# Lower Bounds on Neural Network Depth via Lattice Polytopes 

Christian Haase
Christoph Hertrich
Georg Loho


『r
UNIVERSITY OF TWENTE.

Bielefeld, 6 September 2022

## Neural Networks in Action



Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

## Neural Networks in Action



Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)


Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

## Neural Networks in Action



Gatys et al. "Image style transfer using convolutional neural networks" (CVPR 2016)


Krizhevsky et al. "Imagenet classification with deep convolutional neural networks" (NeurIPS 2012)

## DeepL Translator DeepL Pro Why DeepL? Login 三

Translate text 26 languagesTranslate files .pdf, .docx, pptx

German (detected) $\checkmark$
English (UK) $\checkmark$ Glossary $\rightleftarrows$

Das Pferd frisst keinen Gurkensalat.

The horse does not eat cucumber salad.

## A Single ReLU Neuron



## A Single ReLU Neuron



Rectified linear unit $(\operatorname{ReLU}): \operatorname{relu}(x)=\max \{0, x\}$


## A Single ReLU Neuron



## ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons



## ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with linear transformations $T_{i}$.

## ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with linear transformations $T_{i}$.

- Example: depth 3 (2 hidden layers).


## ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with linear transformations $T_{i}$.

- Example: depth 3 (2 hidden layers).
- Usage: Learn weights of $T_{i}$ from given input-output pairs.

What is the class of functions computable by ReLU Neural Networks with a certain depth?

## Universal approximation theorems:

One hidden layer enough to approximate any continuous function.


## Universal approximation theorems:

One hidden layer enough to approximate any continuous function.


What about exact representability?

## Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$



## Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$



## Example: Computing the Maximum of Four Numbers



## Example: Computing the Maximum of Four Numbers



- Inductively: Max of $n$ numbers with $\left\lceil\log _{2}(n)\right\rceil$ hidden layers.


## Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

## Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Wang, Sun [WS05])
Any CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be written as

$$
f(x)=\sum_{i=1}^{p} \lambda_{i} \max \left\{a_{i, 1}^{T} x, \ldots, a_{i, n+1}^{T} x\right\} .
$$

## Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Wang, Sun [WS05])
Any CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be written as

$$
f(x)=\sum_{i=1}^{p} \lambda_{i} \max \left\{a_{i, 1}^{T} x, \ldots, a_{i, n+1}^{T} x\right\} .
$$

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])
Any CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU NN with $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers.

## Natural Question

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])
Any CPWL function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU NN with $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers.

- Is logarithmic depth best possible?

Conjecture
Yes, there are functions which need $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers!

## Conjecture

Yes, there are functions which need $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers!

Using [WS05], we show that this is equivalent to:

Conjecture
$\max \left\{0, x_{1}, \ldots, x_{2^{k}}\right\}$ cannot be represented with $k$ hidden layers.

What lower bounds are known?

## What lower bounds are known?

- Mukherjee, Basu (2017):
$\max \left\{0, x_{1}, x_{2}\right\}$ not representable with 1 hidden layer.


## What lower bounds are known?

- Mukherjee, Basu (2017): $\max \left\{0, x_{1}, x_{2}\right\}$ not representable with 1 hidden layer. That's all!


## What lower bounds are known?

- Mukherjee, Basu (2017): $\max \left\{0, x_{1}, x_{2}\right\}$ not representable with 1 hidden layer.


## That's all!

- No function known that provably needs more than 2 hidden layers $\rightsquigarrow$ gap between 2 and $\left\lceil\log _{2}(n+1)\right\rceil$.


## What lower bounds are known?

- Mukherjee, Basu (2017): $\max \left\{0, x_{1}, x_{2}\right\}$ not representable with 1 hidden layer.


## That's all!

- No function known that provably needs more than 2 hidden layers $\rightsquigarrow$ gap between 2 and $\left\lceil\log _{2}(n+1)\right\rceil$.
- Smallest candidate: $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$.


## Partial Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):

2 hidden layers not enough for $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ under an additional assumption on the network.

## Partial Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):

2 hidden layers not enough for $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ under an additional assumption on the network.

- Haase, Hertrich, Loho (this talk!):

Conjecture is true for networks with only integer weights.

How do Polytopes Come into Play?

## How do Polytopes Come into Play?

CPWL function $=$ difference of two convex CPWL functions
$=$ difference of two tropical polynomials $=$ tropical rational function

## How do Polytopes Come into Play?

CPWL function $=$ difference of two convex CPWL functions
$=$ difference of two tropical polynomials $=$ tropical rational function
$\rightsquigarrow ~ s t u d y$ Newton polytopes!

## Newton Polytope of a Convex CPWL Function

- $f(x)=\max \left\{a_{1}^{T} x, \ldots, a_{k}^{T} x\right\} \quad \rightsquigarrow \quad P(f)=\operatorname{conv}\left\{a_{1}, \ldots, a_{k}\right\}$
- dual to underlying polyhedral complex of the CPWL function

> Example for $\max \left\{0, x_{1}, x_{2}\right\}:$


## Newton Polytope of a Convex CPWL Function

- $f(x)=\max \left\{a_{1}^{T} x, \ldots, a_{k}^{T} x\right\} \quad \rightsquigarrow \quad P(f)=\operatorname{conv}\left\{a_{1}, \ldots, a_{k}\right\}$
- dual to underlying polyhedral complex of the CPWL function

> Example for $\max \left\{0, x_{1}, x_{2}\right\}:$


Convex CPWL functions $\cong$ Newton Polytopes (positive) scalar multiplication addition taking maximum
scaling
Minkowski sum taking convex hull of union

