Enumerating all Triangulations up to Symmetry
 Or: The Power of Order Rightly Used

Jörg Rambau

UNIVERSITÄT
BAYREUTH
Lehrstuhl für Wirtschaftsmathematik
September 5-9, 2022
Workshop "Geometry meets Combinatorics" Bielefeld

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/Questions

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/Questions

How Many Triangulations Are There?

How Many Triangulations Are There?

Given

How Many Triangulations Are There?

Given A point configuration

How Many Triangulations Are There?

Given A point configuration

Question 1 How many triangulations does it have?

How Many Triangulations Are There?

Given A point configuration

Question 1 How many triangulations does it have?

a triangulation

How Many Triangulations Are There?

Given A point configuration

Question 1 How many triangulations does it have?

another triangulation

How Many Triangulations Are There?

Given A point configuration

Question 1 How many triangulations does it have?

How Many Triangulations Are There?

Given A point configuration

Question 1 How many triangulations does it have?

How many triangulations does it have up to symmetry?

How Many Triangulations Are There?

Given
A point configuration

Question 1 How many triangulations does it have?

Question 2
How many triangulations does it have up to symmetry?

How Many Triangulations Are There?

Given A point configuration

Question 1 How many triangulations does it have?

Question 2
How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.

Selected History

Selected History

De Loera Flip-based symmetric BFS in flip-graph component; 1994 (maple-code PUNTOS)

Selected History

De Loera Flip-based symmetric BFS in flip-graph component; 1994 (maple-code PUNTOS)
R. 2000 Flip-based symmetric BFS in flip-graph component; simplex-by-simplex-based DFS for all triang's; (oriented-matroid-based C++-code TOPCOM 0.x.x).

Selected History

De Loera Flip-based symmetric BFS in flip-graph component; 1994 (maple-code PUNTOS)
R. 2000 Flip-based symmetric BFS in flip-graph component; simplex-by-simplex-based DFS for all triang's; (oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Selected History

De Loera Flip-based symmetric BFS in flip-graph component; 1994 (maple-code PUNTOS)
R. 2000

Flip-based symmetric BFS in flip-graph component; simplex-by-simplex-based DFS for all triang's; (oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.
Imai et al. Flip-based reverse search for orbits of regular triang's; 2002 Stable-set-based enumeration of all triang's.

Selected History

De Loera 1994
R. 2000

Santos 2000
Imai et al. 2002

Jordan et al. 2018

Flip-based symmetric BFS in flip-graph component; (maple-code PUNTOS)

Flip-based symmetric BFS in flip-graph component; simplex-by-simplex-based DFS for all triang's; (oriented-matroid-based C++-code TOPCOM 0.x.x).

The flip-graph of triangulations can be disconnected.
Flip-based reverse search for orbits of regular triang's; Stable-set-based enumeration of all triang's.

Parallel flip-based reverse search for orbits of sub-regular triang's; (C++-code MPTOPCOM).

Selected History

De Loera 1994
R. 2000

Santos 2000
Imai et al. 2002

Jordan et al. 2018

New:
R. 2022 for all triang's (new C++-code TOPCOM 1.x.x)

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/Questions

Reverse Search (RS)

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with an objective function on V with unique opt $v_{\text {opt }}$;

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

- increase counter

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

- increase counter
- for all neighbors of object do

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

- increase counter
- for all neighbors of object do
- if neighbor pivots to object

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

- increase counter
- for all neighbors of object do
- if neighbor pivots to object
- increase counter by ReverseSearch(object)

Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V, E) with

- an objective function on V with unique opt $v_{\text {opt }}$;
- a pivot function choosing a better neighbor on $V \backslash\left\{v_{\mathrm{opt}}\right\}$.

Method Reverse Search (RS) [Avis \& Fukuda 1996]:

- generate an arbitrary object
- pivot to the optimum object
- return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

- increase counter
- for all neighbors of object do if neighbor pivots to object increase counter by ReverseSearch(object)
- return counter.

