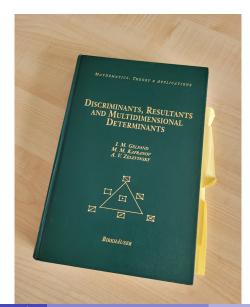
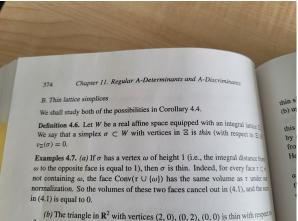
What are thin polytopes?

Benjamin Nill OVGU Magdeburg

Geometry meets Combinatorics, Bielefeld, 7.9.2022





 \mathbb{Z}^2 . Indeed, in this case (4.1) becomes A = 2 + 2 + 2 + 1 + 1 = 0

Normalized volume

Let $P \subset \mathbb{R}^d$ be a **lattice polytope**: polytope with vertices in \mathbb{Z}^d . The **normalized volume** $\operatorname{vol}_{\mathbb{Z}}(P)$ is defined such that

$$\operatorname{vol}_{\mathbb{Z}}(P) = 1$$

P is the convex hull of an affine lattice basis of $\mathbb{Z}^d \cap \operatorname{aff}(P)$.

Normalized volume

Let $P \subset \mathbb{R}^d$ be a **lattice polytope**: polytope with vertices in \mathbb{Z}^d . The **normalized volume** $\operatorname{vol}_{\mathbb{Z}}(P)$ is defined such that

$$\operatorname{vol}_{\mathbb{Z}}(P) = 1$$

P is the convex hull of an affine lattice basis of $\mathbb{Z}^d \cap \operatorname{aff}(P)$.

- If P has dimension d, then $\operatorname{vol}_{\mathbb{Z}}(P) = d! \operatorname{vol}(P)$.
- $\operatorname{vol}_{\mathbb{Z}}(P) \in \mathbb{Z}_{\geq 1}$.
- Special cases: $\operatorname{vol}_{\mathbb{Z}}({\text{point}}) = 1$; $\operatorname{vol}_{\mathbb{Z}}(\emptyset) := 1$.

Let $S \subset \mathbb{R}^d$ be *d*-dimensional lattice simplex.

Thin simplices (GKZ '94)

S is thin if its Newton number vanishes:

$$\nu(S) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(S) - \dim(F)} \operatorname{vol}_{\mathbb{Z}}(F) = 0,$$

where $[\emptyset, S]$ is the face poset of S.

Let $S \subset \mathbb{R}^d$ be *d*-dimensional lattice simplex.

Thin simplices (GKZ '94)

S is thin if its Newton number vanishes:

$$u(S) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(S) - \dim(F)} \operatorname{vol}_{\mathbb{Z}}(F) = 0,$$

where $[\emptyset, S]$ is the face poset of S.

Example

Let $S \subset \mathbb{R}^d$ be *d*-dimensional lattice simplex.

Thin simplices (GKZ '94)

S is thin if its Newton number vanishes:

$$\nu(S) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(S) - \dim(F)} \operatorname{vol}_{\mathbb{Z}}(F) = 0,$$

where $[\emptyset, S]$ is the face poset of S.

Example

$\nu(S) = 2! \cdot 2 - 3 \cdot 2 + 3 \cdot 1 - 1$

Let $S \subset \mathbb{R}^d$ be *d*-dimensional lattice simplex.

Thin simplices (GKZ '94)

S is thin if its Newton number vanishes:

$$\nu(S) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(S) - \dim(F)} \operatorname{vol}_{\mathbb{Z}}(F) = 0,$$

where $[\emptyset, S]$ is the face poset of S.

Example $\nu(S) = 2! \cdot 2 - 3 \cdot 2 + 3 \cdot 1 - 1 = 4 - 6 + 3 - 1$

Let $S \subset \mathbb{R}^d$ be *d*-dimensional lattice simplex.

Thin simplices (GKZ '94)

S is thin if its Newton number vanishes:

$$\nu(S) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(S) - \dim(F)} \operatorname{vol}_{\mathbb{Z}}(F) = 0,$$

where $[\emptyset, S]$ is the face poset of S.

