
The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Enumerating all Triangulations
up to Symmetry
Or: The Power of Order Rightly Used

Jörg Rambau

Lehrstuhl für Wirtschasmathematik

September 5–9, 2022
Workshop “Geometry meets Combinatorics”
Bielefeld

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/estions

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/estions

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given

A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given

A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

0 1

2

3 4

5 a triangulation

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

0 1

2

3 4

5 another triangulation

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

How Many Triangulations Are There?

Given A point configuration

0 1

2

3 4

5

estion 1 How many triangulations does it have?

estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History

De Loera
1994

Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History
De Loera

1994
Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History
De Loera

1994
Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History
De Loera

1994
Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History
De Loera

1994
Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History
De Loera

1994
Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Selected History
De Loera

1994
Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/estions

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V , E) with

I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with

I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;

I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object

I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object

I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter

I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do
• if neighbor pivots to object

• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do
• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a beer neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do
• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

3

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666

4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666

5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55

3

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

3

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

33

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

33

1

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

33

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

332

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322

0

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322

1

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

11

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

11
0

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00

1

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1

3

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2 3

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

3

0
1

2 3

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

3

0
1

2 3

5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

5
4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

2

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4
5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

4
5

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,

0 1

3

0

2

3

1

2

3

0 1

4

0

2

4

1

2

4

0 1

5

0

2

5

1

2

5

↦→

0 1

3

0

2

3

1

2

3

Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Boleneck Compute canonical representatives.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,

0 1

3

0

2

3

1

2

3

0 1

4

0

2

4

1

2

4

0 1

5

0

2

5

1

2

5

↦→

0 1

3

0

2

3

1

2

3

Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Boleneck Compute canonical representatives.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,

0 1

3

0

2

3

1

2

3

0 1

4

0

2

4

1

2

4

0 1

5

0

2

5

1

2

5

↦→

0 1

3

0

2

3

1

2

3

Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Boleneck Compute canonical representatives.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,

0 1

3

0

2

3

1

2

3

0 1

4

0

2

4

1

2

4

0 1

5

0

2

5

1

2

5

↦→

0 1

3

0

2

3

1

2

3

Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Boleneck Compute canonical representatives.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,

0 1

3

0

2

3

1

2

3

0 1

4

0

2

4

1

2

4

0 1

5

0

2

5

1

2

5

↦→

0 1

3

0

2

3

1

2

3

Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Boleneck Compute canonical representatives.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,

0 1

3

0

2

3

1

2

3

0 1

4

0

2

4

1

2

4

0 1

5

0

2

5

1

2

5

↦→

0 1

3

0

2

3

1

2

3

Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Boleneck Compute canonical representatives.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/estions

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):

I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):

I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):

I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):

I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):

I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅

I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since
I all lex-leading subsets of objects are traversed

I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since
I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension

I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):
I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since
I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be diicult to tell early

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:

Input: a subset S
I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:

Input: a subset S
I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:

Input: a subset S
I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:

Input: a subset S
I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:

Input: a subset S
I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0

I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0

I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0

I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0

I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1

I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})
I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:
• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:
• increase counter by symLSRS(S ∪ {i})
I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:
• increase counter by symLSRS(S ∪ {i})
I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/estions

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check S ∪ {i}!

Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

critS :

{
G → {1, . . . , n} ∪ {∞},
𝜋 ↦→ min(S 4 𝜋 (S)).

Observation A symmetry 𝜋 lex-decreases a subset S
⇐⇒

critS (𝜋) ∈ 𝜋 (S).

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check S ∪ {i}!

Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

critS :

{
G → {1, . . . , n} ∪ {∞},
𝜋 ↦→ min(S 4 𝜋 (S)).

Observation A symmetry 𝜋 lex-decreases a subset S
⇐⇒

critS (𝜋) ∈ 𝜋 (S).

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check S ∪ {i}!

Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

critS :

{
G → {1, . . . , n} ∪ {∞},
𝜋 ↦→ min(S 4 𝜋 (S)).

Observation A symmetry 𝜋 lex-decreases a subset S
⇐⇒

critS (𝜋) ∈ 𝜋 (S).

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check S ∪ {i}!

Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

critS :

{
G → {1, . . . , n} ∪ {∞},
𝜋 ↦→ min(S 4 𝜋 (S)) .

Observation A symmetry 𝜋 lex-decreases a subset S
⇐⇒

critS (𝜋) ∈ 𝜋 (S).

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check S ∪ {i}!

Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

critS :

{
G → {1, . . . , n} ∪ {∞},
𝜋 ↦→ min(S 4 𝜋 (S)) .

Observation A symmetry 𝜋 lex-decreases a subset S
⇐⇒

critS (𝜋) ∈ 𝜋 (S).

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:

I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:

I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:

I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:
I critS (𝜋) = ∞ and 𝜋 (i) < max S, or

I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:
I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or

I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:
I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:
I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:
I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)
 roughly 1

n of the cases (amortized)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :

I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :

I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered

I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered

I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices

I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}

I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :
I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?

Extendability
Check

[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s

I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s

I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s

I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s

I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)

I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:
I the free interior facets F (T)

I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:
I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:
I the free interior facets F (T)
I the greater simplices that intersect properly A(T)

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T)} not contained in any {s ∈ A(T)}.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient II: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
⇐=

min{f ∈ F (T)} < min
{
F (min{s ∈ A(T)})

}
.

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
starting with some s′ ≥ s in A(T)

⇐=

min{f ∈ F (T)} < min
{
F (s)

}
.

Gain One integer comparison instead of many subset tests.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient II: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
⇐=

min{f ∈ F (T)} < min
{
F (min{s ∈ A(T)})

}
.

