What are thin polytopes?

Benjamin Nill
OVGU Magdeburg

Geometry meets Combinatorics, Bielefeld, 7.9.2022

1. GKZ - thin simplices

1. GKZ - thin simplices

1. GKZ - thin simplices

Normalized volume

Let $P \subset \mathbb{R}^{d}$ be a lattice polytope: polytope with vertices in \mathbb{Z}^{d}.
The normalized volume $\operatorname{vol}_{\mathbb{Z}}(P)$ is defined such that

$$
\begin{gathered}
\operatorname{vol}_{\mathbb{Z}}(P)=1 \\
\Longleftrightarrow
\end{gathered}
$$

P is the convex hull of an affine lattice basis of $\mathbb{Z}^{d} \cap \operatorname{aff}(P)$.

1. GKZ - thin simplices

Normalized volume

Let $P \subset \mathbb{R}^{d}$ be a lattice polytope: polytope with vertices in \mathbb{Z}^{d}.
The normalized volume $\operatorname{vol}_{\mathbb{Z}}(P)$ is defined such that

$$
\operatorname{vol}_{\mathbb{Z}}(P)=1
$$

P is the convex hull of an affine lattice basis of $\mathbb{Z}^{d} \cap \operatorname{aff}(P)$.

- If P has dimension d, then $\operatorname{vol}_{\mathbb{Z}}(P)=d!\operatorname{vol}(P)$.
- $\operatorname{vol}_{\mathbb{Z}}(P) \in \mathbb{Z}_{\geq 1}$.
- Special cases: $\operatorname{vol}_{\mathbb{Z}}(\{$ point $\})=1 ; \operatorname{vol}_{\mathbb{Z}}(\emptyset):=1$.

1. GKZ - thin simplices

Let $S \subset \mathbb{R}^{d}$ be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:

$$
\nu(S):=\sum_{F \in[\emptyset, S]}(-1)^{\operatorname{dim}(S)-\operatorname{dim}(F)} \operatorname{vol}_{\mathbb{Z}}(F)=0
$$

where $[\emptyset, S]$ is the face poset of S.

1. GKZ - thin simplices

Let $S \subset \mathbb{R}^{d}$ be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:

$$
\nu(S):=\sum_{F \in[\emptyset, S]}(-1)^{\operatorname{dim}(S)-\operatorname{dim}(F)} \operatorname{vol}_{\mathbb{Z}}(F)=0
$$

where $[\emptyset, S]$ is the face poset of S.

Example

1. GKZ - thin simplices

Let $S \subset \mathbb{R}^{d}$ be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:

$$
\nu(S):=\sum_{F \in[\emptyset, S]}(-1)^{\operatorname{dim}(S)-\operatorname{dim}(F)} \operatorname{vol}_{\mathbb{Z}}(F)=0
$$

where $[\emptyset, S]$ is the face poset of S.

Example

$$
\nu(S)=2!\cdot 2-3 \cdot 2+3 \cdot 1-1
$$

1. GKZ - thin simplices

Let $S \subset \mathbb{R}^{d}$ be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:

$$
\nu(S):=\sum_{F \in[0, S]}(-1)^{\operatorname{dim}(S)-\operatorname{dim}(F)} \operatorname{vol}_{\mathbb{Z}}(F)=0,
$$

where $[\emptyset, S]$ is the face poset of S.

Example

$$
\nu(S)=2!\cdot 2-3 \cdot 2+3 \cdot 1-1=4-6+3-1
$$

1. GKZ - thin simplices

Let $S \subset \mathbb{R}^{d}$ be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:

$$
\nu(S):=\sum_{F \in[0, S]}(-1)^{\operatorname{dim}(S)-\operatorname{dim}(F)} \operatorname{vol}_{\mathbb{Z}}(F)=0,
$$

where $[\emptyset, S]$ is the face poset of S.

Example

$$
\nu(S)=2!\cdot 2-3 \cdot 2+3 \cdot 1-1=4-6+3-1=0
$$

1. GKZ - thin simplices

S is called hollow if S has no lattice points in its relative interior.
Theorem (GKZ '94)
Let $d \geq 1$.

- $\nu(S) \geq 0$.
- S lattice pyramid $\Longrightarrow S$ thin $\Longrightarrow S$ hollow.
- For $d=1$ or $d=2: S$ thin $\Longleftrightarrow S$ hollow.

