MANY POLYTOPES
Arnau Padrol
Sorbonne Université \rightarrow Universitat de Barcelona
Eva Philippe Francisco Santos
Sorbonue Université
Universidad de Contabria
Geometry meds Combinatorics in Bielefeld

$$
5 / 9 / 2022
$$

Polytope: convex hull of finitely many vertices
III bounded intersection of finitely many halfapaces

Face: intersection with supporting halfspace

facet

edge

vertex

Face lattice:

Face lattice:

Determined by vertex -facet incidences

Combinatorial type:
\square

$$
\cong
$$

$$
\not \approx
$$

Labeled combinatorial type:

What is the number of (labeled) combinatorial types of d-polytopes with n vertices?

Branko Grünbaum
Convex Polytopes
[..]]
About the turn of the century, however, a steep decline in the interest in convex polytopes was produced by two causes working in the same direction. Efforts at enumerating the different combinatorial types of polytopes, started by Euler and pursued with much patience and ingenuity during the second half of the XIX ${ }^{\text {th }}$ century, failed to produce any significant results even in the three-dimensional case; this lead to a widespread feeling that the interesting problems concerning polytopes are hopelessly hard. Simultaneously, the ascendance of Klein's "Erlanger Program" and the spread of its normative influence tended to cast the preoccupation with the combinatorial theory of convex polytopes into a rather disreputable rôle-and that at a time when such "legitimate" fields as algebraic geometry and in particular topology started their spectacular development.

$$
[\cdots]
$$

$$
d=3
$$

Thu: [Steinitz 1922]
G is the graph of a 3 polytope geometric coalition代
G is 3 -connected \& planar condition

Thy: [Whitney 1932]
The face lattice of a 3-pdytope is determined by its graph

Thu: [Tate 1962]
The number of rooted simplicial 3-polytopes with $n+1$ vertices is:

$$
=\frac{2(4 n-1)!}{(3 n-7)!(n-2)!} \approx \frac{3}{16 \sqrt{6 \pi n^{5}}}\left(\frac{256}{27}\right)^{n-2}
$$

Thu: [Wormald-Bender 1988]
The number of rooted 3 -pdytopes with $n+1$ vertices \& $m+1$ facets is: $=(\ldots) \sim \frac{1}{3^{5} n m}\binom{2 m}{n+3}\binom{2 n}{m+3}$
A the number of combinatorial types of 3 polytopes with $n+1$ vertices \& $m+1$ facets is $\sim \frac{1}{2^{2} 3^{5} n m(n+m)}\binom{2 m}{n+3}\binom{2 n}{m \times 3}$

$$
d \geq 4 \text { Mniversality }
$$

Realization space: $P J$ Jodytope n vertices

$$
\left\{\begin{array}{l}
\text { Szation space: } \\
\mathbb{R}(P)=\{Q \text { pdytope } \cong P\} \subseteq \mathbb{R}^{\text {nd }}
\end{array}\right.
$$

parametrizoof by vertes cordinades
Thm: [Mnës 1988; Richter-Gebert 1995] \#primary basic semialyebraic set S J 4-pdytope P whox realization space is stably equivalent to S.

It is hard ($\exists \mathbb{R}$-hard $\Rightarrow N P$-hard) to decide polytopality of a "face lattice"

Upper Bound Theorem: [Mc Mullen 1970, Stanley 1975]
The number of facets of a d-polytope (or a simplicial ($d-1)$-sphere) with n vertices is $O\left(n^{\lfloor d / 2\rfloor}\right)$
The upper bound is attained by simplicial neighborly polytopes/spheres.
\longrightarrow every subset of $\leq\lfloor d / 2\rfloor$ vertices forms a face.
e.g. Cyclic polytopes

$$
\begin{aligned}
& \gamma: t \mapsto\left(t, t_{1}^{2}, t_{1}^{3}, \ldots, t^{2}\right) \\
& C_{d}(n)=\operatorname{Covr}\left(\gamma\left(t, 1, \ldots, \gamma\left(t_{n}\right)\right)\right.
\end{aligned}
$$

Grollary:
The number of simplicial (d-1)-spheres with n vertices is

$$
\leq\binom{ n}{d}^{O\left(n^{\lfloor d / 2\rfloor}\right)}=n^{O\left(n^{\lfloor d / 2\rfloor}\right)}
$$

Prop: [Kalai 1988]
The number of simplicial (d-1)-spheres with n vertices is

$$
\leq n^{2 n^{\lfloor d / 2\rfloor}(1+o(1))}
$$

Many simplicial spheres
Thm: [Kalai 1988, Nero-Santos-Wilson 2016] The number of simplicial (d-1)-spheres with n vertices is

$$
\geq 2^{\Omega\left(n^{\lfloor d / 2\rfloor}\right)}
$$

$$
\text { Kalai } \quad \geq 2^{\frac{1}{d+1} n^{\lfloor(d-1) / 2\rfloor}(1+0(1))}
$$