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

RS Example

Reverse Search on Orbits

Reverse Search on Orbits

Canonical Representatives

Function " G-Orbits \rightarrow Elements", e.g.,

Reverse Search on Orbits

Canonical Representatives

Function " G-Orbits \rightarrow Elements", e.g.,

RS-Consistent
Choice
orbit \mapsto objective-minimal sink in orbit, e.g.,

Reverse Search on Orbits

Canonical Representatives

Function " G-Orbits \rightarrow Elements", e.g.,

RS-Consistent
Choice

Pivoting Orbits
orbit \mapsto objective-minimal sink in orbit, e.g.,

new pivot := canonical representative \circ old pivot.

Reverse Search on Orbits

Canonical Representatives

Function " G-Orbits \rightarrow Elements", e.g.,

RS-Consistent
Choice

Pivoting Orbits
Result
orbit \mapsto objective-minimal sink in orbit, e.g.,

new pivot := canonical representative \circ old pivot.
Can enumerate orbits by RS on orbits [Imai et al. 2002].

Reverse Search on Orbits

Canonical Representatives

Function " G-Orbits \rightarrow Elements", e.g.,

RS-Consistent
Choice

Pivoting Orbits
Result
Bottleneck
orbit \mapsto objective-minimal sink in orbit, e.g.,

new pivot := canonical representative \circ old pivot.
Can enumerate orbits by RS on orbits [Imai et al. 2002].
Compute canonical representatives.

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/Questions

Representation of Objects as Subsets

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot \Rightarrow SRS enumerates subsets.

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot \Rightarrow SRS enumerates subsets.

Crucial Need to recognize complete objects.

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot \Rightarrow SRS enumerates subsets.

Crucial Need to recognize complete objects.
Overhead SRS takes additional time, since

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot \Rightarrow SRS enumerates subsets.

Crucial Need to recognize complete objects.
Overhead SRS takes additional time, since

- all lex-leading subsets of objects are traversed

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot \Rightarrow SRS enumerates subsets.

Crucial Need to recognize complete objects.
Overhead SRS takes additional time, since

- all lex-leading subsets of objects are traversed
- there may be dead-ends w.r.t. lex-extension

Representation of Objects as Subsets

Observation
Many objects have a representation as subsets S of $\{1, \ldots, n\}$.

Idea Build objects by lex-extension.
Gain Subset Reverse Search (SRS):

- Lex-order is an objective with easy opt \emptyset
- Removing max-element \leadsto easily invertible pivot \Rightarrow SRS enumerates subsets.

Crucial Need to recognize complete objects.
Overhead SRS takes additional time, since

- all lex-leading subsets of objects are traversed
- there may be dead-ends w.r.t. lex-extension
- containment in an object may be difficult to tell early

Generic Algorithm: Symmetric LSRS

Generic Algorithm: Symmetric LSRS

Observation
Subset S lex-min in its orbit $\Longrightarrow S \backslash \max S$ lex-min in its orbit.

Generic Algorithm: Symmetric LSRS

Observation
Subset S lex-min in its orbit $\Longrightarrow S \backslash \max S$ lex-min in its orbit.

Punch Line
canonical $=$ lex-min \Longrightarrow canonicals connected

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]:

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]:

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
$\Longrightarrow S \backslash \max S$ lex-min in its orbit.
canonical $=$ lex-min \Longrightarrow canonicals connected

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
$\Longrightarrow S \backslash \max S$ lex-min in its orbit.
canonical $=$ lex-min \Longrightarrow canonicals connected

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0
- if S is a complete object, return 1

Subset S lex-min in its orbit
$\Longrightarrow S \backslash \max S$ lex-min in its orbit.
canonical $=$ lex-min \Longrightarrow canonicals connected

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0
- if S is a complete object, return 1
- for i from $\max S+1, \ldots, n$:

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0
- if S is a complete object, return 1
- for i from $\max S+1, \ldots, n$:
increase counter by symLSRS $(S \cup\{i\})$

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0
- if S is a complete object, return 1
- for i from $\max S+1, \ldots, n$:
increase counter by symLSRS $(S \cup\{i\})$
- return counter
$\Longrightarrow S \backslash \max S$ lex-min in its orbit.
canonical $=$ lex-min \Longrightarrow canonicals connected

Generic Algorithm: Symmetric LSRS

Observation

Punch Line
Gain Symmetric Lexicographic Subset Reverse Search (symLSRS) [equivalent: Pech \& Reichard 2009]: Input: a subset S

- if S not lex-extendable to an object, return 0
- if S not lex-min in its orbit, return 0
- if S is a complete object, return 1
- for i from $\max S+1, \ldots, n$:
increase counter by $\operatorname{symLSRS}(S \cup\{i\})$
- return counter
\rightarrow symLSRS(Ø) lex-enumerates all orbit-lex-min objects

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/Questions

Is a Subset Not Lex-Min in its Orbit?