1. GKZ - thin simplices

S is called hollow if S has no lattice points in its relative interior.
Theorem (GKZ '94)
Let $d \geq 1$.

- $\nu(S) \geq 0$.
- S lattice pyramid $\Longrightarrow S$ thin $\Longrightarrow S$ hollow.
- For $d=1$ or $d=2: S$ thin $\Longleftrightarrow S$ hollow.
(GKZ '94) "A classification of thin lattice simplices seems to be an interesting problem in the geometry of numbers."

1. GKZ - thin simplices

Combinatorial viewpoint

$\operatorname{vol}_{\mathbb{Z}}(S)$ equals number of lattice points in half-open parallelepiped $\Pi(S)$ spanned by $S \times\{1\}$.

1. GKZ - thin simplices

Combinatorial viewpoint

$\operatorname{vol}_{\mathbb{Z}}(S)$ equals number of lattice points in half-open parallelepiped $\Pi(S)$ spanned by $S \times\{1\}$.

$\nu(S)$ equals number of interior lattice points in $\Pi(S)$.

1. GKZ - thin simplices

Questions:

(1) Classification known for $d=2$. What about $d=3$?

1. GKZ - thin simplices

Questions:

(1) Classification known for $d=2$. What about $d=3$?
(2) Formula sometimes negative for polytopes. What are thin polytopes?

2. Stanley - local h^{*}-polynomials

Background

(Stanley '87): Definition of (toric) g - and h-polynomials of (lower) Eulerian posets. For P rational polytope, $g_{[\emptyset, P)}(t)$ has nonnegative coefficients; $h_{[\emptyset, P)}(t)$ has nonnegative, palindromic, unimodal coefficients.

2. Stanley - local h^{*}-polynomials

Background

(Stanley '87): Definition of (toric) g - and h-polynomials of (lower) Eulerian posets. For P rational polytope, $g_{[\emptyset, P)}(t)$ has nonnegative coefficients; $h_{[\emptyset, P)}(t)$ has nonnegative, palindromic, unimodal coefficients. (Stanley '92): h-vectors of triangulations of a polytope are monotone under refinements.
Main tool: Nonnegativity, palindromicity [and unimodality] of local h-polynomials $l_{\mathcal{T}}(t)$ of [regular] subdivisions \mathcal{T} of polytopes.

2. Stanley - local h^{*}-polynomials

Background

(Stanley '87): Definition of (toric) g - and h-polynomials of (lower) Eulerian posets. For P rational polytope, $g_{[\emptyset, P)}(t)$ has nonnegative coefficients; $h_{[\emptyset, P)}(t)$ has nonnegative, palindromic, unimodal coefficients.
(Stanley '92): h-vectors of triangulations of a polytope are monotone under refinements.
Main tool: Nonnegativity, palindromicity [and unimodality] of local h-polynomials $l_{\mathcal{T}}(t)$ of [regular] subdivisions \mathcal{T} of polytopes.

Let $P \subset \mathbb{R}^{d}$ be d-dimensional lattice polytope.
P has h^{*}-polynomial $h_{P}^{*}(t) \in \mathbb{Z}_{\geq 0}[t]$:

$$
1+\sum_{n \geq 1}\left|(n P) \cap \mathbb{Z}^{d}\right| t^{n}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}
$$

with

$$
h_{P}^{*}(1)=\operatorname{vol}_{\mathbb{Z}}(P) .
$$

2. Stanley - local h^{*}-polynomials

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)
P lattice polytope has local h^{*}-polynomial:

$$
I_{P}^{*}(t):=\sum_{F \in[\emptyset, S]}(-1)^{\operatorname{dim}(P)-\operatorname{dim}(F)} h_{F}^{*}(t) g_{(F, P]^{*}}(t) .
$$

Proposition: It is a palindromic polynomial (reflected at $(d+1) / 2)$.

2. Stanley - local h^{*}-polynomials

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)
P lattice polytope has local h^{*}-polynomial:

$$
I_{P}^{*}(t):=\sum_{F \in[\emptyset, S]}(-1)^{\operatorname{dim}(P)-\operatorname{dim}(F)} h_{F}^{*}(t) g_{(F, P]^{*}}(t) .
$$

Proposition: It is a palindromic polynomial (reflected at $(d+1) / 2)$.