Neso-Santes-Wilson

$$
\begin{aligned}
& \text { Santos-Wilson } \geq 2^{\frac{2}{3 d^{d+1}} n^{d / 2}(1+0(1))} \\
& \text { deven }
\end{aligned}
$$

Summing up:

$$
\begin{aligned}
& \text { VI } \\
& \text { \#simplicial } \\
& 1 \text {-polytopes } \\
& \text { with } n \text { oectices }
\end{aligned}
$$

Not so many polytopes!
Goodman \& Pollack 1986
There are asymptotically far fewer poly topes than we thought

Thun: [Alow 1986]
The number of d-polytopes with n vertices is

$$
\leq(n!)^{d^{2}+o(1)}=2^{O(n \log n)}
$$

Orieuted matroids
$A=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{d \times n}$ point configuration chirotope:

$$
\begin{aligned}
& X:\binom{n}{d+1} \longrightarrow\{t,-, 0\} \\
& i_{1}, \ldots, i_{d+1} \mapsto \operatorname{sign}\left(\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
a_{i}, & a_{2} & \ldots \\
1 & 1 & a_{i j n 1} \\
1 & 1
\end{array}\right)\right) \\
& \text { chirotope } \longrightarrow \text { face battice } \\
& \text { \# polytopes } \leq \# \text { chirotopes }
\end{aligned}
$$

Thm: [Milnor 1964; Thom 1965]
$P_{1}, \ldots, P_{n} d$-rariable real polynomids of tegree $\in D$
The number of sign patteras of p_{1}, \cdots, p_{n} ranging
through $x \in \mathbb{R}^{d}$ is

$$
\leqslant\left(\frac{50 D n}{d}\right)^{d}
$$

$$
\begin{aligned}
& n=\binom{n}{d+1} \\
& D=d n \\
& d=d
\end{aligned} \Rightarrow \text { polytopes } \leq\left(\frac{50 d\binom{n}{d+1}}{d n}\right)^{d n}=(n!)^{d^{2}+0(1)}=2^{(O(\log n)}
$$

Most spheres are not polytopal!

Many polytopes
Thm: [shemer 1982]
The number of neighbaly d. palytoges with n veritices is

$$
\geq(n!)^{\frac{1}{2}+o(1)}=2^{\Omega(n \lg (n))}
$$

sewing construction

Thm: [Alon 1986]
The number of simplicial d.palytopes with n vertices is

$$
\geq(n!)^{\left|\frac{d}{4}\right|+o(1)}
$$

Tho: [P. 2013]
The number of neighbaly d-pdytopes with n vertices is

$$
\geq(n!)^{\left|\frac{d}{2}\right|+o(1)}
$$

- Positive lexicographic effing
- Change the order every two dimensions

Thu: [P. Philippe-Santos 2022-1]
The number of simplicial d-polytopes with n vertices is

$$
\geqslant(n!)^{d-2+o(1)}
$$

By showing that the previous polytopes have many regular triangulations.

Triangulation: subdivision into smplices

Regular triangulation:

When two vatios $v \& \omega$ are very close,

each triangulation of P is determined by a triangulation T of Paw \& a section of T / v, its link at v

$$
\ll 14
$$

Not every section gives rise to a regular triangulation

There is a path of regular sections from ρ to
flipping over cells of T / v

\Rightarrow the number of regular sections is \geq the number of cells

If P / s is neighborly $\Rightarrow T / v$ has many cells
\Rightarrow Each triangulation of PiN extends to many triangulations of P

Use this argument inductively:
$\Rightarrow P$ has many regular triangulations.

Summing up:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
6 P & 1986
\end{array}\right]} \\
& \text { [Am 1986] } \\
& \frac{1}{2}\left\lfloor\frac{d}{4}\right\rfloor \\
& n!^{\frac{1}{2}} \leq n!^{\left\lfloor\frac{1}{4}\right\rfloor} \leq n!^{\left\lfloor\frac{d}{2}\right\rfloor} \leq n!^{d-2} \leq \text { wille } n \text { oentices } \leq n!^{d^{2}} \\
& \text { [P=Philippe-Samilas 2022t] } \\
& \text { [P.2013] } \\
& \text { [Alon 1986] } \\
& \text { [Shemer 192] } \\
& \underbrace{}_{\text {neigubaly }}
\end{aligned}
$$

Some open questions:

- Are there $(n!)^{\left.d^{2}+\alpha_{1}\right)}$ many polytopes?
- How many d-polyopes with n vertices \& m facets are there?
- Do most d-polytopes have $O\left(n^{[d / 2\rfloor}\right)$ facets?
Thank