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check $S \cup\{i\}$!

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check $S \cup\{i\}$!
Assumption Order of symmetry group G is managable.

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check $S \cup\{i\}$!
Assumption Order of symmetry group G is managable.
Local Data Store with each subset its critical-element table:

$$
\text { crit }_{S}:\left\{\begin{array}{rll}
G & \rightarrow & \{1, \ldots, n\} \cup\{\infty\} \\
\pi & \mapsto & \min (S \triangle \pi(S))
\end{array}\right.
$$

Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check $S \cup\{i\}$!
Assumption Order of symmetry group G is managable.
Local Data Store with each subset its critical-element table:

$$
\text { crit }_{S}:\left\{\begin{array}{rll}
G & \rightarrow & \{1, \ldots, n\} \cup\{\infty\} \\
\pi & \mapsto & \min (S \Delta \pi(S))
\end{array}\right.
$$

Observation
A symmetry π lex-decreases a subset S

$$
\operatorname{crit}_{S}(\pi) \in \pi(S)
$$

Ingredient I: Critical Elements

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:

Ingredient I: Critical Elements

Theorem
Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:
$S \cup\{i\}$ is not lex-min in its orbit
there is a $\pi \in G$ with:

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:
$S \cup\{i\}$ is not lex-min in its orbit
there is a $\pi \in G$ with:

- $\operatorname{crit}_{S}(\pi)=\infty$ and $\pi(i)<\max S$, or

Ingredient I: Critical Elements

Theorem
Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:
$S \cup\{i\}$ is not lex-min in its orbit
there is a $\pi \in G$ with:

- $\operatorname{crit}_{S}(\pi)=\infty$ and $\pi(i)<\max S$, or
- $\operatorname{crit}_{S}(\pi) \neq \infty$ and $\pi(i)<\operatorname{crit}_{S}(\pi)$, or

Ingredient I: Critical Elements

Theorem
Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:
$S \cup\{i\}$ is not lex-min in its orbit
there is a $\pi \in G$ with:

- $\operatorname{crit}_{S}(\pi)=\infty$ and $\pi(i)<\max S$, or
- $\operatorname{crit}_{S}(\pi) \neq \infty$ and $\pi(i)<\operatorname{crit}_{S}(\pi)$, or
- $\operatorname{crit}_{S}(\pi)=\pi(i)$ and $\operatorname{crit}_{S \cup\{i\}}(\pi) \in \pi(S \cup\{i\})$.

Ingredient I: Critical Elements

Theorem
Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:
$S \cup\{i\}$ is not lex-min in its orbit
there is a $\pi \in G$ with:

- $\operatorname{crit}_{S}(\pi)=\infty$ and $\pi(i)<\max S$, or
- $\operatorname{crit}_{S}(\pi) \neq \infty$ and $\pi(i)<\operatorname{crit}_{S}(\pi)$, or
$\operatorname{crit}_{S}(\pi)=\pi(i)$ and $\operatorname{crit}_{S \cup\{i\}}(\pi) \in \pi(S \cup\{i\})$.

Gain $\pi(S \cup\{i\})$ only needed if $\operatorname{crit}_{S}(\pi)=\pi(i)$

Ingredient I: Critical Elements

Theorem
Let S be a subset that is lex-min in its orbit. Then for all $i \in\{\max S+1, \ldots, n\}$ we have:
$S \cup\{i\}$ is not lex-min in its orbit
there is a $\pi \in G$ with:

- $\operatorname{crit}_{S}(\pi)=\infty$ and $\pi(i)<\max S$, or
- $\operatorname{crit}_{S}(\pi) \neq \infty$ and $\pi(i)<\operatorname{crit}_{S}(\pi)$, or
$\operatorname{crit}_{S}(\pi)=\pi(i)$ and $\operatorname{crit}_{S \cup\{i\}}(\pi) \in \pi(S \cup\{i\})$.

