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ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons
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Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with linear transformations Ti .

I Example: depth 3 (2 hidden layers).

I Usage: Learn weights of Ti from given input-output pairs.
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What is the class of functions computable by
ReLU Neural Networks
with a certain depth?



Universal approximation theorems:

One hidden layer enough to approximate any continuous function.
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Example: Computing the Maximum of Two Numbers

max{x , y} = max{x − y , 0}+ y
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Example: Computing the Maximum of Four Numbers
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Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and
piecewise linear (CPWL).

Theorem (Wang, Sun [WS05])

Any CPWL function f : Rn → R can be written as

f (x) =

p∑
i=1

λi max{aTi ,1x , . . . , aTi ,n+1x}.

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])

Any CPWL function f : Rn → R can be represented by a ReLU NN
with dlog2(n + 1)e hidden layers.
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Natural Question

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])

Any CPWL function f : Rn → R can be represented by a ReLU NN
with dlog2(n + 1)e hidden layers.

I Is logarithmic depth best possible?



Conjecture

Yes, there are functions which need dlog2(n + 1)e hidden layers!

Using [WS05], we show that this is equivalent to:

Conjecture

max{0, x1, . . . , x2k} cannot be represented with k hidden layers.
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What lower bounds are known?

I Mukherjee, Basu (2017):
max{0, x1, x2} not representable with 1 hidden layer.

That’s all!

I No function known that provably needs more than 2 hidden
layers  gap between 2 and dlog2(n + 1)e.

I Smallest candidate: max{0, x1, x2, x3, x4}.
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Partial Results

I Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):

2 hidden layers not enough for max{0, x1, x2, x3, x4}
under an additional assumption on the network.

I Haase, Hertrich, Loho (this talk!):

Conjecture is true for networks with only integer weights.
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CPWL function = difference of two convex CPWL functions

= difference of two tropical polynomials

= tropical rational function

 study Newton polytopes!
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Newton Polytope of a Convex CPWL Function

I f (x) = max{aT1 x , . . . , aTk x}  P(f ) = conv{a1, . . . , ak}
I dual to underlying polyhedral complex of the CPWL function

Example for
max{0, x1, x2}:

Convex CPWL functions ∼= Newton Polytopes
(positive) scalar multiplication scaling

addition Minkowski sum
taking maximum taking convex hull of union
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Newton Polytopes and Neural Networks
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P2 = {P polytope | P finite Minkowski sum of polytopes in P ′2}

Newton polytope of max{0, x1, x2, x3, x4}: 4-dim. simplex ∆4.
Are there polytopes Q,R ∈ P2 with Q + ∆4 = R?
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Polytopal Reformulation of the Conjecture

P0 := {points}
P1 := {zonotopes}

Pk :=

{
m∑
i=1

conv(Pi ,Qi )

∣∣∣∣∣ Pi ,Qi ∈ Pk−1,m ∈ N

}
∆n := conv{0, e1, e2, . . . , en}

Conjecture

There is no pair of polytopes P,Q ∈ Pk such that P + ∆2k = Q.
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Results for the Integer Case
Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!
Note: logarithmic upper bound only uses integer weights

⇒ All Newton polytopes are lattice polytopes

Let PZ
k := Pk ∩ {lattice polytopes}.

Theorem
There is no pair of polytopes P,Q ∈ PZ

k such that P + ∆2k = Q.

Corollary

The minimum number of hidden layers to represent
max{0, x1, . . . , x2k} with integer weights is precisely k + 1.
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Proof Idea

I Consider normalized volume of lattice polytopes (∈ Z)

I By carefully subdividing Minkowski sums and convex hulls:

Lemma
A 2k -dimensional polytope in PZ

k has even normalized volume.

I Theorem follows because ∆2k has normalized volume one.

I Example in 2D:

+ =



Proof Idea

I Consider normalized volume of lattice polytopes (∈ Z)

I By carefully subdividing Minkowski sums and convex hulls:

Lemma
A 2k -dimensional polytope in PZ

k has even normalized volume.

I Theorem follows because ∆2k has normalized volume one.

I Example in 2D:

+ =



Outlook

I Volume unsuitable for non-integer case

I Find different way to separate Pk from each other!

Conjecture

There is no pair of polytopes P,Q ∈ Pk such that P + ∆2k = Q.

x1

x2

y

points

line segments

P1 = zonotopes

P ′
2

P2

Thank you!



Outlook

I Volume unsuitable for non-integer case

I Find different way to separate Pk from each other!

Conjecture

There is no pair of polytopes P,Q ∈ Pk such that P + ∆2k = Q.

x1

x2

y

points

line segments

P1 = zonotopes

P ′
2

P2

Thank you!



Outlook

I Volume unsuitable for non-integer case

I Find different way to separate Pk from each other!

Conjecture

There is no pair of polytopes P,Q ∈ Pk such that P + ∆2k = Q.

x1

x2

y

points

line segments

P1 = zonotopes

P ′
2

P2

Thank you!