Example $\nu(S) = 2! \cdot 2 - 3 \cdot 2 + 3 \cdot 1 - 1 = 4 - 6 + 3 - 1 = 0$

S is called **hollow** if S has no lattice points in its relative interior.

Theorem (GKZ '94)

Let $d \geq 1$.

- ν(S) ≥ 0.
- S lattice pyramid \implies S thin \implies S hollow.
- For d = 1 or d = 2: S thin \iff S hollow.

S is called **hollow** if S has no lattice points in its relative interior.

Theorem (GKZ '94)

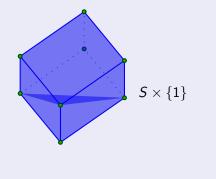
Let $d \geq 1$.

- ν(S) ≥ 0.
- S lattice pyramid \implies S thin \implies S hollow.
- For d = 1 or d = 2: S thin \iff S hollow.

(GKZ '94) "A classification of thin lattice simplices seems to be an interesting problem in the geometry of numbers."

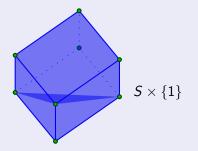
Combinatorial viewpoint

 $\operatorname{vol}_{\mathbb{Z}}(S)$ equals number of lattice points in *half-open* parallelepiped $\Pi(S)$ spanned by $S \times \{1\}$.



Combinatorial viewpoint

 $\operatorname{vol}_{\mathbb{Z}}(S)$ equals number of lattice points in *half-open* parallelepiped $\Pi(S)$ spanned by $S \times \{1\}$.



 $\nu(S)$ equals number of **interior** lattice points in $\Pi(S)$.

Questions:

• Classification known for d = 2. What about d = 3?

Questions:

- Classification known for d = 2. What about d = 3?
- **②** Formula sometimes **negative** for polytopes. What are thin polytopes?

Background

(Stanley '87): Definition of **(toric)** *g*- and *h*-polynomials of (lower) Eulerian posets. For *P* rational polytope, $g_{[\emptyset,P)}(t)$ has nonnegative coefficients; $h_{[\emptyset,P)}(t)$ has nonnegative, palindromic, unimodal coefficients.

Background

(Stanley '87): Definition of **(toric)** *g*- and *h*-polynomials of (lower) Eulerian posets. For *P* rational polytope, $g_{[\emptyset,P)}(t)$ has nonnegative coefficients; $h_{[\emptyset,P)}(t)$ has nonnegative, palindromic, unimodal coefficients. (Stanley '92): *h*-vectors of triangulations of a polytope are monotone under refinements.

Main tool: Nonnegativity, palindromicity [and unimodality] of **local** *h*-**polynomials** $l_{\mathcal{T}}(t)$ of [regular] subdivisions \mathcal{T} of polytopes.

Background

(Stanley '87): Definition of **(toric)** *g*- and *h*-polynomials of (lower) Eulerian posets. For *P* rational polytope, $g_{[\emptyset,P)}(t)$ has nonnegative coefficients; $h_{[\emptyset,P)}(t)$ has nonnegative, palindromic, unimodal coefficients. (Stanley '92): *h*-vectors of triangulations of a polytope are monotone under refinements.

Main tool: Nonnegativity, palindromicity [and unimodality] of **local** *h*-**polynomials** $l_{\mathcal{T}}(t)$ of [regular] subdivisions \mathcal{T} of polytopes.

Let $P \subset \mathbb{R}^d$ be *d*-dimensional **lattice polytope**. *P* has h^* -polynomial $h_P^*(t) \in \mathbb{Z}_{\geq 0}[t]$:

$$1 + \sum_{n \ge 1} |(nP) \cap \mathbb{Z}^d| t^n = \frac{h_P^*(t)}{(1-t)^{d+1}}$$

with

$$h_P^*(1) = \operatorname{vol}_{\mathbb{Z}}(P).$$

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)

P lattice polytope has **local** h^* -**polynomial**:

$$l_P^*(t) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(P) - \dim(F)} h_F^*(t) g_{(F,P]^*}(t).$$

Proposition: It is a **palindromic** polynomial (reflected at (d + 1)/2).