Gain $\pi(S \cup\{i\})$ only needed if $\operatorname{crit}_{S}(\pi)=\pi(i)$ \rightsquigarrow roughly $\frac{1}{n}$ of the cases (amortized)

Triangulations as Integer-Subsets

Triangulations as Integer-Subsets

Representation
For a point configuration of n points in rank r :

Triangulations as Integer-Subsets

Representation
For a point configuration of n points in rank r :
\mathcal{S} : the set of r-simplices, lex-ordered

Triangulations as Integer-Subsets

Representation

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered

Triangulations as Integer-Subsets

Representation

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices

Triangulations as Integer-Subsets

Representation

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices
- $n_{f}=|\mathcal{F}|$: no. of interior facets of simplices

Triangulations as Integer-Subsets

Representation
For a point configuration of n points in rank r :

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices
- $n_{f}=|\mathcal{F}|$: no. of interior facets of simplices
- simp : $\left\{1, \ldots, n_{s}\right\} \leftrightarrow \mathcal{S}:$ s-index (order-preserving)

Triangulations as Integer-Subsets

Representation
For a point configuration of n points in rank r :

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices
- $n_{f}=|\mathcal{F}|$: no. of interior facets of simplices
- simp : $\left\{1, \ldots, n_{s}\right\} \stackrel{\sim}{\leftrightarrow} \mathcal{S}:$ s-index (order-preserving)
- facet : $\left\{1, \ldots, n_{f}\right\} \stackrel{\sim}{\leftrightarrow} \mathcal{F}:$ f-index (order-preserving)

Triangulations as Integer-Subsets

For a point configuration of n points in rank r :

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices
- $\quad n_{f}=|\mathcal{F}|$: no. of interior facets of simplices
- simp : $\left\{1, \ldots, n_{s}\right\} \stackrel{\sim}{\leftrightarrow} \mathcal{S}:$ s-index (order-preserving)
- facet : $\left\{1, \ldots, n_{f}\right\} \stackrel{\sim}{\leftrightarrow} \mathcal{F}:$ f-index (order-preserving)
- $\mathcal{T}=\{\operatorname{simp}(s): s \in T\}$ for $T \subseteq\left\{1, \ldots, n_{s}\right\}$

Triangulations as Integer-Subsets

For a point configuration of n points in rank r :

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices
- $n_{f}=|\mathcal{F}|$: no. of interior facets of simplices
- simp : $\left\{1, \ldots, n_{s}\right\} \stackrel{\sim}{\leftrightarrow} \mathcal{S}:$ s-index (order-preserving)
- facet : $\left\{1, \ldots, n_{f}\right\} \stackrel{\sim}{\leftrightarrow} \mathcal{F}:$ f-index (order-preserving)
- $\mathcal{T}=\{\operatorname{simp}(s): s \in T\}$ for $T \subseteq\left\{1, \ldots, n_{s}\right\}$
- $T=\{\operatorname{s-index}(S): S \in \mathcal{T}\}$ for $\mathcal{T} \subseteq \mathcal{S}$

Triangulations as Integer-Subsets

Representation

- \mathcal{S} : the set of r-simplices, lex-ordered
- \mathcal{F} : the set of interior facets of r simplices, lex-ordered
- $n_{s}=|\mathcal{S}|$: no. of simplices
- $n_{f}=|\mathcal{F}|$: no. of interior facets of simplices
- simp : $\left\{1, \ldots, n_{s}\right\} \stackrel{\sim}{\leftrightarrow}:$ s-index (order-preserving)
- facet : $\left\{1, \ldots, n_{f}\right\} \stackrel{\mathcal{F}}{\leftrightarrow}$:f-index (order-preserving)
- $\mathcal{T}=\{\operatorname{simp}(s): s \in T\}$ for $T \subseteq\left\{1, \ldots, n_{s}\right\}$
- $T=\{$ - -index $(S): S \in \mathcal{T}\}$ for $\mathcal{T} \subseteq \mathcal{S}$

Convention
All $s \in\left\{1, \ldots, n_{s}\right\}$ and $f \in\left\{1, \ldots, n_{f}\right\}$ are called simplices and facets, resp. All $T \subseteq\left\{1, \ldots, n_{s}\right\}$ with pairwise proper intersections are called partial triangulations.

