# 2-LC triangulated manifolds are exponentially many 

Marta Pavelka

joined work with Bruno Benedetti

University of Miami

Bielefeld 2022, September 9


## Background picture

- Facets: inclusion-maximal faces of
a complex.
$\operatorname{link}(v, K) \quad \operatorname{star}(v, K)$
- Pure complex: all facets of the same dimension.
- Star of a face $\sigma$ : the smallest subcomplex containing all facets
 that contain $\sigma$.
- $\operatorname{link}(\sigma, K):=\{\tau \in \operatorname{star}(\sigma, K): \tau \cap \sigma=\emptyset\}$
- Triangulation of a smooth d-manifold $M$ : a $d$-dim simplicial complex whose underlying space is homeomorphic to $M$.
- $d$-sphere: a triangulation of the $d$-dimensional sphere.
- d-pseudomanifold: a d-dim pure simplicial regular CW-complex where each $(d-1)$-cell is in $\leq 2$ facets.


## Big picture

## Gromov's question (2000)

How many triangulations of the 3 -sphere with $N$ tetrahedra are there?

- Two triangulations are equivalent $\Longleftrightarrow$ same face poset.
- Exponentially many?
- Crucial for discrete version of quantum gravity
- If yes, all good
- If no, divergence issues


## Too big picture

Too many Surfaces and Pseudomanifolds

## Theorem (Folklore)

There are more than exponentially many surfaces with $N$ triangles.


## Corollary (via coning)

There are more than exponentially many 3-pseudomanifolds with $N$ tetrahedra.

## Locally constructible picture

- LC manifolds are those obtainable from a tree of $d$-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... gluing two incident ...
- All shellable spheres are LC.


## Locally constructible picture

- LC manifolds are those obtainable from a tree of $d$-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... gluing two incident ...
- All shellable spheres are LC.



## Locally constructible picture

- LC manifolds are those obtainable from a tree of $d$-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... gluing two incident ...
- All shellable spheres are LC.



## Locally constructible picture

Theorem (Durhuus-Jonsson 1995; Benedetti-Ziegler 2011)
LC triangulations of $d$-manifolds with $N$ facets are at most $2^{d^{2} N}$.

- Works also for LC pseudomanifolds.


## Theorem (Mogami 1995)

Mogami triangulations of 3-manifolds with $N$ facets are exponentially many.

## Later pictures

- (d=2) Surfaces with fixed genus (Tutte 1962)
- (d=3) Causal triangulations (Durhuus-Jonsson 2014)
- (any d) Bounded geometry
(Adiprasito-Benedetti 2020)

- Triangulations with bounded discrete Morse vector (Benedetti 2012)
- contains all classes above
- does not contain Mogami triangulations


## Turning pictures into a movie

## Definition (Benedetti-P. 2022)

$t$-LC $d$-manifolds are those obtainable from a tree of $d$-simplices by recursively gluing two boundary facets whose intersection has dimension at least $d-1-t$.

- 1-LC the same as LC
- 1-LC $\subset 2-L C \subset \cdots \subset d$-LC
- All connected $d$-manifolds are $d$-LC



## Turning pictures into a movie

## Definition (Benedetti-P. 2022)

$t$-LC $d$-manifolds are those obtainable from a tree of $d$-simplices by recursively gluing two boundary facets whose intersection has dimension at least $d-1-t$.

- 1-LC the same as LC
- 1-LC $\subset 2-L C \subset \cdots \subset d$-LC
- All connected $d$-manifolds are $d$-LC



## Main Theorem (Benedetti-P. 2022)

2-LC triangulations of $d$-manifolds with $N$ facets are at most $2^{\frac{d^{3}}{2} N}$.

## Special effects - Coning

## Theorem (Benedetti-P. 2022)

Cones over $t$-LC $d$-pseudomanifolds are $t$-LC.
$\Rightarrow$ 2-LC $d$-pseudomanifolds more than exponentially many!

- Unlike the Benedetti-Ziegler result, our result really uses the manifold assumption: without it, it's false.


## Crucial facts for our proof

- Links of $(d-3)$-faces in a manifold are homeomorphic to $S^{2}$ or a disk.
- Planar gluings lead to count by Catalan numbers.
- Our proof makes precise and extends to all dimensions the intuition for $d=3$ by Mogami.


## Another famous picture

- A d-dimensional complex $C$ is called [homotopy-]Cohen-Macaulay if for any face $F$, for all $i<\operatorname{dim} \operatorname{link}(F, C),\left[\pi_{i}(\operatorname{link}(F, C))=0\right] H_{i}(\operatorname{link}(F, C))=0$.
- Constructible simplicial complex is defined inductively:
- every simplex, and every 0-complex, is constructible;
- a $d$-dim pure simplicial complex $C$ that is not a simplex is constructible if and only if it can be written as $C=C_{1} \cup C_{2}$, where $C_{1}$ and $C_{2}$ are constructible $d$-complexes, and $C_{1} \cap C_{2}$ is a constructible ( $d-1$ )-complex.


## Another famous picture

- A d-dimensional complex $C$ is called [homotopy-]Cohen-Macaulay if for any face $F$, for all $i<\operatorname{dim} \operatorname{link}(F, C),\left[\pi_{i}(\operatorname{link}(F, C))=0\right] H_{i}(\operatorname{link}(F, C))=0$.
- Constructible simplicial complex is defined inductively:
- every simplex, and every 0-complex, is constructible;
- a $d$-dim pure simplicial complex $C$ that is not a simplex is constructible if and only if it can be written as $C=C_{1} \cup C_{2}$, where $C_{1}$ and $C_{2}$ are constructible $d$-complexes, and $C_{1} \cap C_{2}$ is a constructible ( $d-1$ )-complex.


## Results to generalize

- Constructible manifolds are LC. (Benedetti-Ziegler 2011)
- Constructible complexes are homotopy-Cohen-Macaulay. (Hochster 1972)


## Definition (Benedetti-P. 2022)

Let $0<t \leq d$ be integers. $t$-constructible $d$-dimensional simplicial complexes defined inductively:

- every simplex is $t$-constructible;
- a 1-dimensional complex is $t$-constructible if connected;
- a d-dimensional pure simplicial complex $C$ that is not a simplex is $t$-constructible if $C=C_{1} \cup C_{2}$, where $C_{1}$ and $C_{2}$ are $t$-constructible $d$-complexes, and $C_{1} \cap C_{2}$ is a $(d-1)$-complex whose ( $d-t$ )-skeleton is constructible.



## Final picture

## Theorem (Benedetti-P. 2022)

$t$-constructible pseudomanifolds are $t$-LC.

## Theorem (Benedetti-P. 2022)

The $(d-t+1)$-skeleton of a $t$-constructible $d$-complex is homotopy-Cohen-Macaulay.
(In other words, $t$-constructible $d$-complexes have (homotopic) depth $>d-t$.)