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)

P lattice polytope has **local** h^* -**polynomial**:

$$l_P^*(t) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(P) - \dim(F)} h_F^*(t) g_{(F,P]^*}(t).$$

Proposition: It is a **palindromic** polynomial (reflected at (d + 1)/2).

If P = S is a *simplex*, then $g_{(F,S]^*}(t) = 1$. Thus:

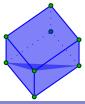
 $I_S^*(1) = \nu(S),$

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16) P lattice polytope has **local** h^* -**polynomial**:

$$I_P^*(t) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(P) - \dim(F)} h_F^*(t) g_{(F,P]^*}(t).$$

Proposition: It is a **palindromic** polynomial (reflected at (d + 1)/2).

If
$$P=S$$
 is a simplex, then $g_{(F,S]^*}(t)=1.$ Thus:
 $l_S^*(1)=
u(S),$



Benjamin Nill (OVGU Magdeburg)

Definition (Stanley '92; Borisov-Mavlyutov '03; Katz-Stapledon '16)

P lattice polytope has **local** h^* -**polynomial**:

$$l_P^*(t) := \sum_{F \in [\emptyset,S]} (-1)^{\dim(P) - \dim(F)} h_F^*(t) g_{(F,P]^*}(t).$$

Proposition: It is a **palindromic** polynomial (reflected at (d + 1)/2).

If P = S is a *simplex*, then $g_{(F,S]^*}(t) = 1$. Thus:

 $I_S^*(1) = \nu(S),$

$I_{S}^{*}(t)$ is the **box polynomial**: ith coefficient of $I_{S}^{*}(t)$ counts *interior* lattice points in $\Pi(S)$ on height *i*.

Theorem (Karu '06; Borisov-Mavlyutov '03)

 $l_P^*(t)$ has **nonnegative** coefficients.

(Batyrev, Borisov, Mavlyutov, Schepers): $l_P^*(t)$ (called \tilde{S} -**polynomial**) appears naturally in computing the Hodge-Deligne polynomial (*E*-polynomial) of generic hypersurface (and complete intersections) in toric varieties.

Theorem (Karu '06; Borisov-Mavlyutov '03)

 $l_P^*(t)$ has **nonnegative** coefficients.

(Batyrev, Borisov, Mavlyutov, Schepers): $l_P^*(t)$ (called \tilde{S} -**polynomial**) appears naturally in computing the Hodge-Deligne polynomial (*E*-polynomial) of generic hypersurface (and complete intersections) in toric varieties.

$$"I^* = h^* * g^{-1}" \quad \rightsquigarrow \quad "h^* = I^* * g"$$

Theorem (Karu '06; Borisov-Mavlyutov '03)

 $l_P^*(t)$ has **nonnegative** coefficients.

(Batyrev, Borisov, Mavlyutov, Schepers): $l_P^*(t)$ (called \tilde{S} -polynomial) appears naturally in computing the Hodge-Deligne polynomial (*E*-polynomial) of generic hypersurface (and complete intersections) in toric varieties.

Proposition (Stanley '92; ...)

$$h_P^*(t) = \sum_{F \in [\emptyset,P]} l_F^*(t) g_{[F,P)}(t) = g_{[\emptyset,P)} + \sum_{F \in (\emptyset,P)} l_F^*(t) g_{[F,P)}(t) + l_P^*(t).$$

In particular, $l_P^*(t) \leq h_P^*(t)$ coefficientwise.

 $l_P^*(t)$ should be seen as the 'core' of the h^* -polynomial.

Definition

P lattice polytope is **thin** if $I_P^*(t) = 0$, or equivalently, $I_P^*(1) = 0$.

Proposition

Let $d \ge 1$.

- P lattice pyramid \implies P thin \implies P hollow.
- For d = 1 or d = 2: P thin \iff P hollow.

Classification of thin polytopes known for $d \leq 2$.

Theorem (Borger-Kretschmer-N. '22)

Let d = 3. Then P is thin if and only if

- $h_P^*(t)$ has degree at most one, or
- 2 P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.

Theorem (Borger-Kretschmer-N. '22)

Let d = 3. Then P is thin if and only if

- $h_P^*(t)$ has degree at most one, or
- 2 P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.