If $P=S$ is a simplex, then $g_{(F, S]^{*}}(t)=1$. Thus:

$$
I_{S}^{*}(1)=\nu(S),
$$

2. Stanley - local h^{*}-polynomials

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)
P lattice polytope has local h^{*}-polynomial:

$$
I_{P}^{*}(t):=\sum_{F \in[0, S]}(-1)^{\operatorname{dim}(P)-\operatorname{dim}(F)} h_{F}^{*}(t) g_{(F, P]^{*}}(t) .
$$

Proposition: It is a palindromic polynomial (reflected at $(d+1) / 2)$.
If $P=S$ is a simplex, then $g_{(F, S]^{*}}(t)=1$. Thus:

$$
l_{S}^{*}(1)=\nu(S),
$$

2. Stanley - local h^{*}-polynomials

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)
P lattice polytope has local h^{*}-polynomial:

$$
I_{P}^{*}(t):=\sum_{F \in[\emptyset, S]}(-1)^{\operatorname{dim}(P)-\operatorname{dim}(F)} h_{F}^{*}(t) g_{(F, P]^{*}}(t) .
$$

Proposition: It is a palindromic polynomial (reflected at $(d+1) / 2)$.

If $P=S$ is a simplex, then $g_{(F, S]^{*}}(t)=1$. Thus:

$$
I_{S}^{*}(1)=\nu(S),
$$

$l_{S}^{*}(t)$ is the box polynomial:
i th coefficient of $I_{S}^{*}(t)$ counts interior lattice points in $\Pi(S)$ on height i.

2. Stanley - local h^{*}-polynomials

Theorem (Karu '06; Borisov-Mavlyutov '03)
$I_{P}^{*}(t)$ has nonnegative coefficients.
(Batyrev, Borisov, Mavlyutov, Schepers): $I_{P}^{*}(t)$ (called \tilde{S}-polynomial) appears naturally in computing the Hodge-Deligne polynomial (E-polynomial) of generic hypersurface (and complete intersections) in toric varieties.

2. Stanley - local h^{*}-polynomials

Theorem (Karu '06; Borisov-Mavlyutov '03)
$I_{P}^{*}(t)$ has nonnegative coefficients.
(Batyrev, Borisov, Mavlyutov, Schepers): $I_{P}^{*}(t)$ (called \tilde{S}-polynomial) appears naturally in computing the Hodge-Deligne polynomial (E-polynomial) of generic hypersurface (and complete intersections) in toric varieties.

$$
" I^{*}=h^{*} * g^{-1 "} \quad \rightsquigarrow \quad " h^{*}=l^{*} * g^{\prime \prime}
$$

2. Stanley - local h^{*}-polynomials

Theorem (Karu '06; Borisov-Mavlyutov '03)
$I_{P}^{*}(t)$ has nonnegative coefficients.
(Batyrev, Borisov, Mavlyutov, Schepers): $I_{P}^{*}(t)$ (called \tilde{S}-polynomial) appears naturally in computing the Hodge-Deligne polynomial (E-polynomial) of generic hypersurface (and complete intersections) in toric varieties.

Proposition (Stanley '92; ...)

$$
h_{P}^{*}(t)=\sum_{F \in[\emptyset, P]} I_{F}^{*}(t) g_{[F, P)}(t)=g_{[\emptyset, P)}+\sum_{F \in(\emptyset, P)} I_{F}^{*}(t) g_{[F, P)}(t)+I_{P}^{*}(t) .
$$

In particular, $I_{P}^{*}(t) \leq h_{P}^{*}(t)$ coefficientwise.
$I_{P}^{*}(t)$ should be seen as the 'core' of the h^{*}-polynomial.

3. Borger-Kretschmer-N. - thin polytopes

Definition

P lattice polytope is thin if $I_{P}^{*}(t)=0$, or equivalently, $I_{P}^{*}(1)=0$.

Proposition

Let $d \geq 1$.

- P lattice pyramid $\Longrightarrow P$ thin $\Longrightarrow P$ hollow.
- For $d=1$ or $d=2: ~ P$ thin $\Longleftrightarrow P$ hollow.

Classification of thin polytopes known for $d \leq 2$.

3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. '22)
Let $d=3$. Then P is thin if and only if
(1) $h_{P}^{*}(t)$ has degree at most one, or
(2) P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.

