separate \mathcal{P}_k from each other!

Conjecture

There is no pair of polytopes $P, Q \in \mathcal{P}_k$ such that $P + \Delta^{2^k} = Q$.

Outlook

- Volume unsuitable for non-integer case
- Find different way to separate \mathcal{P}_k from each other!

Conjecture

There is no pair of polytopes $P, Q \in \mathcal{P}_k$ such that $P + \Delta^{2^k} = Q$.

Thank you!