Geometry & Combinatorics meet zonoids

joint work with Fulvio Gesmundo

Chiara Meroni

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Geometry Meets Combinatorics in Bielefeld

September 5-9, 2022

MAX-PLANCK-GESELLSCHAFT

DISCOTOPES!

 \rightarrow How to recognise a zonoid?

hard: {zonoids} \subsetneq {centrally symmetric convex bodies} [Schneider, Weil, \ldots]

- → How to recognise a semialgebraic zonoid? still hard [Lerario, Mathis]
- \rightarrow How to recognise a discotope?
- → How to recognise a zonotope?
 easy: check if its 2-dimensional faces are centrally symmetric [Bolker, Schneider, ...]

 Karim A. Adiprasito and Raman Sanyal, Whitney numbers of arrangements via measure concentration of intrinsic volumes, arXiv:1606.09412

Léo Mathis and C.M.,

Fiber Convex Bodies,

arXiv:2105.12406, to appear in Discrete & Computational Geometry

Disc = linear image of the unit ball of \mathbb{R}^n in \mathbb{R}^d $(n \leq d)$. \rightsquigarrow they are semialgebraic zonoids

Definition

Consider the discs $D_1, \ldots, D_N \subset \mathbb{R}^d$. The associated discotope is the Minkowski sum

$$\mathcal{D}=D_1+\ldots+D_N.$$

Denote by N_m the number of discs of dimension m; we say that \mathcal{D} is of type $\mathbf{N} = (N_1, \dots, N_d)$. Notice: $N = \sum_{m=1}^N N_m$.

 \rightsquigarrow they are semialgebraic zonoids

Our goal: characterize generic discotopes according to their type.

The purely nonlinear part

Our goal: study the exposed points *algebraically*. $\rightsquigarrow Ex(\mathcal{D})$ is the Zariski closure in \mathbb{C}^d of the set of exposed points.

Consider the addition map $\Sigma : \partial D_1 \times \ldots \times \partial D_N \to \mathbb{R}^d \subset \mathbb{C}^d$ and define

$$\mathcal{S} = \overline{\operatorname{im}(\Sigma) \cap \partial \mathcal{D}} \subset \mathbb{C}^d$$

the purely nonlinear part of \mathcal{D} . Then $\operatorname{Ex}(\mathcal{D}) \subseteq \mathcal{S}$.

Some results on ${\mathcal S}$

Let \mathcal{D} be a discotope of type $\mathbf{N} = (0, N_2, \dots, N_d)$ and consider

$$(\bigstar) = \sum_{m=1}^{d} (m-1)N_m$$

Theorem (Gesmundo-M. 2022)

• if $(\bigstar) \leq d-1$ then ${\mathcal S}$ is an irreducible variety with

 $\dim \mathcal{S} = (\bigstar) \text{ and } \deg \mathcal{S} = 2^N,$

• if $(\bigstar) \ge d - 1$ then dim $\mathcal{S} = d - 1$.

Degree and irreducibility in the case $(\bigstar) > d - 1$?

Conjecture

 \mathcal{S} is irreducible.

This would imply that actually $S = Ex(\mathcal{D})$.

Introduce another variety: the critical locus of the addition map Σ .

General fact: $\Sigma^{-1}(\mathcal{S}) \subseteq \operatorname{crit} \Sigma$

Idea: we conjecture that already the critical locus of the addition map is irreducible. This would imply that S is irreducible as well.

Let $\mathcal{D} = D_1 + \ldots + D_N$ where dim $D_i = 2$ for every *i*.

Theorem (Gesmundo-M. 2022)

The variety $\operatorname{crit}\Sigma$ is irreducible, of dimension d-1 and degree $2^N\cdot \binom{N}{d-1}.$

Idea of the proof.

Adapt Bertini's Theorem to specific non-generic (but generic enough) linear cuts of a determinantal variety.

Corollary

The variety S is irreducible, of dimension d-1 and degree $\deg S \leq 2^N \cdot \binom{N}{d-1}$.

A case of study: the dice

Consider the dice $\mathcal{D} = D_1 + D_2 + D_3 \subset \mathbb{R}^3$, where

 $\begin{array}{l} D_1{=}\{(x_1,\!x_2,\!x_3){:}x_1{=}0{;}x_2^2{+}x_3^2{\leq}1\},\\ D_2{=}\{(x_1,\!x_2,\!x_3){:}x_2{=}0{;}x_1^2{+}x_3^2{\leq}1\},\\ D_3{=}\{(x_1,\!x_2,\!x_3){:}x_3{=}0{;}x_1^2{+}x_2^2{\leq}1\}. \end{array}$

Its purely nonlinear part $S = \operatorname{Ex} \mathcal{D}$ is an irreducible surface of degree $24 = 2^3 \cdot {3 \choose 2}$.

Theorem (Gesmundo-M. 2022)

The surface S is birational to a K3 surface. Explicitly, a desingularization of S is the variety of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ defined by

$$(y_1^2 - z_1^2)(y_2^2 - z_2^2)(y_3^2 - z_3^2) - 8y_1y_2y_3z_1z_2z_3 = 0.$$

Fix a generic discotope $\mathcal{D} \subset \mathbb{R}^d$ and let $L_i = \langle D_i \rangle$, so that L_1, \ldots, L_N are N generic linear subspaces of \mathbb{R}^d . Consider a hyperplane H transversal to the L_i .

A point $p\in\partial\mathcal{D}$ has a normal cone of dimension bigger than one if and only if

$$\dim \left\langle (H \cap L_1), \dots, (H \cap L_N) \right\rangle < d - 1.$$

Question

When can such H exist? Are there conditions on $\dim L_i$?

Fulvio Gesmundo and C.M.,
 The Geometry of Discotopes,
 Le Matematiche, 77(1), 143–171 (2022)