Is a Subset Not Lex-Extendable?

Is a Subset Not Lex-Extendable?

Extendability
[Ruppert \& Seidel 1992]:
Check Extendability of partial triangulations is NP-complete.

Is a Subset Not Lex-Extendable?

Extendability
Check
Observation
[Ruppert \& Seidel 1992]:
Extendability of partial triangulations is NP-complete.
Each interior facet must be covered by additional simplices to complete a triangulation.

Is a Subset Not Lex-Extendable?

Extendability
Check
Observation

Global Data
[Ruppert \& Seidel 1992]:
Extendability of partial triangulations is NP-complete.
Each interior facet must be covered by additional simplices to complete a triangulation.

Preprocess for each simplex s

Is a Subset Not Lex-Extendable?

Extendability
Check
Observation

Global Data

- its interior facets $\rightsquigarrow \mathcal{F}(s)$
[Ruppert \& Seidel 1992]:
Extendability of partial triangulations is NP-complete.
Each interior facet must be covered by additional simplices to complete a triangulation.

Preprocess for each simplex s

Is a Subset Not Lex-Extendable?

Extendability Check

Observation

Global Data

- its interior facets $\rightsquigarrow \mathcal{F}(s)$
- all simplices with proper intersection $\rightsquigarrow \mathcal{A}(s)$
[Ruppert \& Seidel 1992]:
Extendability of partial triangulations is NP-complete.
Each interior facet must be covered by additional simplices to complete a triangulation.

Preprocess for each simplex s

Is a Subset Not Lex-Extendable?

Extendability Check

Observation

Global Data

Local Data

- its interior facets $\rightsquigarrow \mathcal{F}(s)$
- all simplices with proper intersection $\rightsquigarrow \nrightarrow \mathcal{A}(s)$
[Ruppert \& Seidel 1992]:
Extendability of partial triangulations is NP-complete.
Each interior facet must be covered by additional simplices to complete a triangulation.

Preprocess for each simplex s

With each partial triangulation T store in lex-order:

Is a Subset Not Lex-Extendable?

Extendability Check

Observation

Global Data

- its interior facets $\rightsquigarrow \mathfrak{F}(s)$
- all simplices with proper intersection $\rightsquigarrow \mathcal{A}(s)$

Local Data With each partial triangulation T store in lex-order:

Is a Subset Not Lex-Extendable?

Extendability Check

Observation

Global Data

- its interior facets $\rightsquigarrow \mathfrak{F}(s)$
- all simplices with proper intersection $\rightsquigarrow \mathcal{A}(s)$

Local Data With each partial triangulation T store in lex-order:

- the free interior facets $\rightsquigarrow \mathscr{F}(T)$

Is a Subset Not Lex-Extendable?

Extendability Check

Observation

Global Data

- its interior facets $\rightsquigarrow \mathfrak{F}(s)$
- all simplices with proper intersection $\rightsquigarrow \mathcal{A}(s)$

Local Data With each partial triangulation T store in lex-order:

- the free interior facets $\rightsquigarrow \mathcal{F}(T)$
- the greater simplices that intersect properly $\rightsquigarrow \mathcal{A}(T)$

Is a Subset Not Lex-Extendable?

Extendability Check
 Observation

Global Data

Observation

- its interior facets $\rightsquigarrow \mathcal{F}(s)$
- all simplices with proper intersection $\rightsquigarrow \mathcal{A}(s)$

Local Data With each partial triangulation T store in lex-order:

- the free interior facets $\rightsquigarrow \mathcal{F}(T)$
- the greater simplices that intersect properly $\rightsquigarrow \mathcal{A}(T)$
[Ruppert \& Seidel 1992]:
Extendability of partial triangulations is NP-complete.
Each interior facet must be covered by additional simplices to complete a triangulation.

Preprocess for each simplex s

A partial triangulation T is not lex-extendable
there is $\{f \in \mathcal{F}(T)\}$ not contained in any $\{s \in \mathcal{A}(T)\}$.