3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. '22)
Let $d=3$. Then P is thin if and only if
(1) $h_{P}^{*}(t)$ has degree at most one, or
(2) P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.
Proof uses classification of 3-dimensional hollow lattice polytopes (Averkov, Wagner, Weismantel '10) and

$$
I_{P}^{*}(t)=\left|\operatorname{int}(P) \cap \mathbb{Z}^{3}\right| \cdot t+
$$

$$
\left(\begin{array}{c}
\left.\left|\operatorname{int}(2 P) \cap \mathbb{Z}^{3}\right|-4\left|\operatorname{int}(P) \cap \mathbb{Z}^{3}\right|-\sum_{F \leq P \text { facet }}\left|\operatorname{int}(F) \cap \mathbb{Z}^{3}\right|\right) \cdot t^{2}+ \\
\left|\operatorname{int}(P) \cap \mathbb{Z}^{3}\right| \cdot t^{3} .
\end{array}\right.
$$

3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. '22)
Let $d=3$. Then P is thin if and only if
(1) $h_{P}^{*}(t)$ has degree at most one, or
(2) P is a lattice pyramid.

What about higher dimensions?
Constructing thin polytopes
(1) P is trivially thin if $h_{P}^{*}(t)$ has degree at most $\frac{d}{2}$.
(2) P is thin if it is a \mathbb{Z}-join of P_{1} and P_{2} with P_{1} thin.

For $d \geq 4$, not all thin polytopes are given this way - but true generically?

3. Borger-Kretschmer-N. - thin polytopes

P is called spanning if its lattice points affinely generate \mathbb{Z}^{d}.

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

3. Borger-Kretschmer-N. - thin polytopes

P is called spanning if its lattice points affinely generate \mathbb{Z}^{d}.

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers '12; Borger-Kretschmer-N. '22)
Answer is YES for P Gorenstein (i.e., $h_{P}^{*}(t)$ is palindromic). Moreover:

- Thinness is invariant under duality of Gorenstein polytopes.
- Thin Gorenstein polytopes have lattice width 1.
- Thin Gorenstein simplices are lattice pyramids.

3. Borger-Kretschmer-N. - thin polytopes

P is called spanning if its lattice points affinely generate \mathbb{Z}^{d}.

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers '12; Borger-Kretschmer-N. '22)
Answer is YES for P Gorenstein (i.e., $h_{P}^{*}(t)$ is palindromic).
Moreover:

- Thinness is invariant under duality of Gorenstein polytopes.
- Thin Gorenstein polytopes have lattice width 1.
- Thin Gorenstein simplices are lattice pyramids.

Proof needs general crucial fact:
Thinness stays invariant under coarsening the lattice.

4. Katz-Stapledon - decomposing I^{*}

Let \mathcal{T} be triangulation of P into lattice simplices.
Theorem (Betke-McMullen '85)

$$
h_{P}^{*}(t)=\sum_{S \in \mathcal{T}} I_{S}^{*}(t) h_{\operatorname{link}(\mathcal{T}, S)}(t)
$$

4. Katz-Stapledon - decomposing I^{*}

Let \mathcal{T} be triangulation of P into lattice simplices.
Theorem (Betke-McMullen '85)

$$
h_{P}^{*}(t)=\sum_{S \in \mathcal{T}} l_{S}^{*}(t) h_{\operatorname{link}(\mathcal{T}, S)}(t)
$$

Theorem (N.-Schepers '12; Athanasiadis, Savvidou '12; Katz-Stapledon '16)

$$
I_{P}^{*}(t)=\sum_{S \in \mathcal{T}} I_{S}^{*}(t) I_{\mathcal{T}, S}(t)
$$

where relative local h-polynomial $l_{\mathcal{T}, S}(t)$ has nonnegative coefficients.
4. Katz-Stapledon - decomposing I^{*}

Let \mathcal{T} be triangulation of P into lattice simplices.
Theorem (Betke-McMullen '85)

$$
h_{P}^{*}(t)=\sum_{S \in \mathcal{T}} I_{S}^{*}(t) h_{\operatorname{link}(\mathcal{T}, S)}(t)
$$

Theorem (N.-Schepers '12; Athanasiadis, Savvidou '12; Katz-Stapledon '16)

$$
I_{P}^{*}(t)=\sum_{S \in \mathcal{T}} I_{S}^{*}(t) I_{\mathcal{T}, S}(t)
$$

where relative local h-polynomial $l_{\mathcal{T}, S}(t)$ has nonnegative coefficients.

Consequences

- Thinness stays invariant under coarsening the lattice.
- If \mathcal{T} is unimodular triangulation, then $I_{P}^{*}=I_{\mathcal{T}, \emptyset}=I_{\mathcal{T}}$ is unimodal (Stanley '92).