Newton Polytopes and Neural Networks


## Newton Polytopes and Neural Networks



## Newton Polytopes and Neural Networks



## Newton Polytopes and Neural Networks


line segments

## Newton Polytopes and Neural Networks


line segments

## Newton Polytopes and Neural Networks


$\mathcal{P}_{2}^{\prime}=\{P$ polytope $\mid P$ convex hull of union of two zonotopes $\}$

## Newton Polytopes and Neural Networks


$\mathcal{P}_{2}^{\prime}=\{P$ polytope $\mid P$ convex hull of union of two zonotopes $\}$
$\mathcal{P}_{2}=\left\{P\right.$ polytope $\mid P$ finite Minkowski sum of polytopes in $\left.\mathcal{P}_{2}^{\prime}\right\}$

## Newton Polytopes and Neural Networks


$\mathcal{P}_{2}^{\prime}=\{P$ polytope $\mid P$ convex hull of union of two zonotopes $\}$
$\mathcal{P}_{2}=\left\{P\right.$ polytope $\mid P$ finite Minkowski sum of polytopes in $\left.\mathcal{P}_{2}^{\prime}\right\}$
Newton polytope of $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ : 4-dim. simplex $\Delta^{4}$.
Are there polytopes $Q, R \in \mathcal{P}_{2}$ with $Q+\Delta^{4}=R$ ?

## Polytopal Reformulation of the Conjecture

$$
\begin{aligned}
\mathcal{P}_{0} & :=\{\text { points }\} \\
\mathcal{P}_{1} & :=\{\text { zonotopes }\} \\
\mathcal{P}_{k} & :=\left\{\sum_{i=1}^{m} \operatorname{conv}\left(P_{i}, Q_{i}\right) \mid P_{i}, Q_{i} \in \mathcal{P}_{k-1}, m \in \mathbb{N}\right\} \\
\Delta^{n} & :=\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{n}\right\}
\end{aligned}
$$

## Polytopal Reformulation of the Conjecture

$$
\begin{aligned}
\mathcal{P}_{0} & :=\{\text { points }\} \\
\mathcal{P}_{1} & :=\{\text { zonotopes }\} \\
\mathcal{P}_{k} & :=\left\{\sum_{i=1}^{m} \operatorname{conv}\left(P_{i}, Q_{i}\right) \mid P_{i}, Q_{i} \in \mathcal{P}_{k-1}, m \in \mathbb{N}\right\} \\
\Delta^{n} & :=\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{n}\right\}
\end{aligned}
$$

Conjecture
There is no pair of polytopes $P, Q \in \mathcal{P}_{k}$ such that $P+\Delta^{2^{k}}=Q$.

## Results for the Integer Case

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!
Note: logarithmic upper bound only uses integer weights

## Results for the Integer Case

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!
Note: logarithmic upper bound only uses integer weights
$\Rightarrow \quad$ All Newton polytopes are lattice polytopes

## Results for the Integer Case

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!
Note: logarithmic upper bound only uses integer weights
$\Rightarrow \quad$ All Newton polytopes are lattice polytopes
Let $\mathcal{P}_{k}^{\mathbb{Z}}:=\mathcal{P}_{k} \cap\{$ lattice polytopes $\}$.

## Results for the Integer Case

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!
Note: logarithmic upper bound only uses integer weights
$\Rightarrow \quad$ All Newton polytopes are lattice polytopes
Let $\mathcal{P}_{k}^{\mathbb{Z}}:=\mathcal{P}_{k} \cap\{$ lattice polytopes $\}$.
Theorem
There is no pair of polytopes $P, Q \in \mathcal{P}_{k}^{\mathbb{Z}}$ such that $P+\Delta^{2^{k}}=Q$.

## Results for the Integer Case

Haase, Hertrich, Loho (work in progress)

From now on: all weights integer!
Note: logarithmic upper bound only uses integer weights
$\Rightarrow \quad$ All Newton polytopes are lattice polytopes
Let $\mathcal{P}_{k}^{\mathbb{Z}}:=\mathcal{P}_{k} \cap\{$ lattice polytopes $\}$.
Theorem
There is no pair of polytopes $P, Q \in \mathcal{P}_{k}^{\mathbb{Z}}$ such that $P+\Delta^{2^{k}}=Q$.

## Corollary

The minimum number of hidden layers to represent $\max \left\{0, x_{1}, \ldots, x_{2^{k}}\right\}$ with integer weights is precisely $k+1$.

## Proof Idea

- Consider normalized volume of lattice polytopes $(\in \mathbb{Z})$
- By carefully subdividing Minkowski sums and convex hulls:

Lemma
A $2^{k}$-dimensional polytope in $\mathcal{P}_{k}^{\mathbb{Z}}$ has even normalized volume.

## Proof Idea

- Consider normalized volume of lattice polytopes $(\in \mathbb{Z})$
- By carefully subdividing Minkowski sums and convex hulls:


## Lemma

A $2^{k}$-dimensional polytope in $\mathcal{P}_{k}^{\mathbb{Z}}$ has even normalized volume.

- Theorem follows because $\Delta^{2^{k}}$ has normalized volume one.
- Example in 2D:



## Outlook

- Volume unsuitable for non-integer case
- Find different way to separate $\mathcal{P}_{k}$ from each other!


## Outlook

- Volume unsuitable for non-integer case
- Find different way to separate $\mathcal{P}_{k}$ from each other!


## Conjecture

There is no pair of polytopes $P, Q \in \mathcal{P}_{k}$ such that $P+\Delta^{2^{k}}=Q$.


## Outlook

- Volume unsuitable for non-integer case
- Find different way to separate $\mathcal{P}_{k}$ from each other!


## Conjecture

There is no pair of polytopes $P, Q \in \mathcal{P}_{k}$ such that $P+\Delta^{2^{k}}=Q$.


## Thank you!