Ingredient II: Lex-pruning/Lex-Breaking

Ingredient II: Lex-pruning/Lex-Breaking

Theorem
A partial triangulation T with free interior facets $\mathcal{F}(T)$ and properly intersecting greater simplices $\mathcal{A}(T)$
is not lex-extendable to a triangulation

$$
\min \{f \in \mathcal{F}(T)\}<\min \{\mathcal{F}(\min \{s \in \mathcal{A}(T)\})\} .
$$

Ingredient II: Lex-pruning/Lex-Breaking

Theorem

Theorem

A partial triangulation T with free interior facets $\mathcal{F}(T)$ and properly intersecting greater simplices $\mathcal{A}(T)$
is not lex-extendable to a triangulation

$$
\min \{f \in \mathcal{F}(T)\}<\min \{\mathcal{F}(\min \{s \in \mathcal{A}(T)\})\} .
$$

A partial triangulation T with free interior facets $\mathcal{F}(T)$ and properly intersecting greater simplices $\mathcal{A}(T)$
is not lex-extendable to a triangulation starting with some $s^{\prime} \geq s$ in $\mathcal{A}(T)$

$$
\min \{f \in \mathcal{F}(T)\}<\min \{\mathcal{F}(s)\} .
$$

Ingredient II: Lex-pruning/Lex-Breaking

Theorem

Theorem
A partial triangulation T with free interior facets $\mathcal{F}(T)$ and properly intersecting greater simplices $\mathcal{A}(T)$
is not lex-extendable to a triangulation starting with some $s^{\prime} \geq s$ in $\mathcal{A}(T)$

$$
\min \{f \in \mathcal{F}(T)\}<\min \{\mathcal{F}(s)\} .
$$

Gain One integer comparison instead of many subset tests.

Effectivity

Effectivity

Comparison (with lex-breaking):

Effectivity

Comparison (with lex-breaking):

No Pruning

Effectivity

Comparison (with lex-breaking):

No Pruning

Full Pruning

Effectivity

Comparison (with lex-breaking):

No Pruning

Full Pruning

Lex Pruning

Computational Results for Triangulations

Computational Results for Triangulations

MPTOPCOM Flip-Based CPU Times (16/40 Threads)
[Jordan \& Joswig \& Kastner 2018]

Point Conf.	\# Triang's	\# Orbits	CPU time $[\mathrm{hh:mm:ss]}$
$[0,1]^{4}$	$92,487,256$	247,451	$00: 01: 56$
$3 D_{3}$	$22,201,684,367$	$925,148,763$	$96: 00: 00$
(reg./full/output)			

Computational Results for Triangulations

MPTOPCOM Flip-Based CPU Times (16/40 Threads)

TOPCOM 1.0.8

Subset-Based CPU Times (16 Threads)
[Jordan \& Joswig \& Kastner 2018]

Point Conf.	\# Triang's	\# Orbits	CPU time [hh:mm:ss]
$[0,1]^{4}$	92,487,256	247,451	
$\begin{gathered} 3 D_{3} \\ \text { (reg./full/output) } \end{gathered}$	22,201,684,367	925,148,763	96:00:00
[R. 2022]			
Point Conf.	\# Triang's	\# Orbits	CPU time [hh:mm:ss]
$[0,1]^{4}$	92,487,256	247,451	00:00:04
$3 D_{3}$ (output)	22,201,684,367	925,148,763	01:05:11
$3 D_{3}$ (count)	22,201,684,367	925,148,763	00:21:02
$3 D_{3}$ (regular)	21,861,522,799	910,974,879	20:21:53
$3 D_{3}$ (full)	511,052,427	21,302,400	00:01:01
$3 D_{3}$ (unimod.)	346,903,379	14,459,488	00:00:39
Dodecahedron	1,533,079,037,570	12,775,757,027	11:11:48
Pyritohedron	32,734,029,351,118	1,363,918,758,719	692:30:04
$\Delta_{5} \times \Delta_{3}$	442,472,050,753,920	25,606,173,722	1313:57:17
			(M1Max8t)

Bonus Track I

Bonus Track I

For Raman
Triangulations with only simplices of min. vol. of generalized hypersimplices [Manecke et al. 2020]:

Bonus Track I

Triangulations with only simplices of min. vol. of generalized hypersimplices [Manecke et al. 2020]:

- $\Delta(5,1,3)$ has 27,780 (250 classes)

Bonus Track I

Triangulations with only simplices of min. vol. of generalized hypersimplices [Manecke et al. 2020]:

- $\Delta(5,1,3)$ has 27,780 (250 classes)
- $\Delta(5,1,4)$ has 5 (1 class)

Bonus Track I

Triangulations with only simplices of min. vol. of generalized hypersimplices [Manecke et al. 2020]:

- $\Delta(5,1,3)$ has 27,780 (250 classes)
- $\Delta(5,1,4)$ has 5 (1 class)
- $\quad \Delta(6,1,3)$ has more than $245,074,320$ (340,381 classes)

Bonus Track I

Triangulations with only simplices of min. vol. of generalized hypersimplices [Manecke et al. 2020]:

- $\Delta(5,1,3)$ has 27,780 (250 classes)
- $\Delta(5,1,4)$ has 5 (1 class)
- $\quad \Delta(6,1,3)$ has more than $245,074,320$ (340,381 classes)
- $\Delta(6,1,4)$ has more than $249,295,320$ (347,613 classes)

Bonus Track I

For Raman
Triangulations with only simplices of min. vol. of generalized hypersimplices [Manecke et al. 2020]:

- $\Delta(5,1,3)$ has 27,780 (250 classes)
- $\Delta(5,1,4)$ has 5 (1 class)
- $\Delta(6,1,3)$ has more than $245,074,320$ (340,381 classes)
- $\Delta(6,1,4)$ has more than $249,295,320$ (347,613 classes)
- $\Delta(6,2,4)$ has more than $7,248,961,080$ ($10,068,279$ classes)

Bonus Track II

Bonus Track II

Other Results Enumeration of (co-)circuits (different lex-min check):

Bonus Track II

Other Results Enumeration of (co-)circuits (different lex-min check):

- $[0,1]^{8}$ has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

Bonus Track II

Other Results Enumeration of (co-)circuits (different lex-min check):

- $[0,1]^{8}$ has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

- $[0,1]^{9}$ has

448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer \& Aurnhammer 1996])

Bonus Track II

Other Results Enumeration of (co-)circuits (different lex-min check):

- $[0,1]^{8}$ has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

- $[0,1]^{9}$ has

448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer \& Aurnhammer 1996])
Sideline Necessary conditions for lex-extendability

Bonus Track II

Other Results Enumeration of (co-)circuits (different lex-min check):

- $[0,1]^{8}$ has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

- $[0,1]^{9}$ has

448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer \& Aurnhammer 1996])
Sideline Necessary conditions for lex-extendability

- found for cocircuits

Bonus Track II

Other Results Enumeration of (co-)circuits (different lex-min check):

- $[0,1]^{8}$ has

38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

- $[0,1]^{9}$ has

448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer \& Aurnhammer 1996])
Sideline Necessary conditions for lex-extendability

- found for cocircuits
- but not so far for circuits.

Agenda

The Problem

Structures for Counting

Structures for Counting Subsets

New Results

Conclusions/Questions

Conclusions/Questions

Conclusions/Questions

Conclusions Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

Conclusions/Questions

Conclusions

Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

- critical-element tables for lex-min check

Conclusions/Questions

Conclusions

Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

- critical-element tables for lex-min check
- minimal-element comparison for lex-extendability check

Conclusions/Questions

Conclusions

Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

- critical-element tables for lex-min check
- minimal-element comparison for lex-extendability check

Potential further research:

Conclusions/Questions

Conclusions

Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

- critical-element tables for lex-min check
- minimal-element comparison for lex-extendability check

Questions Potential further research:

- Investigate the complexity of symLSRS.

Conclusions/Questions

Conclusions

Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

- critical-element tables for lex-min check
- minimal-element comparison for lex-extendability check

Questions

Potential further research:

- Investigate the complexity of symLSRS.
- Apply symLSRS to more examples.

Conclusions/Questions

Conclusions

Enumeration of orbits of triangulations accelerated by "Geometry meets Combinatorics":

- critical-element tables for lex-min check
- minimal-element comparison for lex-extendability check

Questions

Potential further research:

- Investigate the complexity of symLSRS.
- Apply symLSRS to more examples.
- Represent flip-graph exploration in terms of subsets.

