Geometry \& Combinatorics meet zonoids

 joint work with Fulvio Gesmundo
Geometry Meets Combinatorics in Bielefeld

September 5-9, 2022
Chiara Meroni

The world of convex bodies

DISCOTOPES!

Motivation >the Zonoid Problem

\rightarrow How to recognise a zonoid?
hard: \{zonoids $\} \subsetneq$ \{centrally symmetric convex bodies $\}$ [Schneider, Weil, ...]
\rightarrow How to recognise a semialgebraic zonoid? still hard [Lerario, Mathis]
\rightarrow How to recognise a discotope?
\rightarrow How to recognise a zonotope? easy: check if its 2-dimensional faces are centrally symmetric [Bolker, Schneider, ...]

Previous work

嗇 Karim A. Adiprasito and Raman Sanyal, Whitney numbers of arrangements via measure concentration of intrinsic volumes, arXiv:1606.09412

图 Léo Mathis and C.M., Fiber Convex Bodies, arXiv:2105.12406, to appear in Discrete \& Computational Geometry

Setting and definition

Disc $=$ linear image of the unit ball of \mathbb{R}^{n} in $\mathbb{R}^{d}(n \leq d)$.
\rightsquigarrow they are semialgebraic zonoids

Definition

Consider the discs $D_{1}, \ldots, D_{N} \subset \mathbb{R}^{d}$. The associated discotope is the Minkowski sum

$$
\mathcal{D}=D_{1}+\ldots+D_{N} .
$$

Denote by N_{m} the number of discs of dimension m; we say that \mathcal{D} is of type $\mathbf{N}=\left(N_{1}, \ldots, N_{d}\right)$. Notice: $N=\sum_{m=1}^{N} N_{m}$.
\rightsquigarrow they are semialgebraic zonoids
Our goal: characterize generic discotopes according to their type.

$d=3:$

The purely nonlinear part

Our goal: study the exposed points algebraically. $\rightsquigarrow \operatorname{Ex}(\mathcal{D})$ is the Zariski closure in \mathbb{C}^{d} of the set of exposed points.

Consider the addition map $\Sigma: \partial D_{1} \times \ldots \times \partial D_{N} \rightarrow \mathbb{R}^{d} \subset \mathbb{C}^{d}$ and define

$$
\mathcal{S}=\overline{\operatorname{im}(\Sigma) \cap \partial \mathcal{D}} \subset \mathbb{C}^{d}
$$

the purely nonlinear part of \mathcal{D}. Then $\operatorname{Ex}(\mathcal{D}) \subseteq \mathcal{S}$.

Some results on \mathcal{S}

Let \mathcal{D} be a discotope of type $\mathbf{N}=\left(0, N_{2}, \ldots, N_{d}\right)$ and consider

$$
(\star)=\sum_{m=1}^{d}(m-1) N_{m}
$$

Theorem (Gesmundo-M. 2022)

- if $(\star) \leq d-1$ then \mathcal{S} is an irreducible variety with

$$
\operatorname{dim} \mathcal{S}=(\star) \text { and } \operatorname{deg} \mathcal{S}=2^{N}
$$

- if $(\star) \geq d-1$ then $\operatorname{dim} \mathcal{S}=d-1$.

Degree and irreducibility in the case $(\star)>d-1$?

General case

Conjecture

\mathcal{S} is irreducible.
This would imply that actually $\mathcal{S}=\operatorname{Ex}(\mathcal{D})$.

Introduce another variety: the critical locus of the addition map Σ.

$$
\text { General fact: } \quad \Sigma^{-1}(\mathcal{S}) \subseteq \operatorname{crit} \Sigma
$$

Idea: we conjecture that already the critical locus of the addition map is irreducible. This would imply that \mathcal{S} is irreducible as well.

Type $(0, N, 0, \ldots, 0)$ with $N \geq d$

Let $\mathcal{D}=D_{1}+\ldots+D_{N}$ where $\operatorname{dim} D_{i}=2$ for every i.
Theorem (Gesmundo-M. 2022)
The variety crit Σ is irreducible, of dimension $d-1$ and degree $2^{N} \cdot\binom{N}{d-1}$.

Idea of the proof.

Adapt Bertini's Theorem to specific non-generic (but generic enough) linear cuts of a determinantal variety.

Corollary

The variety \mathcal{S} is irreducible, of dimension $d-1$ and degree $\operatorname{deg} \mathcal{S} \leq 2^{N} \cdot\binom{N}{d-1}$.

A case of study: the dice

Consider the dice $\mathcal{D}=D_{1}+D_{2}+D_{3} \subset \mathbb{R}^{3}$, where

$$
\begin{aligned}
& D_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}=0 ; x_{2}^{2}+x_{3}^{2} \leq 1\right\} \\
& D_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{2}=0 ; x_{1}^{2}+x_{3}^{2} \leq 1\right\} \\
& D_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{3}=0 ; x_{1}^{2}+x_{2}^{2} \leq 1\right\}
\end{aligned}
$$

Its purely nonlinear part $\mathcal{S}=\operatorname{Ex} \mathcal{D}$ is an irreducible surface of degree $24=2^{3} \cdot\binom{3}{2}$.

Theorem (Gesmundo-M. 2022)
The surface \mathcal{S} is birational to a K3 surface. Explicitly, a desingularization of \mathcal{S} is the variety of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ defined by

$$
\left(y_{1}^{2}-z_{1}^{2}\right)\left(y_{2}^{2}-z_{2}^{2}\right)\left(y_{3}^{2}-z_{3}^{2}\right)-8 y_{1} y_{2} y_{3} z_{1} z_{2} z_{3}=0
$$

Open Problem >Polymatroids?

Fix a generic discotope $\mathcal{D} \subset \mathbb{R}^{d}$ and let $L_{i}=\left\langle D_{i}\right\rangle$, so that L_{1}, \ldots, L_{N} are N generic linear subspaces of \mathbb{R}^{d}. Consider a hyperplane H transversal to the L_{i}.

A point $p \in \partial \mathcal{D}$ has a normal cone of dimension bigger than one if and only if

$$
\operatorname{dim}\left\langle\left(H \cap L_{1}\right), \ldots,\left(H \cap L_{N}\right)\right\rangle<d-1
$$

Question

When can such H exist? Are there conditions on $\operatorname{dim} L_{i}$?

围 Fulvio Gesmundo and C.M.,
The Geometry of Discotopes,
Le Matematiche, 77(1), 143-171 (2022)