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
starting with some s′ ≥ s in A(T)

⇐=

min{f ∈ F (T)} < min
{
F (s)

}
.

Gain One integer comparison instead of many subset tests.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient II: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
⇐=

min{f ∈ F (T)} < min
{
F (min{s ∈ A(T)})

}
.

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
starting with some s′ ≥ s in A(T)

⇐=

min{f ∈ F (T)} < min
{
F (s)

}
.

Gain One integer comparison instead of many subset tests.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Ingredient II: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
⇐=

min{f ∈ F (T)} < min
{
F (min{s ∈ A(T)})

}
.

Theorem A partial triangulation T with free interior facets F (T)
and properly intersecting greater simplices A(T)

is not lex-extendable to a triangulation
starting with some s′ ≥ s in A(T)

⇐=

min{f ∈ F (T)} < min
{
F (s)

}
.

Gain One integer comparison instead of many subset tests.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Eectivity

Comparison (with lex-breaking):

0 1

2

3 4

5

No Pruning

Full Pruning

Lex Pruning

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Eectivity

Comparison (with lex-breaking):

0 1

2

3 4

5

No Pruning

Full Pruning

Lex Pruning

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Eectivity

Comparison (with lex-breaking):

0 1

2

3 4

5

No Pruning

Full Pruning

Lex Pruning

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Eectivity

Comparison (with lex-breaking):

0 1

2

3 4

5

No Pruning

Full Pruning

Lex Pruning

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Eectivity

Comparison (with lex-breaking):

0 1

2

3 4

5

No Pruning

Full Pruning

Lex Pruning

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Computational Results for Triangulations

MPTOPCOM
Flip-Based
CPU Times

(16/40 Threads)

[Jordan & Joswig & Kastner 2018]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:01:56
3D3

(reg./full/output)
22,201,684,367 925,148,763 96:00:00

TOPCOM 1.0.8
Subset-Based
CPU Times
(16 Threads)

[R. 2022]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:00:04
3D3 (output) 22,201,684,367 925,148,763 01:05:11
3D3 (count) 22,201,684,367 925,148,763 00:21:02

3D3 (regular) 21,861,522,799 910,974,879 20:21:53
3D3 (full) 511,052,427 21,302,400 00:01:01

3D3 (unimod.) 346,903,379 14,459,488 00:00:39
Dodecahedron 1,533,079,037,570 12,775,757,027 11:11:48
Pyritohedron 32,734,029,351,118 1,363,918,758,719 692:30:04

Δ5 × Δ3 442,472,050,753,920 25,606,173,722 1313:57:17
(M1Max8t)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Computational Results for Triangulations
MPTOPCOM

Flip-Based
CPU Times

(16/40 Threads)

[Jordan & Joswig & Kastner 2018]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:01:56
3D3

(reg./full/output)
22,201,684,367 925,148,763 96:00:00

TOPCOM 1.0.8
Subset-Based
CPU Times
(16 Threads)

[R. 2022]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:00:04
3D3 (output) 22,201,684,367 925,148,763 01:05:11
3D3 (count) 22,201,684,367 925,148,763 00:21:02

3D3 (regular) 21,861,522,799 910,974,879 20:21:53
3D3 (full) 511,052,427 21,302,400 00:01:01

3D3 (unimod.) 346,903,379 14,459,488 00:00:39
Dodecahedron 1,533,079,037,570 12,775,757,027 11:11:48
Pyritohedron 32,734,029,351,118 1,363,918,758,719 692:30:04

Δ5 × Δ3 442,472,050,753,920 25,606,173,722 1313:57:17
(M1Max8t)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Computational Results for Triangulations
MPTOPCOM

Flip-Based
CPU Times

(16/40 Threads)

[Jordan & Joswig & Kastner 2018]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:01:56
3D3

(reg./full/output)
22,201,684,367 925,148,763 96:00:00

TOPCOM 1.0.8
Subset-Based
CPU Times
(16 Threads)

[R. 2022]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:00:04
3D3 (output) 22,201,684,367 925,148,763 01:05:11
3D3 (count) 22,201,684,367 925,148,763 00:21:02

3D3 (regular) 21,861,522,799 910,974,879 20:21:53
3D3 (full) 511,052,427 21,302,400 00:01:01

3D3 (unimod.) 346,903,379 14,459,488 00:00:39
Dodecahedron 1,533,079,037,570 12,775,757,027 11:11:48
Pyritohedron 32,734,029,351,118 1,363,918,758,719 692:30:04

Δ5 × Δ3 442,472,050,753,920 25,606,173,722 1313:57:17
(M1Max8t)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)

I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)

I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)

I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)

I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):

I [0, 1]8 has
38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability

I found for cocircuits
I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):

I [0, 1]8 has
38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability

I found for cocircuits
I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):
I [0, 1]8 has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability

I found for cocircuits
I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):
I [0, 1]8 has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability

I found for cocircuits
I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):
I [0, 1]8 has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability

I found for cocircuits
I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):
I [0, 1]8 has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability
I found for cocircuits

I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Bonus Track II

Other Results Enumeration of (co-)circuits (dierent lex-min check):
I [0, 1]8 has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability
I found for cocircuits
I but not so far for circuits.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/estions

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:

I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:

I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check

I minimal-element comparison for lex-extendability check

estions Potential further research:

I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:

I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:

I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:
I Investigate the complexity of symLSRS.

I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:
I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.

I Represent flip-graph exploration in terms of subsets.

The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/estions

Conclusions/estions

Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

estions Potential further research:
I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.

	The Problem
	Structures for Counting
	Structures for Counting Subsets
	New Results
	Conclusions/Questions