Proof uses classification of 3-dimensional hollow lattice polytopes (Averkov, Wagner, Weismantel '10) and

$$l_P^*(t) = |\operatorname{int}(P) \cap \mathbb{Z}^3| \cdot t + \left(|\operatorname{int}(2P) \cap \mathbb{Z}^3| - 4 |\operatorname{int}(P) \cap \mathbb{Z}^3| - \sum_{F \leq P \text{ facet}} |\operatorname{int}(F) \cap \mathbb{Z}^3| \right) \cdot t^2 + |\operatorname{int}(P) \cap \mathbb{Z}^3| \cdot t^3.$$

Theorem (Borger-Kretschmer-N. '22)
Let $d = 3$. Then P is thin if and only if
• $h_P^*(t)$ has degree at most one, or
P is a lattice pyramid.
What about higher dimensions?

What about higher dimensions?

Constructing thin polytopes

- *P* is trivially thin if $h_P^*(t)$ has degree at most $\frac{d}{2}$.
- **2** *P* is thin if it is a \mathbb{Z} -**join** of P_1 and P_2 with P_1 thin.

For $d \ge 4$, not all thin polytopes are given this way - but true generically?

P is called **spanning** if its lattice points affinely generate \mathbb{Z}^d .

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

P is called **spanning** if its lattice points affinely generate \mathbb{Z}^d .

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers '12; Borger-Kretschmer-N. '22)

Answer is YES for *P* **Gorenstein** (i.e., $h_P^*(t)$ is palindromic). Moreover:

- Thinness is invariant under duality of Gorenstein polytopes.
- Thin Gorenstein polytopes have lattice width 1.
- Thin Gorenstein simplices are lattice pyramids.

P is called **spanning** if its lattice points affinely generate \mathbb{Z}^d .

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers '12; Borger-Kretschmer-N. '22)

Answer is YES for *P* **Gorenstein** (i.e., $h_P^*(t)$ is palindromic). Moreover:

- Thinness is invariant under duality of Gorenstein polytopes.
- Thin Gorenstein polytopes have lattice width 1.
- Thin Gorenstein simplices are lattice pyramids.

Proof needs general crucial fact:

Thinness stays invariant under coarsening the lattice.

4. Katz-Stapledon - decomposing l^*

Let \mathcal{T} be triangulation of P into lattice simplices.

Theorem (Betke-McMullen '85)

$$h_P^*(t) = \sum_{S \in \mathcal{T}} I_S^*(t) h_{\mathsf{link}(\mathcal{T},S)}(t).$$

4. Katz-Stapledon - decomposing I^*

Let \mathcal{T} be triangulation of P into lattice simplices.

Theorem (Betke-McMullen '85)

$$h_P^*(t) = \sum_{S \in \mathcal{T}} I_S^*(t) h_{\mathsf{link}(\mathcal{T},S)}(t).$$

Theorem (N.-Schepers '12; Athanasiadis, Savvidou '12; Katz-Stapledon '16)

$$l_P^*(t) = \sum_{S \in \mathcal{T}} l_S^*(t) l_{\mathcal{T},S}(t),$$

where relative local h-polynomial $I_{\mathcal{T},S}(t)$ has nonnegative coefficients.

4. Katz-Stapledon - decomposing I*

Let \mathcal{T} be triangulation of P into lattice simplices.

Theorem (Betke-McMullen '85)

$$h_P^*(t) = \sum_{S \in \mathcal{T}} I_S^*(t) h_{\mathsf{link}(\mathcal{T},S)}(t).$$

Theorem (N.-Schepers '12; Athanasiadis, Savvidou '12; Katz-Stapledon '16)

$$l_P^*(t) = \sum_{S \in \mathcal{T}} l_S^*(t) l_{\mathcal{T},S}(t),$$

where relative local h-polynomial $I_{\mathcal{T},S}(t)$ has **nonnegative** coefficients.

Consequences

- Thinness stays invariant under coarsening the lattice.
- If \mathcal{T} is unimodular triangulation, then $l_P^* = l_{\mathcal{T},\emptyset} = l_{\mathcal{T}}$ is unimodal (Stanley '92).