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The world of convex bodies
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Motivation the Zonoid Problem

→ How to recognise a zonoid?
hard: {zonoids} ⊊ {centrally symmetric convex bodies}
[Schneider, Weil, . . . ]

→ How to recognise a semialgebraic zonoid?
still hard [Lerario, Mathis]

→ How to recognise a discotope?

→ How to recognise a zonotope?
easy: check if its 2-dimensional faces are centrally symmetric
[Bolker, Schneider, . . . ]
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Previous work

Karim A. Adiprasito and Raman Sanyal,
Whitney numbers of arrangements via measure concentration
of intrinsic volumes,
arXiv:1606.09412

Léo Mathis and C.M.,
Fiber Convex Bodies,
arXiv:2105.12406, to appear in Discrete & Computational
Geometry
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Setting and definition

Disc = linear image of the unit ball of Rn in Rd (n ≤ d).
⇝ they are semialgebraic zonoids

Definition
Consider the discs D1, . . . , DN ⊂ Rd. The associated discotope is
the Minkowski sum

D = D1 + . . . + DN .

Denote by Nm the number of discs of dimension m; we say that D
is of type N = (N1, . . . , Nd). Notice: N =

∑N
m=1 Nm.

⇝ they are semialgebraic zonoids

Our goal: characterize generic discotopes according to their type.
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Gallery

d = 2:

d = 3:
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The purely nonlinear part

Our goal: study the exposed points algebraically.
⇝Ex(D) is the Zariski closure in Cd of the set of exposed points.

Consider the addition map Σ : ∂D1 × . . . × ∂DN → Rd ⊂ Cd

and define
S = im(Σ) ∩ ∂D ⊂ Cd

the purely nonlinear part of D. Then Ex(D) ⊆ S.
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Some results on S

Let D be a discotope of type N = (0, N2, . . . , Nd) and consider

(⋆) =
d∑

m=1
(m − 1)Nm

Theorem (Gesmundo-M. 2022)
• if (⋆) ≤ d − 1 then S is an irreducible variety with

dim S = (⋆) and deg S = 2N ,

• if (⋆) ≥ d − 1 then dim S = d − 1.

Degree and irreducibility in the case (⋆) > d − 1?
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General case

Conjecture
S is irreducible.

This would imply that actually S = Ex(D).

Introduce another variety: the critical locus of the addition map Σ.

General fact: Σ−1 (S) ⊆ crit Σ

Idea: we conjecture that already the critical locus of the addition
map is irreducible. This would imply that S is irreducible as well.
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Type (0, N, 0, . . . , 0) with N ≥ d

Let D = D1 + . . . + DN where dim Di = 2 for every i.

Theorem (Gesmundo-M. 2022)
The variety crit Σ is irreducible, of dimension d − 1 and degree
2N ·

( N
d−1

)
.

Idea of the proof.
Adapt Bertini’s Theorem to specific non-generic (but generic
enough) linear cuts of a determinantal variety.

Corollary
The variety S is irreducible, of dimension d − 1 and degree
deg S ≤ 2N ·

( N
d−1

)
.
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A case of study: the dice

Consider the dice D = D1 + D2 + D3 ⊂ R3, where

D1={(x1,x2,x3):x1=0;x2
2+x2

3≤1},

D2={(x1,x2,x3):x2=0;x2
1+x2

3≤1},

D3={(x1,x2,x3):x3=0;x2
1+x2

2≤1}.

Its purely nonlinear part S = Ex D is an irreducible surface of
degree 24 = 23 ·

(3
2
)
.

Theorem (Gesmundo-M. 2022)
The surface S is birational to a K3 surface. Explicitly, a
desingularization of S is the variety of P1 × P1 × P1 defined by

(y2
1 − z2

1)(y2
2 − z2

2)(y2
3 − z2

3) − 8y1y2y3z1z2z3 = 0.
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Open Problem Polymatroids?

Fix a generic discotope D ⊂ Rd and let Li = ⟨Di⟩, so
that L1, . . . , LN are N generic linear subspaces of Rd.
Consider a hyperplane H transversal to the Li.

A point p ∈ ∂D has a normal cone of dimension
bigger than one if and only if

dim
〈
(H ∩ L1), . . . , (H ∩ LN )

〉
< d − 1.

Question
When can such H exist? Are there conditions on dim Li?
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Convex bodies

Semialgebraic

Polytopes
Zonoids

Thank you!

Fulvio Gesmundo and C.M.,
The Geometry of Discotopes,
Le Matematiche, 77(1), 143 –171 (2022)


